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Polynomial Filtering of Discrete-Time Stochastic
Linear Systems with Multiplicative State Noise

Francesco Carravetta, Alfredo Germani, and Massimo Raimondi

Abstract—In this paper, the problem of finding an optimal [26]-[31]. In [17] and [18], following this interpretation, a
polynomial state estimate for the class of stochastic linear mod- |inear filtering technique for the state estimation of BLSS'’s is
els with a multiplicative state noise term is studied. For such proposed.

models, a technique of state augmentation is used, leading to the . . . .
definition of a general polynomial filter. The theory is developed In this paper we consider the following class of BLSS's:

for time-varying systems with nonstationary and non-Gaussian
noises. Moreover, the steady-state polynomial filter for stationary z(k+1) = A(k)z(k) + B(k, z(k), gf(k)) + &(k) (1)
systems is also studied. Numerical simulations show the high
performances of the proposed method with respect to the classical y(k) = C(k)z(k) + n(k) )
linear filtering techniques.
Index Terms—Kalman filter, Kronecker algebra, polynomial Wherez(k) € R", y(k) € IR™, and {'(k), {(k), n(k) are
filter, stochastic bilinear systems, stochastic stability. white sequences (not necessarily GaussianRih IR?, and
IR", respectively,A and C' are matrices of suitable dimen-
sions, whereasB(k, -, -) : R" x R? — IR" is a bilin-
| INTRODUCTION ear map. Moreover, we will assume the independence of
YSTEMS with multiplicative state noise, also known inz(0), {£(k)}, {€/(k)}, and {n(k)}.
iterature as bilinear stochastic systems (BLSS's), haveThe problem we would like to face is the filtering of the
been widely studied since the 1960’s because, from an &fatex(k), given the measurement procelg;), j < k}. It
gineering point of view, they constitute a more adequate well known that whenB = 0, this problem is solved by
mathematical model for the analysis and control of some irthe famous Kalman filter which yields the linear minimum
portant physical processes. In particular, we stress that bilingariance optimal state estimate (actually optimal among all
models are often derived from basic principles in chemistrfilters in the Gaussian case) [32]. The general case is, until
biology, ecology, economics, physics, and engineering [3ow, unsolved. As mentioned above, a suboptimal solution
Moreover, the well-known bilinear systems (BLS’s) becomean be obtained by substituting the stochastic forcing term in
BLSS’s when the input is affected by additive noise. (1), namely
In control engineering, BLS’s are appealing for their better
controllability with respect to the linear ones [2]. In this g(k) = B(k, z(k), &'(k)) + &(k) (3)
framework, considerable importance is devoted to control and
stabilization problems, as shown in [5]-[11]. The problem diy a process having the same first- and second-order prop-
parameter estimation for BLS's and BLSS'’s was consideregties. Indeed, it is readily proved thdy(k)} is a white
in [12]-[15]. sequence so that the Kalman filter can be implemented in order
The state estimation problem for BLSS’s constitutes ap have the optimal linear estimate. Of course, the stochastic
important topic in all those cases in which the state itself is negquence given by (3) is not Gaussian so that the Kalman filter
available directly. In [4], the filtering problem for linear controldoes not give the optimal estimate. Recently, the problem of
systems is considered. In [16], the same problem, for a clasdiatling nonlinear filters for non-Gaussian linear models has
nonlinear systems including the bilinear ones, is studied, abden considered. In particular, a quadratic filter is proposed in
a linear filter is obtained by considering the nonlinear term §9], and its extension to a more general polynomial case is
an additive noise. BLSS’s can be considered as linear systetnssidered in [20].
whose dynamic matrices are a random process and vice versk this paper, we are able to define a filter for a BLSS
such as (1) and (2), which is optimal in a class of polynomial
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the polynomial filter for linear non-Gaussian systems definéde Banach space of thedimensionalG-measurable random
in [20]. However, this way is not convenient at all. Indeed, theariables with finitepth moment as

computation of the moments of (3) requires the computation of

the state moments. The application of the procedure described  L?(G, n) = {X : 0 — R", G — measurable,

in [20] for state-moments computation leads, in this case,

to a very cumbersome nonlinear equation, giving very hard / X (w)||P dP(w) < +OO}
implementation problems that are difficult to analyze as far Q

as its convergence properties are concerned. In the gen%ﬁ‘ére”-” is the euclidean norm ifR". Moreover, wherg is
polynomial case, it is much more convenient to assume, o-algebra generated by a random variable Q ~R™

as a startir_1g innt for th? development of the theary, t fatisg = a(Y), we will use the notatiod.” (Y, n) to indicat'e
representation (just used in [17] and [18]) of the BLSS (1 #(5(Y'), n). Finally, if M is a closed subspace &% (F, n),

(2) as a linear system with a stochastic dynamical matrix. e will use the symboll(X/M) to indicate the orthogonal
this framework, in order to obtain a self-contained gener?tojection of X € L*(F, n) onto M

solution of the polynomial filtering problem for the class o s is well known, the optimal minimum variance estimate

the BLSS, here we will adopt just the basic strategy describg a random variableX € L2(F, n) with respect to a random

in [20]. The resulting a}lgonthm will be suff|c:|en.t|y general tovariabIeY, that iSLI(X/L2(Y; n)), is given by the conditional
include as a very particular case the polynomial filter for t

hg . o .
. . ectation (C.E.E(X/Y). If X andY are jointly Gaussian,
linear non-Gaussian systems. *P fon ( E(X/Y) JoIntly >aussi

Roughly speaking, the method used here consists of definltrqgen the C.E. is the following affine transformation1of

a linear system whose state and output processes include E(X/Y) :E(X)+E(XYT)(E(YYT))
Kronecker powers and products of the original state and .
output processes so that it is amenable to be treated withereY =Y — E(Y).
Kalman filtering theory. For this purpose, the main tool is Moreover, defining
the Kronecker algebra. Some important formulas about this 1
subject are also deduced (e.g., the expression of the Kronecker Y = {Y
power of a vector polynomial).
We stress that, in the present case, the existence of a stglbjealso can be interpreted as the projection on the subspace
solution for the polynomial filter is not guaranteed simply by n s m
the stability of the dynamic matrix as in the linear case. LY’ n)={Z:Q— R"/IA€ R such that
The paper is organized as follows: in Section I, we recall Z=AY'} c L*(Y', n) = L3(Y, n).

some notions in estimation theory which are essential to better . . .
. . . . ._Unfortunately, in the non-Gaussian case, no simple charac-
understanding the meaning of polynomial estimate. In this

. : . terization of the C.E. can be achieved. Consequently, it is
framework, we define the class of polynomial estimators and . : . . X

: . : ; : worthwhile to consider suboptimal estimates which have a
recursive algorithms which we will use later. In Section Ill

we make precise the problem statement, and Sections%.\mpler mathematical structure that allows the treatment of

and V exolain how to build up the augmented svstem |real data. The simplest suboptimal estimate is the optimal
Section le the way to im IemeFr)n the filtgr on the al)j mer;t aa‘rine one, that ISlI(X/L(Y", n)), which is stil given by
' y P 9 % e right-hand side (RHS) of (4). In the following, such an

system is described. In Section VII, we present the SFatlona(ergtimate will be denoted with and shortly called the optimal
case and the steady-state theory. Section VIl contains so

. . . flrr]1eear estimate. Suboptimal estimates comprised between the
remarks about the computer implementation of the algorithm. . . o
timal linear and the C.E. can be considered by projecting

. . . . .0
In Section IX, numerical simulations are presented showin , ;
the high performance of polynomial filtering with respect tc())(ito subspaces, greater thai{Y”, n), like subspaces of

. 4 ; gg_lynomial transformations of Y. We define thth degree
the standard linear methods. Two appendixes are |ncludS ace of the polynomial transformationsiofe L2(F, m) as
Appendix A, containing the proof of the main theorem of th P poly ) 1

paper defining the augmented system, and Appendix B, wherg following (closed) subspace df (¥, n):
the main definitions and properties about Kronecker algebrap,(y, n) ={Z e L*(F,n): Z=T1Y + oY +...
are reported together with some new results.

