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Problem 1. Consider a feedback control system with unit feedback gain, with the following transfer
function in open-loop

W (s) = K
10− s

(s− 1)2(s+ 1)
.

1. Draw the amplitude and phase Bode diagrams, and the polar diagram for K = 1;

2. Compute the denominator of the closed-loop transfer function;

3. Compute the number of poles with negative real part of the closed loop transfer function as a
function of the gain K ∈ (−∞,∞), using both the Nyquist criterion and the Routh criterion.

Let W̃ (s) denote W (s) for K = 1:

W̃ (s) =
10− s

(s− 1)2(s+ 1)

We consider the Bode plots and the polar plot of W̃ (s). In Bode form we have

W (s) = K W̃ (s) = K 10
(1− s/10)

(1− s)2(1 + s)

The low frequency gain is

K0 = lim
s→0

W̃ (s) = 10 ⇒ |K0|dB = 20 log10 10 = 20 dB.

Thus

|W̃ (jω)| =
10 |1− jω/10|

|1− jω|2 |1 + jω|

〈W̃ (jω)〉 = 〈1− jω/10〉 − 2〈1− jω〉 − 〈1 + jω〉.

Recalling that |jω − 1| = |jω + 1| and 〈1− jω〉 = −〈1 + jω〉, we have

|W̃ (jω)| =
10 |1− jω/10|

|1 + jω|3

〈W̃ (jω)〉 = 〈1− jω/10〉 − 〈1− jω〉

(the Bode plots and the Nyquist plot of the open loop transfer function are in the enclosed file).
The closed-loop transfer function is

WCL(s) =
K W̃ (s)

1 +K W̃ (s)
=

K 10−s
(s−1)2(s+1)

1 +K 10−s
(s−1)2(s+1)

=
K(10− s)

(s− 1)2(s+ 1) +K(10− s)

the denominator of WCL(s):

dCL(s) = (s− 1)2(s+ 1) +K(10− s) = s3 − s2 − s+ 1 +K 10−K s

= s3 − s2 − (K + 1)s+ 10K + 1

NYQUIST ANALYSIS

Let N be the number of times that the Nyquist plot of W (jω) encircles the −1 point in the
counterclockwise direction. From the plot it is clear that

• For K > 0 we have N = 0 (the Nyquist plot does not encircle the point −1);

• For K ∈ (−0.1, 0) we have N = 0 (the Nyquist plot does not encircle the point −1);

• For K < −0.1 we have N = 1 (the Nyquist plot encircles one time the point −1 in the countercloc-
kwise direction);



(Note that for K = −0.1 the denominator of WCL(s) is 0 for s = 0, and thus s = 0 is a pole of WCL(s).
Thus, when K moves from the interval (−0.1, 0), where pCL = 2, to the interval (−∞,−0.1), where
pCL = 1, a pole with positive real part becomes a pole with negative real part. Thus, we have that for
K = −0.1 WCL(s) has one positive pole and one in zero (the third one is negative).)

Recall the Nyquist formula in the form

pCL = pOL −N

where, pCL is the number of poles with positive real part of the Closed Loop (CL) system, and pOL is
the number of poles with positive real part of the Open Loop (OL) system. Since for the given W (s)
we have pOL = 2 (the term (s − 1)2 in the denominator of W (s) represent a double pole in 1), we have
pCL = 2−N , and therefore

• For K ∈ (−0.1,+∞) we have pCL = 2;

• For K ∈ (−∞,−0.1] we have pCL = 1.

In both cases, the closed loop system is unstable.

ROUTH ANALYSIS

The characteristic polynomial of the closed-loop system is the denominator of WCL(s):

dCL(s) = s3 − s2 − (K + 1)s+ 10K + 1.

The first two rows (rows 3 and 2) of the Routh table are:

3 1 −(K + 1)

2 -1 10K + 1

The computation of the element in the third row (row 1) is

a1,1 =
1

−(−1)

∣∣∣∣
1 −(K + 1)

−1 10K + 1

∣∣∣∣ = 10K + 1− (K + 1) = 9K

Thus we have

3 1 −(K + 1)
2 -1 10K + 1
1 9K
0 10K + 1

Analyzing the signs of the first column we have:

• For K ∈ (0,+∞) we have two sign variations (3 → 2 and 2 → 1) so that pCL = 2;

• For K ∈ (−0.1, 0) we have two sign variations (3 → 2 and 1 → 0) so that pCL = 2;

• For K ∈ (−∞,−0.1) we have one sign variation (3 → 2 and 1 → 0) so that pCL = 1.

