

Teoria dei Sistemi: written exam of january 13th, 2014

Nyquist Formula: $p_{CL} = p_{OL} - N$

where:

 p_{ot} : number of poles with positive real part of the **open loop** transfer function W(s) p_{ct} : number of poles with positive real part of the **closed loop** transfer function W(s)/(1+W(s))N counts the number of encirclement of the point -1+j0 made by the graph of $W(j\omega)$ N positive for counterclockwise encirclements

In the problem, $p_{CL} = 2$.

For K > 0 we have N=0, and therefore $p_{cL}=2$ (instability of the closed loop system) For $K \in (-0.1,0)$ we have N=0, and therefore $p_{cL}=2$ (instability of the closed loop system) For K < -0.1 we have N=1, and therefore $p_{cL}=1$ (instability of the closed loop system) Thus, the closed loop system is unstable for any feedback gain K.