Y@

}, Y € L*(F, m)

+TY 40, T e R™ b e R}

where the symbolY’ll denotes the Kronecker power (see

Appendix B). By defining the vector
Our aim is to improve the performance of standard linear

Il. POLYNOMIAL ESTIMATES

filtering for the class of the BLSS (1), (2). For this purpose we 1

will look for the optimal filter among the class of estimators Y, = Y €LAF, 1+m+-+mb) (5)
constituted by all the fixed-degree causal polynomial transfor- :

mations of the measurements. We now clarify this point by Y]

giving some definitions which will be useful in the following.We have that
Let (22, F, P) be a probability space. For any given sub-
o algebraG of F and integerp, let us denote byl.?(G, n) Pi(Y, n) = L(Y;, n).
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We define theith-order polynomial estimatas the random  Definition 2.1: We say that the estimat&, of X (not

variableII(X/£(};, n)). Since necessarily optimal) is recursive @ order if there exists
a sequence of random variablé;,} and transformations
LYV, n) CLY2,n) C o+ CTLDY;,n) R, Tx, such that the following equations hold:
the polynomial estimate improves (in terms of error variance) Zx = Ra(Zye-15 Yo Yaer; -5 Vi) (7)
the linear one. Le#{ be the closure in.2(F, n) of X =Tw(Zy). (8)
A As is well known, in the Gaussian case and when the
P, n) = £, n) sequence$X;}, {Y;} are the state and output evolutions of a
=0 linear discrete-time dynamic system, the optimal estimator of

: . the state satisfies a recursive equation as in (7), (8), Rith
2

since, n general,' forr{ .7£ L (ff(Y)’ n) We,, cannot _assert iven by a suitable linear transformatiafy, = I (I identity
that the polynomial estimate “approaches” the optimal or?ﬁ

. . . f’;\trix) andA = 0 (the Kalman filter). The same equations
for increasing polynomial degrees. Nevertheless, the C'E'gﬂve, in the non-Gaussian case, the optimal linear estimate.
X can be decomposed as

In the next section, we will prove that whéi(;.} and{Y;}
are the state and output processes, respectively, for a BLSS as
in (1), (2), it is possible to find a structure (7), (8) whéke
has the form

E(X)Y) =1II(X/H) + II(X/H)

where H-1 is the orthogonal subspace ®f. From the pre-
vious relation we infer that the polynomial estimate can be RilZy—1, Y, Y1, -+, Yiea)

considered as an approximation of the optimal one only when = Ri(Zr-1, Fr(Yi, Yam1, -+, Ya—n))
|ITL(X/H1)||z= is suitably small. However, the polynomial

estimate always yields an improvement with respect to twéth R linear and £, polynomialsuch that (7) and (8) yield
performance of a linear estimator. Moreover, we can calctie sequenceﬁf(k} of optimal estimates in a certain subclass
late it by suitably modifying the space of observed randowof all the polynomial transformations of fixed and finite degree.

variables and using (4) In order to define more precisely this subclass of polynomial
) estimators, we need to give some preliminary definitions.
=T — =T\ "t ; A afi
H(X/Pi(Y, n)) = E(Xyi )E(yiyi ) Vi + E(X) Consider the above-defined veclkr ;, and letr > 0 be a

fixed integer; we define the subspace

PV,A(Y;%,kv 7’L) C PV(Y;%,kv 7’L)

where
as
35 A
Vi = Vi = EQ%). Py a(Ye gy n)
Now, let us consider aequence X;} of random variables in )
L2(F, n) and another{(Y;} of observed ones i?(F, m). =¢eL(F,n): &= >
The problem of estimatind;, given {Yg, Y1, ---, Y3}, can 0Zhytthy <v
be solved by defining the vector
Yo Y e e et
Y'l 0<iy, oy ip <k
Yre,k — . max |is—ip|<A
; where thec;, ; ; ;’s are suitably dimensioned matrices. Since
Yy bt g

the subspac®, A(Y: i, n) is finite dimensional, and there-
fore closed, we have that for ary it is possible to orthopro-
ject there thel.? random variableX. Then, we can give the
lowing definition.

Definition 2.2: The random variablé(,g”’ A), given by

and applying (4) withY = Y., — E(Y, ;) so that the
optimal linear estimate ofX; is obtained. When the joint
sequencd X;, Y;} is Gaussian, (4) yields the optimal estimat(tzOI
E(Xy/Yo, - -+, Y3). Similarly, if the momentsE(Ye[f;e), Jj=
1,---,2h, k=0,1, ---, are finite and known, théth-order
polynomial estimate can be obtained by extending the vector
Y.« as in (5). However, such a method is highly inefficientg said to be thér, A)-order polynomial estimate akj.
because it leads to a fast growth of the dimensions of involvedtye random variablé(,g”’ A) represents the optimal estimate
matrices so that it does not result in being very useful from ajp X, among all thev-degree polynomials, including cross

application point of view. A more realistic approach should,qcts between observations which lie in a time window of
consist of searching for a recursive algorithm able to yielgiqih A. Since

the above estimates. For this purpose, we give the following
definition. LY g, n) =P oYe k, 1)

X,EV’ A = I( Xy /Py aYe k, 1))



CARRAVETTA et al: POLYNOMIAL FILTERING WITH MULTIPLICATIVE STATE NOISE 1109

and Our goal is the determination of a discrete-time filter, that
Pr Ao s 1) C Pt (Yo ks 1) is a rlecursive algqrithm in the form ), (8)', which gives at
any timek the optimal polynomial state estimate ©f, A)-
v=12- A=01-- order (see Definition 2.1) for the system (9), (10), given all
PoaYe 1, n) C Py a1 (Ye x, n) the available observations at tinke: 3(0), -- -, y(k).
v=12- A=0,1,-- In the next sections, it will be shown how to obtain such

_ _ . . a polynomial filter. Moreover, in the constant parameter case,
the result is that the estimate quality had to improve fqfonditions will be defined assuring the existence of a stationary
increasingr and/or A. polynomial filter.

The approach that follows goes along the same line as in
lll. THE PROBLEM [20], consisting essentially of the transpose of the originary

The problem we are faced with is the filtering one for thBroblem to a linear filtering one, solvable by means of the

following class of stochastic discrete-time bilinear systems:Kalman filter. In order to define a polynomial estimator which
also takes into account cross products between observations at

x(k +1) = A(k)x(k) + B(k, z(k), & (k)) + (k) different times, we need to introduce the following so-called
2(0) =7 9) “extended memory system.”
y(k) = C(k)z(k) +n(k) (10)

IV. THE EXTENDED MEMORY SYSTEM
where, for anyk

Given the system (9), (10), and having chosen an integer

z(k) e R,  y(kh)eR™, k) eR" A > 0, let us define the following vectors:
(k) e RY, n(k) e R™.
® “ a(b) (k)
Moreover, A(k) € R™*"™, C(k) € R™*", whereasB(k, -, -) y(k—1) y(k—1)
is a bilinear form inNR™**. The random variablg (the initial we(k) = : € RY, ye(k) = : € R
condition) and the random sequendésk)}, {&/(k)}, {n(k)} y(k _ A) y(k _ A)
satisfy the following conditions for ang > 0. (14)
1) There exists an integer > 1 such that with ¢ = n+m A andp = (A + 1)m. Taking into account

the equivalent equations (11), (12), we have that), y.(k)

=12V 2v
E(|[=]|™) <oo,  E(IER)I™) < o0 satisfy the following relations:

E(|IE®))*) <00, E(|In(R)]|*) < oo

2) The initial statez forms, together with the sequences ze(k+1) = Ac(R)z. (k) + FN (k) (15)
{&(k)}, {&'(k)}, {n(k)}, a family of independent ran- Ye(k) = Ce(k)ze(k) + GN(k) (16)
dom variables.

3) Al random sequences{¢(k)}, {¢'(k)}, {n(k)} are Where
white. TAK) 0 - - 0

It should be noted that the vectd@(k, x(k), &'(k)), in (9), ck)y o - - 0

due to the bilinearity hypotheéis, can be written in the form fle(k) = 0 ;o : (17)
B(k, a(k), £ (k) = Y Bi(k)a(k)&i(h) 0 Lo
= "C(k) 0 0
where B;(k) € R"*" is a suitable matrix ang(k) denotes )
the ith entry of the vecto€’(k). Then, system (9), (10) can Ce(k) = 0 I _ (18)
be rewritten as ' Lo
w(k+1) =A(k)z(k) + k), z(0)=%  (11) L 0 !
y(k) = C(k)a(k) +n(k) 12 I o
where " 0o I 8 é
w &k IRE _
A(k) = A(k) + > Bi(k)&i(k). (13) () {n(/{)} = o =
0 0

System (11), (12) is a linear system with a stochastic dynamic

matrix. It is equivalent to the original bilinear system because\Ye call (15), (16) arextended memory system

generates exactly the same state and output processes. Hendr,the next section, which contains the main result of this
in order to obtain a state estimate, we can consider this latpaper, we will be able to derive the evolution of the Kronecker
system in place of (9), (10). powers of the above-defined extended state and output.
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V. THE AUGMENTED SYSTEM Moreover, {F(k)}, {G(k)} are zero mean uncorrelated se-

Let us consider the integer > 1 for which Property 1) of duences such that
Section 1l holds. We define theugmented observaticas the

vectory € R*, =p+p2+---+p” E(]:(k)gT(j)):Ov k#j (23)
Ye (k) whose auto- and cross-covariance matrices
e / /
vk = | f il (19 Qk) = E(FW)FREY),  R(k) 2 EGR)I(E)T)
(k) J(k) 2 E(FR)G(E)")