In all cases we have the instabilty of the closed loop system.
These results coincide with those obtained using the Nyquist analysis.

Problem 5. Given the system
{
ẋ1(t) =

(
x1(t)− 1

)(
− α2 + 2

(
x2(t)− 1

))

ẋ2(t) = (α− 1)
(
x2(t)− 1

)
−

(
x1(t)− 1

)2

study the stability of the equilibrium point xe = (1, 1) for all the values of the parameter α ∈ (−∞,∞),
using the method of linear approximation at the equilibrium point, and the Lyapunov method (Suggestion
for the Lyapunov function: V (x) = (x1 − xe,1)

2 + β(x2 − xe,2)
2, with suitable β > 0.)

Solution of problem 5.
The system considered is of the form ẋ(t) = f

(
x(t);α

)
, where x(t) is the state and α is a constant

parameter. The vector function f(x;α) is as follows
{
f1(x;α) = (x1 − 1)

(
− α2 + 2(x2 − 1)

)

f2(x;α) = (α− 1)(x2 − 1)− (x1 − 1)2



The Jacobian computed at xe = (1, 1) is

J(xe) =

[
∂x1

f1 ∂x2
f1

∂x1
f2 ∂x2

f2

]

(1,1)

=

[
−α2 0
0 α− 1

]

Since J(xe) is diagonal, the two eigenvalues are the diagonal terms:

λ1 = −α2, λ2 = α− 1

From this we conclude:

• xe is asymptotically stable when both eigenvalues are strictly negative, i.e. when α < 1 and α 6= 0;

• xe is unstable when at least one eigenvalue is strictily positive i.e. when α > 1.

There are two cases where we can not conclude anything about the stability of xe: when α = 0 and when
α = 1 (in these cases the origin is a simply stable equilibrium point of the linear approximation of the
nonlinear system, but nothing can be concluded about the nonlinear system).

In these case we must study the stability of the point xe = (1, 1) by using a suitable Lyapunov
function.

Following the suggestion we consider the Lyapunov function

V (x) = (x1 − 1)2 + β(x2 + 1)2,

which is positive definite for any β > 0. According to the Lyapunov theorem, if the derivative V̇ (x) =
(dV/dx)f(x;α) is semidefinite negative, then the equilibrium xe is (simply) stable, while if V̇ (x) is definite
negative, then the equilibrium is asymptotically stable. The computation of V̇ (x) gives

V̇ (x) =
dV

dx
f(x;α) = (∂x1

V )f1(x;α) + (∂x2
V )f2(x;α) = 2 (x1 − 1)f1(x;α) + 2β (x2 − 1)f2(x;α)

= 2 (x1 − 1)(x1 − 1)
(
− α2 + 2(x2 − 1)

)
+ 2β (x2 − 1)

(
(α− 1)(x2 − 1)− (x1 − 1)2

)

= −2α2(x1 − 1)2 + 4(x1 − 1)2(x2 − 1) + 2β (α− 1)(x2 − 1)2 − 2β (x2 − 1)(x1 − 1)2

Note that V̇ (xe) = 0, as expected. We must check the sign of V̇ (x) in the two situations of α = 0 and
α = 1.

Note that in both cases, in the expression of V̇ (x) we have two terms that are sign-indefinite:

4(x1 − 1)2(x2 − 1) and − 2β (x2 − 1)(x1 − 1)2

By choosing β = 2 these terms can be cancelled, thus we have

V̇ (x) = −2α2(x1 − 1)2 + 2β (α− 1)(x2 − 1)2.

Thus, for α = 0 we have
V̇ (x) = −2β (x2 − 1)2 ≤ 0,

and for α = 1 we have
V̇ (x) = −2 (x1 − 1)2 ≤ 0.

In both cases the derivative of the Lyapunov function is semidefinite negative (it is never positive, but
is zero not only at the equilibrium point xe = (1, 1)). As a consequence, when α = 0 and α = 1 the
equilibrium point is simply stable (stable, but not asympotically stable).