Moreover, we define thaugmented statas the vectott € have the following block structure:
R whereA = g+ @2+ -+ + ¢*

rQ1,1(k)  Quo(k) -+ Q1 ,(k)
ze(k) _ | Q2,1(k) Q2a(k) -0 Qo u(k)
a:LQ](k) k) =
YR =1 (20) [0, 1(K) Qualk) -+ Quyulh)
(k) Ru1(k) Ru2(k) - Ry (k)
. L Rk = | R22k) Rao(k) o Rau(k)
Now, for a bilinear system such as (9), (10), satisfying the ol DU TR
Properties 1) and 2) of Section I, let us build up the extended Ry 1(k) Ru2k) - Ru (k)
memory system (15), (16), the augmented observations (19), -~
and the augmented state (20). LE(ﬂ) and I(«, ) be the ?1%:; ?283 gll’gzg
identity matrix in R’ and in R*’, respectively. Then, the J(k)=|v%1 2,2 2,v
fO”OW”’]g theorem holds ................... '.'.' ..........
Theorem 5.1:The processe$Y(k)} and {X(k)} defined Tralk) - o2 (k) T, (k)
in (19) and (20) satisfy the following equations: where, forr, s = 1, -+, v, Qu o(k), Re.a(k), Jrs(k) are

q" x q°, p" x p°,q" X p® matrices, respectively, given by the

Ak +1) =ARXE) +UR) +F (), X(O)=X @) ot s

V(&) =C(k)X (k) + V(k) + G(k) (22
Qv s(k) = QM (k) + Q2 (k) (24)
where
z. FEWV(D) L
2= M, ww= |TEETW QM) =Y Y M@t (Lo © CF )
: =0 j=0
7! FFIE(NW(E)) (F[r+s—l—j1 © B(A(k)))
i et 8oy )
V(k _ G ( (k)) ( ndm, s—j ®C(n+m)r gt j)
A N ((B(NE= (k)
GHBVE®) — BOVEIIE) © ENIU(R) © I, 1sy)
E(glt+] s ()T
_E( ~€(/€)) ~g 0 qu qﬂ) ( e+ (k)))MS—j((.Z) (25)
A(k) — H2,1(k) E(Ae 1(k)) 0
T o
[ Ce(k) [? o0 QA (k) =" M (st ™((Ig, o= @ CE5)
2 =1 j=1
e(k) = | F2al) ol e 0 (Frts=i] o (BAI(R))
Lu1(k) Lya(k) - CF(k) — E(AY(k) @ B(AP (k)
Hi,l(k) = Mzz—l( )( [Z d ®E(A£”(/€))) ( n+m, s—j ®C(n+m)r tql, qg)
(B @ 1,0 Lt 5= @ Oyt o)
1]

) ) [s—j [r
Li(k) = Mi_(p)( G & Cl (k) _(C(N) (([zﬁffki()jﬂvﬁ ((:)))@ fo)

(BWIw) o 1,1). | (26)
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rolsot where Q;, ;(k), h > 1,1 > 0 are given by the following
T —1 T v, ’ - ) =
Z Z My (p)st™ (((Up, s—5 @ T 410) recursive equations:
=0 j=0
(Glrts=i=il g Ol () Qn,i(k) = (C:}F,nh @Iy 1-1)Th, 1(k)(Cy e @ 1g,1-1)  (30)
n+m, s— ®Cn m)” J
L, 1= @ Comyr-tat, ) -
( n+m,s—j ®C(n+rn)T iqt, j)
Nl+r—il] Qht1,1-1(k) 0 0
(BN (k)) = |C(k) ® Qp,1—1(k) 0 0
— E(NE-(k)) @ E(NUU(R) © I, 11) 0 Itm-(A-1)®Qni1—1 0
 Cg ) B M; () 1)
(27)  with initial conditions
r—1 s—1 @1( ) B
T s( Z Z M (q)st™Y( (Ip, s—j ®C$7pj) = E(Ac(k))
1=0 j=0 , A(k) + 3221 Be(k)E(&(F)) 0 0
(Gl @ FIr-1 o B(AN(K)) © C.UI(K)) = C(k 0 0
U, 35 @ Cltmy=tat, ) 0 fma-2) o]
( n+m, s—j & C(,H_m)r iqt, j)
s+r 1 ~
(BN () Quo(k) = BAPNR),  s=1,2,,i. (33)
— EWNEI(R)) @ E(NUTIR) @ 1y, 145) . s N
C L )M ()T Proof: First of all, note that the matriX.(k), defined in
at, 7 VBT ()M (p)” - (17), can be rewritten in the compact form
28 .
(8) : A(k) 0 0
Proof: See Appendix A. O Ac(k) = |Ck) 0 0 (34)
We call system (21), (22) armugmented systenit is 0 Im-(A-=1)) 0

a classical time-varying stochastic linear system. Its state

and observation noises are zero mean uncorrelated sequeMéie the null blocks are suitably dimensioned(k) is

and are also mutually uncorrelated at different times. Fgfinedin (13), and(m-(A—1)) denotes as usual the identity
these noises we are able to calculate their auto- and cré&trix inIR™=~Y (we conventionally assume that it vanishes
covariances. Hence, for the augmented system the optirffl A = 1). From (34), and fot = 1, ---, 2v, (35) follows,
linear state estimate can be calculated by means of the Kaln#@nshown at the bottom of the page. Moreover, for any pair of
filter equations. In order to proceed along this way, we firditegersh, [, using Theorem B.3 and Property (93c), we have

need to determine the quantiti@(fl@(k)) and E(a:Lﬂ(k)) E(GAM(k) @ AB(k))
for ¢ = 1, .-+, 2, which appear in the augmented system T £ 1]
matrices and in (23)—(28). = B(A™ (k) Q?Ae(k) Q?Ae () .
The matricestZ (Al (k)), i =1, ---, 2v can be recursively = E((CF i (Ac(k) @ AM(k)Cy ) @ AP H(R))
calculated fromE(All(k)), as stated in the following theorem. = E((CF o © Iy1m1)
Theorem 5.2:Let, fori = 1, ---, 2v " i o
b ((Aell) © AW ()0, o) © AL (R)))
Qi(k) 2 B (k) (O L)
and then we have - B(Ac(k) @ AM(k) @ ALU(k)(Cy e @ Ig,1-1)
Ql _1( ) 0 0 = (ngn" ®Iq,l—l)ﬂL,l(k/‘)(Cq,n“ ®Iq,l—l) (36)
Qi(k)=|C(k) ® Q;_1 (k) 0 0
¢ — where
0 Im (A-1)@G (k) 0 L
(29) Th.a(k) = B(A:(k) @ AP (k) © AL~ (k).
| ~ E(A(k) @ AL (k) 0 0
E(AP(R) = B(Ac(k) @ AFH(R) = | E(O(k) @ ALH(k) o 0
I(m-(A-1) @ EATH(R) 0

(35)
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Taking into account (34), we have the resulting (37), as shown 1 i
at the bottom of the page, where = st Dé,)nE st(A(k))

- - [¢]
Li(k) 2 B(AM(E) @ AW(k)). 38 u
Quu(k) 2 B(AM (k) © AV (k) (38) +Zst(3j(k))§3(k)>
Equation (37) substituted in (36) yields, by exploiting (38) and i=1
(35), (30) and (31). From (38) we have
— o1 () 7
Qr.i1 = B(A(R) © A1) t (D 20 M
and substituting this in (35), we obtain (29). Finally, note that ’ ((St(“l(k)))[ho1 ® (St(Bl(k)))[hﬂ ©-- o
from (13) and taking into account (34), the initial condition
(32) follows. Moreover, from (29)—(31) we infer that to (st(Bu (k)] (H il (k )) . O
compute®); ;1 (k) it is enough to know the matriceg, o(k),
fors =1, 2, ---, ¢, which are given by (33), as immediately
follows from (38). O As far asE(z(k)), i = 1, - -, 2v, the vectors appearing
Theorem 5.2 allows us to compute recursively the matricgs the expressions of the augmented noise covariances, are
(A[Z( k)) for ¢ = 1,.--, 2v, from the initial conditions concerned, the following theorem shows that their calculation
(32), (33). Condition (32) is immediately given from the datas possible by means of a recursive algorithm.
whereas to obtain (33) we use the following result. Theorem 5.4:The vector of the expected valugsls, (k),

Theorem 5.3:The matricesE(All(k)) are given by the defined as
following formula:

E(z.(k))
MQV(k) = : ]

BAP (k) =st (DD, 1y THzo Mi . B (k)
hothi+4h,=t

. ((St(A(k)))[hg} ® (St(Bl(k)))[hl} @ ® satisfies the following recursive equation:

' )iy ,hj Moy (b +1) = Aoy (b) Moy (k) + Uy (k)
({2 (H 4 )) Mo (0) = R, (40)
(39) where
Proof: By applying (106) and Corollary B.8, and by [ E(T.) FE(N(k))
exploiting (13), we have o E(_[% FRE(NRI(E))
| M= xe ) ; u?z/(k) = :
k) + Z Bj(k)gj(k))m _E(f?y1) F[QV}E(N[QV}(k))
o 9 B0 0
u 712
=st7!| B st (A(k) +> Bj<k>£;<k>> Aoty = | Mol BT -
=t Hay (k) Hau,o(k) B(AE"(k))
=st71 <D§;‘)nE < <st <A(k)
. H; (k) = M{_(9)(F~ o E(A(R)))
u ' . [i~1]
oy Bj(/f)g;(k)> ) (BOVEI() @ 1,,0).
J=t Proof: See Appendix A. O
[ E(AME) @ AE (k) 0 0
Th1(k) = |C(k) @ E(AM(k) @ AP (k) 0 0]
! 0 L, a1 @ E(AM(K) @ AFY(R) 0

= |C(k) @ Qn,1-1(k) 0 0 (37)

0 I(m-(A=1)®Qui_1 0

[ Qi1 i-1(k) 0 0]
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VI. POLYNOMIAL FILTERING Definition 2.2 we infer thati(k) is the (v, A)-optimal poly-

Now we are able to apply the Kalman filter to system (Zlﬂomial estimate with respect to the originary measurements
(22). It should be highlighted that since the samples of tH&(0); ¥(1), ---, y(k)}. As in [20], we call apolynomial
augmented state and output noises are in general correlatelfg{ the whole set of operations constituted by the recursive
the same time, the system needs to use the Kalman filter i§@ations (41), (42) and by the extraction of the firgintries
version given by [22], which takes into account this nonzet8 <t (k). resulting in an algorithm having the form (7), (8).

correlation. The equations to use are the following:

X(k) =X(k/k = 1)+ K(k)

(V) =R/ -1) = VR) @D
X(k+1/k) = (Ak) = (AR)K(E) + Z(R))C(R))
CX(kJk = 1) + (AR)K(E) + Z(k))
~(V(k) = V() +U(K) (42)
Z(k) =T (k) (C(RYP(k/k — 1CT (k) + R(k)) " (43)
Pk +1/k) = A(EYP(k) AL (k)
+ Q(k) = Z()TT (k) = A()K ()T (k)
— TR (k)AT (k) (44)
P(k) =Pk/k — 1) — K(E)C(K)P(k/k—1)  (45)
K(k) =Pk/k — 1)CT (k)
A(CRYPR/E = 1DCT(R) + R(E) ™" (46)

whereK (k) is the filter gain,P(k), P(k/k—1) are the filtering

VII.

Equations (41), (47) allow us the recursive calculation of the
state polynomial estimate for the time-varying bilinear system
(9), (10). However, in the time-varying case the result will be
in general dependent on the initial conditions, whose statistics
are often unknown. Moreover, the gain equations (43)—(46)
need to be implemented simultaneously to the filter equations
(41), (42).

Due to the high complexity of this filter, it assumes great
importance from a practical point of view, to know when there
exists the steady-state version of (44)—(46). Here we will limit
ourselves to examining some important subclasses of bilinear
systems for which we will be able to give necessary conditions
under which a stationary behavior can be achieved.

First of all, let us consider the case when the system
matrices A(k), C(k) and the bilinear formB(k, z, &) of
system (9), (10) are time independenik) = A, C(k) = C,
and B(k, z, &) = B(z, ¢'). Moreover, let us assume the

STATIONARITY AND STEADY-STATE BEHAVIOR

and one-step prediction errors covariances, respectively, ‘?‘Rfi'sesn(k), ¢(k), € (k) are weakly stationary sequences (that
the other symboITs are defined as in Theorem 5.1. If the matj¥X their moments are time invariant). This case is modeled by
C(k)P(k/k—1)C™ (k) +R(k) is singular, it is possible to usethe following stationary bilinear system

the Moore—Penrose pseudo-inverse. X
Equation (41) yields recursively the vectai(k), that is the

optimal linear estimate ot’(k) with respect to the aggregate

vector of all the augmented observations up to titne

Y(k)
Y(k—1)

(0)
1

(we remind readers that here the unit element allows us to

reduce araffine estimation problem to atrictly linear one).
From Definition (20) ofX'(k) and (14) ofz.(k), it follows
that the original statez(k), is the aggregate of the first

entries of the vecto®’(k). Since the optimal linear estimate
with respect tay, is the L? projection of the random vector

X (k) on the subspace linearly spanned )y, it follows that
we can obtain the optimal linear estimatexgf;) with respect
to Vi, i.e., #(k), by extracting int’(k) the firstn entries

#(k) = [I(n) 0]X(k). (47)

a(k+1) = Az(k) + Z Biz(k)e(k) + &(k),  z(0)=T

(49)

y(k) = Cu(k) +n(k) (50)

which can be rewritten, as in the time-varying case, in the
linear form with stochastic dynamic matrix

x(k+1) = ARz (k) + &£(k), z(0)=7 (51)
y(k) = Ca(k) +n(k) (52)
where
A(k) = A+ Bigi(k). (53)
=1

The corresponding augmented system is
X(k+1) =AX(k) +U + F(k), X0)=X (54)
V(k) =CX (k) +V+ G(k). (55)

As is well known, the Kalman filter implemented on a time-

Equation (47) implies that the error covariance of the origingvariant system such as (54), (55), having second-order

state, namelyP(k), is given by

P(k) = [I(n) O]P(k) {I (”)}

. (48)

where P(k) is given by (45) and hence is the x n top
left block of P(k).

weakly stationary noises, admits a steady-state gain under the
additional hypotheses of stabilizability and detectability [22].
Moreover, from Theorem 5.4, it follows that the extended
state momentsE(a:E}(k)), i = 1,---,2v, given by (40),
converge if and only if the matrixd,, (k) is asymptotically

By remembering the structure of thestable. By observing the structure gf,,.(k), we infer that

extended observation (14) and of the augmented one (19), frianis asymptotically stable if and only if the eigenvalues of
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all the matricesE(flL,i](k)), for i = 1,-.-, 2v, belong to and hence

the unit circle of the complex plane. It also follows that /2]

the stability of the matrice@(flg](k)), fori =1,..., 2p, it _ l 1—2m Im
implies the asymptotic stationarity of the augmented noises. [ir(B(AE(R)))] = z_:o 2m (tr(4)) E(Y™™),.
Such a condition is then sufficient to assure the existence of "=

a stationary filter. Now, the main problem is to give sufficien{ote that all the terms of the summation in the right side have

conditions for the stability OE(A[Z( k),i=1,---, 2. the same sign. Finally, we have

We will see that for a strictly bilinear system even time-
invariant and with stationary noises, the possibility to imple- [1/2] I
ment a stationary polynomial filter is not, in general, assured. Z <2m) (tr(ANTIEY ™)
Indeed, we are able to find a counterexample in a particular m=0
but important case, that is when the noises are Gaussian, as u
shown in the following theorem. > min {1, tr(A)}{ - 2)!! Z(tr(Bj))Q

Theorem 7.1:For the matrices J=1

E(AUEY) (56) where the right side is obtained by calculating the sum for

N m = [l/2] and taking into account that
with A.(k) given by

u

Ac(k) = Ac + B (k) B(Y?) = (tx(B)))%
j=1
é 8 8 Hence, we hav¢tr(E(A£,”(k)))| — 400, for I — 400, faster
ST than [I/2]!. Since
Ac=|0 1 - : (57)
: S qd
0 . ... T 0 w(B(AL(R)) = DN < ¢ max ()
- =1
>_Biglk) - 0 | o
i=1 where ); are the eigenvalues df(A¢(k)), this implies the
B.(k) = (58) .
: .o existence of at least one eigenvalue greater than one.
(') 0 The circumstance that the availability of the steady-state

moments of any order is not assured for a bilinear system
and under the hypotheses thgitis Gaussian andr(A) # represents a limitation in designing stationary polynomial
0, tr(B;) # 0, for j = 1, .-, u, it results that there exists filters. In order to be more precise about this limitation, let
1 < 400 such that (56) is unstable for dll> 1. us introduce the following definition.

Proof: Let us suppose, for sake of simplicity, that the Definition 7.2: For a stochastic bilinear system such as
entries of¢’ have unit variance and are mutually independer{#9), (50), we define the stochastic stability degreeas
By using Property (93h) and taking into account the structuf@e maximum order for which the extended state moments

of A. (57) and that ofB.(k) (58), we have E@(k)), i = 1,--, v, converge to a finite value for
k — +oo, for any initial condition E(zf(0)) < +o0. We
|te(E(AL(R)))| = |E(te(AH (k)] setrv, = 0 when the first moment is not convergent.
= |E((tr(fle( ))) ) = |E((tx(A )—i—tr(Be,(/f)))l)l For a stochastic time-invariant linear system having finite
! noise moments of all orders,; can assume only the values
“ , zero or+oo; that is, if the dynamic matrix is stable (unstable),
=\E tr(A)+Z(tr(Bi))£j(k) vs = 4+oo(vs = 0). This fact is a trivial reformulation of
=1 the theory developed in [20]. For a bilinear system such as
= |E((tx(4) + V)| (49), (50), it is possible to implement a stationary polynomial
filter of (h, A) order, for anyA € IN and h < [v5/2] (here
whereY = 377 tr(B;)&;(k). Hence [] denotes integer part). The determination of the stochastic

stability degree is hence useful for stating in advance the
maximum order for which the state polynomial estimate is
computable by means of a stationary filter. For this purpose,
some results, useful for the determination of the stochastic
Since¢/(k), j = 1, ---, u are Gaussian and independent, wgtability degree, can be found in [17], [18], [24], and [25].
have Here we specialize the above-mentioned results in order to
study the stochastic stability of the Kronecker powers, up to
the vth degree of the extended state or the stationarity of the
extended state moments, which is the same.

All] _ : l l-m m
BRI =| 3 (), ).

m=0

0, m odd,
(

E(Y™) = { m— DI(E(Y?2)™?2,  otherwise;
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Lemma 7.3: The stochastic system VIII. | MPLEMENTATION REMARKS

Some numerical simulations have been carried out on a
(59) Digital “alpha” workstation by implementing the polynomial
. . . . _filter equations in order to produce for any pair of integers
\t,\rlizirtiééiélz%];\;carrfthriuceegci;;[Edggi:grin;sldemlca‘lIy||dIS’; > 0, A > 0, the (v, A)-order optimal polynomial state
: ' ymptotically estimate of a BLSS.
stable if ) )

For this purpose, we have written a C-language program
whose main part is devoted to the efficient implementation of
the algorithms, described in Sections V and VI and Appendix
B, for the computation of the filter parameters. By observing
the formulas which define the augmented system parameters,

in the statement of Theorem 5.1, it becomes evident that the

z(k+1) = As(k)x(k)

1T

Mr(BE(AY (AU () = < 1

where A, (B) denotes the maximum eigenvalue of matbix
Proof: Taking thelth Kronecker power in (59) we have

a:[”(k +1) = ALI1(k)a:[11(k). (60) computational effort of the_ whole polynomial filter algorithm
quickly grows for increasing, and/or A. Nevertheless, we
From the hypotheses it follows that poiqt qut that even low-order p_olynomia_l filters (quat_drgtic or
cubic filters) which do not require a particularly sophisticated
E(A[S”T(k)A[S”(k)) <1 implementation show very high performances with respect to

the classical linear filter. Indeed, as shown in some numerical
simulations of the polynomial filter for linear systems [20], the
error variance of a cubic filter may be 80% smaller than the
E(A[SIJT(k)A[S”(k)) —-I=-P P>0. Kalman filter. As we will see later, these high performances
are confirmed by low-order polynomial filters for a BLSS. In
The thesis follows by applying [18, Lemma 3.2] to (60)0 the case presented here, the second-degree polynomial filter
It is now possible to determine a sufficient condition for th¥ields a signal error variance of 54% less than linear filter. In

hence

stability of (40). In fact, the following theorem holds. the same case we have been able to compute the fourth-degree
Theorem 7.4:If polynomial filter (indeed, a high-order filter, in that it requires
a state space of dimension 30 for two-state variables of the
E()\M(A[S”T(k)A[S”(k))) <1 (61) system) which yields an improvement of 75% with respect to
the linear filter. As shown in some pictures, the restoration of
thenVj < I, E(ALﬂ(k)) is stable. the noisy signal is very impressive.

Proof: Observe that the function;; is convex on the We would like to stress that the hlgh dimensionality of the
set of symmetric nonnegative matrices. This easily follows Hijter is not by itself a true limitation for the implementation.

the property [21]: In fact, by using an efficient implementation scheme for those
data structures which appear in the formulas as matrices of pro-
Av(Q1 4 Q2) < Am(Q1) + A (Q2) hibitive dimension, it is possible to overcome such difficulties.

It should be noted that the computational effort is mostly due to
VQi, Q2 >00Q; = QF, Qy = QF; hence, using the Holder the calculation of the augmented system parameters. In many
and Jensen inequality and (6X); < I cases that are relevant from an application point of view, that
is, time-invariance of system parameters, stationarity of noises,
a= )\M(E(A[SJ'JT(/g)ALﬂ(/g))) < E()\M(A[Sle(k)A[Sﬂ (k) polynomial degree less than the stochastic stability degree (see
_ T i _ T i Section VII), we can separate the augmented system matrix
= EQur (4" (B)Ax()) = E((Aar (4" (£) Aa())) computation from the filter equations (41)—(46) that do not

= (B((Am (AT (k) Ag (k) )My show relevant computational troubles. In all of these cases,
< ((E()\M(A[S”T(k)AS”(k))))l/l)j <1 polynomial filtering is amenable to real-time applications. The
numerical simulations presented here concern the filtering
which, using Lemma (7.3), proves the thesis. O of time-invariant BLSS’s with stationary noises and degree
Corollary 7.5: A sufficient condition for the stability of less than the stochastic stability degree so that the stationary
(40) relative to (49), (50) is polynomial filter is implemented using the steady-state gain,
and the augmented matrices are calculated before filtering.
E(tr(AT(B)A(E)? < 1. Among all the algorithms which are necessary for the
computation of the augmented system parameters, the most
Proof: The thesis follows from the inequality: burdensome are those involved in the computation of the
extended state momentE(a:[J}(k)), ¢t = 1,---,2v, that
EQur (AP () AR (1)) < E(te(AT (k) Ay (k)" appear in the augmented noise covariance (24)—(28). These are

5 obtained by running (40) until convergence is achieved. The
applying Theorem 7.4 wittd,;(k) = A.(k) and taking into dynamical matrix4,, of (40) may be very large and exceed
account of the block-triangular structure 4df,,. 0 the available computer memory space. We think that for large
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degrees (i.e., three or more) many tricks can be conceivetherey(k) € R™; {{(k)}, {n(k)} are white sequences and
when a larger computer memory is not available, in order fod(k)} is a white random matrix sequence taking values in
save memory space (for instance, to save and use only suitably finite set{A;, A,, ---, A} with probabilities P(A4;) =
small blocks of the matrix). pi, ¢ =1, .-+, q. System (62) can be easily represented as
In order to calculate the matri¥,, and the augmenteda BLSS in the following way. Lek;, ¢ = 1, ---, g be the
noises covariances, the computation of the matrix momem@nonical base idR?, and let us define the white sequence
E(AL”(k)), i=1,.--,2v is needed. These are obtained by¢’'(k)} assuming values ifey, ---, e} with P(¢'(k) =

means of the algorithm defined by Theorem 5.2, which in tum) = p;, ¢ =1, ---, ¢, kK > 0. Then

requires the matrice®( Al(k)) given by (39). The matrices q

Dﬁf,)n, t=1, .-, 2v, which appear in (39) (and are defined Alk) = Z AE(k). (63)
in Corollary B.8), aren?* x n?* dimensioned; that is, they may =1

be too large. In our example, for = 2,» = 4, A = 0, they From the above h - _
: > o ypotheses, it follows thgft(k) = 1 —
6 ]
have 26 entries! Nevertheless, this very high dimensionalit q_ll ¢!(k), and using this in (63) results in

is only apparent. In fact, by considering (104) we realize that=

D,(fy)n can be viewed as an operator which simply permutes the g—1
entries of a vector (permutation matrix). A permutation matrix A(k) = Ag+ Y (Ai = AE(k). (64)
is a zero—one square matrix with one (and only one) unity on i=1

each row and ;olumn so that it can be simply implement&g{, combining (62) and (64), we obtain the BLSS (11), (13)
as a string of 2 integers, each one representing the columgith A(k) = Ay, Bi(k) = A — Aj,u=q— 1.

index of the unity in a row. Also note that the commutation Now, in order to test the filter, let us consider the switching
matrices, given by B.6, which appears in many formulas, aggstem (62), withh = ¢ = 2, m = 1

permutation matrices.

Finally, the last kind of matrices widely used in the whole A = { 0'2r 0'41}
algorithm, which can easily grow toward huge dimensions, -0.15 =02
is the binomial matrix/]', defined in Theorem B.6, and A, — [0.8 0.59}
the generalizatiodw,’;hmyhp defined in Theorem B.9. These 271015 04
are integer matrices with many null entries; for this reason C=[07 03]

we have implemented them as integer sparse matrices. In

spite of this expediency, we have observed that the matric¥d P(A1) = P(Az) = 0.5. Moreover, let the white random
Mj ... usedin (39) can still exceed the computer memoryequencedé(k)}, {n(k)} be defined as

Anytime this happens we adopt the method, mentioned above, & (k)
consisting of calculating only small blocks of the matrices £(k) {52(16)}
and removing them after their utilization. Thus, we can avoidS Y(w) =—0.48x 5, (@) + 0.12x 1, ()

overcoming space memory availability, in spite of a growth of HOXEy EXE

the CPU time. This method surely can be adopted for higher§2(k) ) =0.02xp, (w) — 0.18xr, (w)

polynomial degrees and system orders and always assures thgtk)(w) =—0.168x 1, (w) + 0.172x o, (w) + 1.17x 1, (w)

the computation will be made with the same memory usage. d he ch istic f .
It should be underlined that, in the most important stationa§1€7€ x@, ¢ € F denotes the characteristic function of

case, all the above-mentioned expediences are useful, aRg the disjoint event&y, £y), (13, Fy), and(Hy, Ha, Hs)
sometimes necessary, in order to treat efficiently the majdave Probability

critical parts of the whole algorithm, even if they can produce  P(F}) =0.2 P(F)=0.8

a great gr.owth of the CPU time needed for the filter parameter P(F3) =09 P(Fy) =0.1

computations. However, they do not affect filter measurement
processing.

1(k)(w) =
(w
(

P(H)) =08  P(H;)=01  P(Hs)=0.1.

Following the above described procedure, such a switching

o ) ~ system is represented by the following BLSS:
The example of an application we are going to consider

IX. SIMULATION EXAMPLE

belongs to the class of the so-callgditching systemswvidely x(k +1) = Ax(k) + Ba(k)¢' (k) + £(k)
used in many research areas such as failure detection, speech s(k) =Cx(k)
recognition, and, more generally, in the modeling of phys- y(k) = s(k) + n(k) (65)

ical systems affected by abrupt changes in the parameters
[26]-[31]. In particular, we are interested in the class ofhered = A,, B = A;—A,, and{¢'(k)} is a white sequence
systems described by the following partially observed equatidefined ast’(k) = x¢ with G € F, P(G) = 0.5.
defined on(f2, F, P), evolving in R": For this system, we have built the steady-state augmented
system for the polynomial degrees = 1, 2, 3, 4, with

vk +1) = A(k)o(k) + £(k) A = 0 and the quadratic and cubic also with = 1.
s(k) = Ca(k) To each one of these augmented systems we have applied
y(k) = s(k) +nk) (62) (43)—(46) in order to obtain the steady-state gains and error



CARRAVETTA et al: POLYNOMIAL FILTERING WITH MULTIPLICATIVE STATE NOISE 1117

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

% -
' -
4 /
0 A ! (S
VT
\ /

T T T T T

signal ----
measured signal — |

10

Fig. 1. True and measured signal.
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covariances. Then, for all these cases, we have used the gapending valuesg(l: ), 5(2:0) 5(3:0) 50 52 1) 5(1)
in the filter equations (41), (42), starting from initial conditiorfor the signal error variances are

Z(k) = 0. The corresponding estimates for the sigrél)
are readily obtained by using the relatiéft) = Ci(k).
Moreover, the signal error variance, namdly, is given by

19 =0.03566
29 =0.016 31

the relationP, = C* PC, where P is the steady-state value 21D —0.01556

of the state error covariance given by (48). By denoting
with PO p2,0) p3,0) p(+.0) the a priori state error

39 =0.01384

covariances given by the 1, 2, 3, 4th-degree polynomial filters, o1 =0.01155

respectively (all withA = 0), and with P21 pG.1) the

o*9 =0.00913.

covariances relative to thA = 1 quadratic and cubic cases,

respectively, the obtained values are the following:

P(17 0) —

P(270) —

P(3, 0) —

pP0) —

P(27 1) —

P(37 1) —

where we have the % 2 matrix blocks on the top left side

[0.068 31
0.00377

[0.03148
0.00074

:0.0027

[ 0.01772
—0.00028

[0.029 86
0.00083

[ 0.02208
—0.000 39

0.00377
0.006 76

0.000 74
0.006 45

0.001

0.001 0.006 34

—0.00028
0.006 32

0.00083
0.006 44

—0.000 39

0.006 32

As implied by the overall theory described in Section I,
we can see that both signal-error variances and state-error
variances of each component of the state decrease with the
increasing of polynomial degree. In the= 4, A = 0 case,
the signal-error variance is 75% less than in the linear filtering
case. Also for the error-variance values relative to the quadratic
and cubic cases witlh = 1, we observe, as expected, an
improvement with respect to the same cases with= 0.
However, in our experience, the contribution of the increasing
A is less effective than the increasing of the polynomial
degree.

In Table I, the sampled variances of the state and signal,
obtained with a numbelV = 100000 iterations, are reported.

As expected, these values are close to the atmywiori
variance values. In the same table are also reported the signal
sampled variances for the Monte Carlo run of 60 iterations
relative to Figs. 1-5. Fig. 1 displays the sample paths obtained
for the observed and true signal, whereas Figs. 2—4 display
the same path of the true signal with different polynomial
estimates.

X. CONCLUSIONS

because they contain in the main diagonal the steady-state estiFhe (v, A)-optimal polynomial filter for the BLSS (1), (2),
mate error variance of each component of the state. The comgeren the (v, A)-order polynomial estimate (see Definition
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1.5

T T T T

signal
fiitered signal —

60

1, ..., 2p, is not implied by the stability

of E(A.(k)) so that in general the steady-state polynomial
filter can be implemented only up to a certain finite degree.
Corollary 7.6 gives a sufficient condition for the stability of

Even if the computational burden of polynomial filtering
grows wheny and/or A increase, many tricks (e.g., as in
Section VIII) can be conceived in order to considerably reduce
computer memory and CPU time utilization. Numerical simu-

0.5 |-
1 1 i 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50 55
Fig. 2. True and filtered signal witw = 1, A = 0
TABLE | E(ANk)), @ =
y 2
o-5) os) o I(e-2)
N=60 | N=10° | N=10° | N=10°
v=1, A= 0.01898 0.03531 0.06761 0.00675 the matrix A,, .
v=2 A=0 | 0.00483 0.01633 0.03143 0.00645
v=2 A=1 | 000554 0.01571 0.03015 0.00645
v=3 A=0 | 0.00342 0.01362 0.0265 0.00634
r=3 A= 0.00363 0.01137 0.0217 0.00633
v=4, A= 0.0029 0.0905 0.01757 0.00631

lations presented in Section IX show the high performance of
polynomial filtering with respect to standard linear filtering.
For a second-order BLSS, we have observed for the (4,0)-

2.2) of the state by means of recursive equations in the fo@fder filter, an error-variance reduction of 75%. It should be

(7), (8), has been defined for any pair of integers 1, A >

stressed that the (2, 0)-order (quadratic) filter also shows a high

0. In particular, the polynomial filter equations are (41), (42performance (54%). In this case, computer time for executing
and (47). These need to use, at each step, only powers of $#Ps 1), 2), and 3), has been less than 1 s and practically all
last A observations so that the computational burden remaifigvoted to filter parameter computations.

constant over time. The polynomial filter is obtained by meansWe think that future research work on polynomial filtering

of the following steps:

1) construction of the extended memory system (15), (16)1)
(if A = 0 this step is skipped);

2) construction of the augmented system;

3) application of the Kalman filter equations to the aug- 2)
mented system.

Equations (43) and (46) allow the computation of filter
parameters. These need, in general, to be implemented simuB)
taneously to the filter equations (41) and (43). Nevertheless, if
the BLSS is time invariant, the noises are stationary sequences
and the matrix4,, (defined in the statement of Theorem 5.4)
is asymptotically stable, then we can adopt the steady-state
approximation of the Kalman filter, thus obtaining a great 4)
reduction of computational effort.

In Section VII, it is shown that the stability of the ma-
trix As,, or equivalently the stability of all the matrices

should concern the following points:

reducing the computational burden of the algorithm in
order to actually make very high-order filters imple-
mentable;

investigation of the possible convergence of polynomial
estimators, with respect to and A increasing, toward
C.E. and evaluation of the convergence error;

analysis of the influence @k values on the polynomial
filter performance. We conjecture that, for a stable
BLSS, this influence tends to vanish whanincreases
because the observations tend to be uncorrelated when
their mutual distance in time grows;

extension of the polynomial filtering to the class of linear
systems with a multiplicative state noise modeled as a
Markov chain or, more in general, as a colored stochastic
sequence.
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T T T T T T T T T
1.5 signal —— 4
filtered signal —

05 T

10 15 20 25 30 35 40 45 50 55 60

Fig. 3. True and filtered signal witr = 2, A = 0.

T T T T T T T T T
15 signal ---— E
filtered signal —

05 B

-05

Fig. 4. True and filtered signal witr = 4, A = 0.

To conclude, we say that this paper represents a first tentasults (Lemma A.1 and Lemma A.2). In particular, Lemma
tive attack upon nonlinear filtering problems via a polynomiaA.2 will allow us to readily prove Theorem 5.4.
algorithm. We feel that this could be a way of construct- Let v, 4/, «, 3 denote positive integerq'(k)}, {I'(k)}
ing suboptimal filters for a more general class of nonlinegaequences of random matricesIit ** and ]RW'X“, respec-
systems. tively, and {z(k)}, {¢(k)} sequences of random vectors in
R® and IR”, respectively. For any: > 0, let the following

properties be satisfied.

APPENDIX A 1)
AUGMENTED SYSTEM CONSTRUCTION E(L(E)|I*) < oo,  E(I'(E)|*) <
In this Appendix, the proof of Theorem 5.1, which defines E(|z(R)|*) <00, E(||lp(k)]*) < oo

the structure and the main properties of the augmented system,
is reported. For this purpose we need to state some preliminaryhere|| - || denotes the Euclidean norm.
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2) I'(k), ¢(k), and the sefz(j), ¢(1), I"(1);5 <k, 1 <k} ER®, kT, 0, 2 ¢)nl, T T k), W, 2, )

are mutually independent. 0 e (75)
3) z(k), ¢(k), and the set{['(k), I''(k)} are mutually -
independent. EMh?, (b, T, 0, 2, ¢)h7, Y, T, 0, 2, )
In the followi_ng th(_ebinomial matrices(lOl)_, (1_02)_Wi|| be _ T1(25) N a(k DI, 0, W, 2, f) (76)
used often, which will be denoted ag? (1), highlighting the 577
dependence from the dimensiérof the vectors involved in where
the Kronecker power; moreover, the symktipl; will denote "
the |dent|ty matrix in]R,ij. 111 s, v, Y, Q, 8(k7 F? Flv \Ijv \Ijlv 2, d))
In order to simplify the notations, let us introduce the r=1 s—1
following symbols: = Z M _ (st (L, smj @ CL )
=0 j=0
= A iy 4] iy h
? (k) ; (/) (k) E((/) (k)) . (\I//[S 7l ® \I/[T_” ® E(l—w[l}(k) ®F’m(/€)))
Ti(k) 2 I¥ <k> - E(rm[gk» sroey © Cotot i) oy @ Chois )
=/ A i . . ’ ’
Ti(k) 2 1'% (k) — B@ (). (66) (B (k)Y — B(¢l (k) @ E(¢lm (k)
Obviously fori = 1, ---, 2 we have @ Lo, 145) * Cat, 0s ) BT M:_(+))" (77)
_ _ _ (2) / /
E(@(/e»:E(n(k»:E<r;<k>>:o. (67)  Lroyaolh I I W 2 0)
With the above notations, it is now possible to state the :Z Z M (st (L, 5- © O i)
following two lemmas. =1 j=1
Lemma A.1:Let {Y(k)} be a sequence of stochastic ma- (Pl g wlrt o B(TW (k) — BETW(E)))
; N - a0
trices in R"** and © be a deterministic matrix idR"*". U, U,
Moreover, let us define, foi = 1, .--, 2, the following ®( (k) — £( (&)))) .
functions: “(g,5-5 @ Cpr—tat 0i)Ug,5—5 © Cgrmigp o)
. [s—3] [r—1]
hi.o,alk, T, 0, 2, ¢) =h) (k, T, 0, 2, ¢) (E(T ] D) @ B D @ do i)
+5 s (A
+ hEQg a(k7 ’I‘7 @7 Z, ¢) (68) E(Z (k)))MS—j (’7) * (78)

Proof: From 3) it follows that for any, I'4(k), ¢ld(k),
and zl(k) are mutually independent; hence taking into ac-
(k T, 0,z ¢) count (66), (67) we have

E(hiwa(k I, 2, ¢))

with
h(l)

i, 0,

_ZMZ )i~ e rlk))

) - B 0 Ll (69 ‘Z Do BCHE)
h) 2 X, 0, 2, 9) -<E<$ (k) © L, ) E(1(k))

—ZMZ 01 & (T (k) — E(TU(H))) +Z (-1 & BTL())
B0 © L ), (70) (BT © L EE(R)

Then, for any couplel, ¥/ of (deterministic) matrices in =0.

X3 %8 .
R™7 andR” ™7, respectively, we have that As far as (72) is concerned, takipg< k, we have

E(hi,y, ok, I, ¥, 2, =0, t=1,--,2v (71) T
el ?) B, ok Ty W, 2, L 0 G T W 2, )

T, Y, s @
and furthermore, for, s = 1, -- -, » we have that r—1 s—1 "
m T =33 M, ()Tl e Br(h))
(hﬁ(l)fy a(kv Fa \Ijv Z, d)) hi 'y) @ (J? Flv \Ijlv Z, d))) 21 =0 i5=0
=0, Lm=1,2  j#k (72) (E@_i (k) @ L i)
T .

E((hY), ok, T, 0, 2, 90D, (kT 2, ¢)) - B ()22 (5) (B, () © Loy iy)T

=1 B DT U 2, ) (73) St e Gy Me ()T
=0

B, ok, 1,0, 2, 2, (e, T, W, 2, 9)

=0 (74) where Condition 2) and (67) have been exploited.
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Similarly, from 2) and (67) again, the result is

kT, 0, 2, 02, G T, W, 2, )

s, v,

E(h{V)

1'*/0(

—ZZM’ i

AE@,_i, () @ L i)
B (k) () E@P1() @ T i)
(R o T, ()M, ()T

=0

\11[7 —i1] g E(l“[hl(k)))

(e, 0,0, 2 )Y, TG T W 2, )

s, v,

E(h®

T, Y, Q

= Z Z My_; (7)(¥

i1=1 i3=0

(E(AE)) @ Lo, i)

- B (k)21 () (@i, (1) @ Loy iy)T

(b= o I GHY M, ()T
=0

=il & BT, (k)

LAP .y
(j7r7m7z7¢))

e BT, (k)

(k, T, T, z, $)n%,

s, v,

E(h®

1'*/0(

DI IR

Zl—l 12—1

A(BGrE) © La,iy)
- B ()R () (B(e R () @ L, 4,)
(Rl o T, ()M, ()T

= 0.

T

In order to prove (73), consider (92); the result is

E(®), ok T, 0, 2, )hD, (1,0, 2, 4)
r—1 s—1

=303 MI_(stTHE(U P J()))MS_; () (79)
=0 5=0

where P, (k) is given by

— (U0 @ Tk (B, () @ L. )20(k) 2 ()T
(B (k) @ L )T (WP @ DU (k)T

By applying Properties (93c) and (93e) it follows that

B (k)

st(Pr, o(k) = (WP o TV () (6,_; (k) @ L, )
® (U1 @ TU(R) G,y (k) © In,1)))
A (k)
(Pary () © La © By (k) © La,1)
().

(80)
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By applying Corollary B.4 we obtain
v o) @ vl @ Tl (k)
= (Ly, 5= © O )W @ W
@ T'VI(k)) (I, -5 © Cprotat, as)
Gy @Inj @b y(k)© Ln
= (15,55 ® Chrmint, 03
(B (B) @By (B) @ Lo 13 )Cnt i (82)

By substituting (82) and (81) in (80) and then the result in (79),
using Property 3) and taking into account (66), we obtain (73).

Equations (74) and (75) easily follow by applying Property
3):

® Il(k)
(81)

1 (2)
E(hY), a(k L, W, 2, ¢, (k, ',V 2, $))
S S MBI o T )
11=0 io=1

- (E( 1_“(16))@ a1 ) B ()22 (k)
(B(¢FR(R) @ La,i)T

(PR e 7L ()M, (V)T

=0
€]
E(hZ, (kT W, 2, $)h,, (k, ',V 2, $))
=3 3 ML B o T )
Zl—l 12—0

(BT (R) © Lo, o) B (R) 21 (E))
— T
) (E(d)s—iz (k)) & Ia il)
(@ o By gz ()
=0.

It remains to prove (76). For this purpose, note that
hﬂ Sk, T, 0, 2z, ¢) is shown to be formally equal to
hg}ija(k, I, U, z, ¢) with the substitution of'(k) with
Ty(k) and ¢;_;(k) with E(¢[=U(k)). As a consequence,
noting that with these substitutions, and taking into account
(66), (78) becomes equal to (77), it follows that (76) holds

true too. g
Lemma A.2:Let w(k) € IR” be the vector

w(k) = D(k)2(k) + Up(k)

where ¥ € R"*# is a deterministic matrix and < 1/ < 2v
an integer. Let us consider the augmented vectors

(83)

[ Ao
wk=| .| zZwm=] .
_wiv"l(/f) (k)
A,
T(k) =
Ll (</>[”,1( )
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and the matrix

E(T(k)) 0 0
o0— O, 1(k)  E(IRI(E)) 0
where
Oi,u(k) = M{_ ()W @ ECV(k)))
(BT ER) © La,1) (84)
then there exists the following representation:
W(k) = O(k)Z(k) + T (k) + N(k) (85)
with A/(k) defined as
Ry, v ok, I, U, 2, )
wy = | "ot (86)

hu’,"/,a(kv Fa \Ijv Z, d))

whereh; o i =1, ---, 1/ are defined as (68).

Proof: Let us consider theth Kronecker power of both

sides of (83)
wll(k) = (D (k)2 (k) + Tp(k))!]

Using Theorem B.6 and Property (93c) we have

L+ 37 M)
(BRI © (C(R)=(R)F )

:F[z 7[1 + Z Mz
j=1

- (P TE(1)) (oW (k) @ 211 (k)

i—1
D M
=0

(U @ T E) (@ (k) © Lo, )21 (k)

wll(k) = (U (k)z(

_F[Z

and by adding and subtracting #&¢~4(k), 7 =0, - -
their expected values, we obtain

+Z

(BUHR) @ Lo, ) AN (R)

- (wlh=

71_17

whl(k) =T (& (@ Terlk)

+ Y M)
=0
& T ()i a(k) @ L, ) A B).

By adding and subtracting td'!(k) and TI'll(k), I =

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997

of the right side of the previous expression the result is
wll(k) = (Fm(k)) B(k) + Ti(k)2H (k)
-%}j N e B(rlk)))
(B (d)[z (k) © Lo, )2 (k)
+ Z M} (v
(B (d)[z (k) © Lo, )21 (k)
+ Z

: (%_z(/f) ® I, )2 (k)
which can be rewritten as

wll(h) = B E):()
Z Mj(y

(B <¢[Z UE)) @ Lo, )21 (k) + O E((R))
+ hi,"/,a(kv Fv \Ijv 2 d)) (87)

V)P @ T(k))

W=t @ rld(k))

(@ B (k)

where theh; . . are defined by (68)—(70). By aggregating in
a vector thewl(k), i = 1, ---, 1/ given by (87) and taking
into account (66), we obtain (85). O

Proof of Theorem 5.1:Let us apply Lemmas A.1 and
A.2 by setting

F(k) :Ae(k)v F/(k) = Ae(k)v v =1r,

Vi=v, o a(k)=wc(k), (k) =N(k)
and with these choices, from Conditions 1) and 2) of
Section 1ll, it follows that Properties 1)-3) are satisfied,;

moreover, we havev(k) = z.(k+ 1),y =+ = ¢, o =
q, § = n+m, and then (21) holds true, witi(k) given by

hl:Q:q(k7 ‘{167 F7 Le, N)
h27(17(1(k7 Aea F, e, N)

v =F

Fk) = . (88)
hl’z(L(I(k7 Ae? F7 e, N)

From (88), (72) it follows that the sequencgF(k)} is
uncorrelated. Moreover, from (88) and (73)—(76) follows (24)
with
QL (k) =
QLK) =
from which (25) and (26) follow, taking into account (77),

(78).
Now, let us apply Lemmas A.1 and A.2 by setting

T(k)=C.(k), T'(k)=C.(k), T=G,  ¥=¢G
Vo=v,  2lk) =x.(k),  ¢(k) = N(k).

Then, Properties 1)-3) are again verified and we haf/e) =

7®

7 8,4,9, ¢, ntm

7@

7 8,4,9, ¢, ntm

(kv Aea"zlev F7 F7 Le, N)
(kv Aea"zlev F7 F7 Le, N)

0,---,4¢ — 1, their expected values, in the first two termg.(k), v = v = p, « = ¢, B = n+ m. Hence, (21) holds
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with G(k) given by Definition B.1: Let M andN be matrices of dimensiornx s
andp x ¢, respectively. Then the Kronecker produdt ® N
hl,p,q(kv 067 G7 Le, N) i 1 ., . i
s Co G o) N) is defined as thér - p) x (s - ¢) matrix

g(k) = : ' . (89)
hV:P:(I(kv Cev G7 Le, N) Mo N =

From (89) and (72) the uncorrelation of the seque{@ék)}
follows. Moreover, sinceC.(k) = E(C.(k)), from (78) we

have that where them;,; are the entries of/.

Of course, this kind of product is not commutative.
2 (k, C., Ce, G, G, ze, N) =0 Definition B.2: Let M be ther x s matrix

8,0, P, ¢, ntm

and then from (88) and (89)_, (28) follows. _ M=[m; my - ms] (91)
From (51), (52) and applying Lemmas A.1 and A.2 with

I(k) :Ae(k)7 (k) = Oe(/g), U =F, U = ¢ wherem; denotes théth column of, then the stack ofi/
= k) = wo(k), $(k) = N(k) is the r - s vector

(hencey =q, v = p, @ = q, B =n +m) (23) follows. With st(M)=[m¥ mo -+ ms ]T. (92)

the same assignments, from (31) we have

7 Observe that a vector such as in (92) can be reduced to a
28 4Py 4 matrix M as in (91) by considering the inverse operation of

and then from (73)—(77), (28) follows, giving the crossthe stack denoted byt—L. With reference to the Kronecker

(k, Ao, Ce, F, G, z., N) =0

correlation matrix between augmented noises. ] product and the stack operation, the following properties hold
Now, we can also prove Theorem 5.4. [21]:
Proof of Theorem 5.4:Let us apply Lemma A.2 by set-
ting (A+B)@(C+D)=A®C+A®D
I(k) =Ac(k), W=F =2 O ZB@;“CB@D (:;*z)
@ @ =Aae® @
2(k) =z (k),  ¢(k) = N(k). ( )=( ) (93b)
A-C)e(B-D)=(AeB)-(CeD) (93c)
'rl;hege (t:rr:_oices yi(;.\rl]d;(fk)": a;e(kf+ 1)-andfy = p, hence (85) (A@ B)Y = AT @ BT (93d)
as in this case the following form: (A B-C) = (CT & A) - st(B) (93¢)
Koy (k + 1) = Aoy (k)Xo (k) + Uoy (E) + Fo, (k) (90) u@v =st(v-u’) (93f)
where tr(A® B) =tr(A) - tr(B) (93g)
xﬁfk) whereA, B, C, D are suitably dimensioned matrices,v are
KXo (k) = wé*(k) vectors, andr(A/) denotes the trace of a square mathik
v : The Kronecker power of the matrix/ is defined as
.’IZ'LQV] (l{})
_hl,q,q(ka ‘{levFv Le, N) MM:]‘
2,q,q(k, Ae, I, e, N) MW =M oMU =pMP-TerM,  p>o0.
Fo (k) = : .
Lh2v,q,4 (K, A F oz, N) As an easy consequence of (93b) and (93g), it follows that
By applying Lemma A.1, from (71) it follows that tr(A[h]) _ (tr(A))h. (93h)

E(hi,q,q(kvjleaF,xe,N)) =0, ¢« = 1,---,2r and

then E(F,,(k)) = 0. Hence, taking the expectations on both i . 5 )
sides of (90), (40) follows.  Itiseasyto verify that foru € R", v € R”, the ith entry

of uw ® v is given by

APPENDIX B
KRONECKER ALGEBRA (W) = up VU, l= { } +1, m=i—1]|;+1

Throughout this paper, we have widely used Kronecker (94)
algebra [21]. Here, for the sake of completeness, we recafthere[-] and| - |, denote the integer part andmodulo, re-
some definitions and properties and also give some new ressltectively. Even if the Kronecker product is not commutative,
on this subject. the following property holds [20], [23].

1—1
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Theorem B.3:For any given pair of matricest € R™*?, Theorem B.6:For any intege > 0 the matrix coefficients
B € R™™, we have of the following binomial power formula:
BoA=CY (A®B)C, m 95 h
@ 1,n( @ ) , (95) (a+ b)[h} — Z MiL(a[k} ® b[h—k}) (100)
k=0

where the commutation matrig', ., is the (v - v) x (u - v)

matrix such that its/, I) entry is given by constitute a set of matrice§My, ---, M} such that for
1<j<h=-1
1, ifi=(h-1] )u—i—({u}—i-l)'
{Cu, ’U}h,l = ’ ) v v ' M}}LL :MéL = Ih (101)
0, otherwise.

9) M= (MMt e L)+ (M @ I)(Ij-1 © Ghey) (102)

. where G; and I; are as in Lemma B.5.
Observe thatC; ; = 1, hence in the vector case when .
" e Lemmas B.7 and B.9 and Corollary B.8 constitute new
a € R" andb € IR", (95) becomes
results about Kronecker algebra.
Lemma B.7:Given A ¢ IR™*™, B € IR"*?, there exists a

_ T
b@a=Cp ,(a®b). O7) matrix Dy m,rs € RC™7)” such that

Corollary B.4: For any given matricesl, B, C, D having St(A® B) = Dy . r. s (s5t(A) @ st(B))
dimensionsn,y x ma4, ng X mp, nc X mc, np X Mp, T
respectively, denoted with(!), the identity matrix inR’, we where
have

A@BeC®D=(I(ns)® cr Do, rs = (I(s-m) @ C,I:n)(f(m) ® Cr:f, rs)

: )
ncecnp,np
(Ae@Ce Do B) and I(1) is the identity inR!, VI € IN.
~(I(ma) ® Crpomp, mp ) Proof: Let us express the vectet(A @ B) as

Proof: By applying Properties (93b) and (93c) and The- st(A ® B)
orem B.3 we have =1 ®@b)T - (a1 @b)T - (am ®bS)T]T

A®BoC@D (103)

=(4eBo(CaD)) where a;, b; are theith column of A and B, respectively.
=(A®(C} ) s (COD @ B)Cremp, ms)) Using Theorem B.3, (103) can be rewritten as

= (I(TLA) ® CT,ZL—‘(}TLD,TLB)

t(A® B
(e (O DOE nems.ms) S (— (b )® e, (bs @ a)T i |©
= ((14) © CLyp 0, (A® C O DO B) ST ameay
S ai
’ I : Crn “Mp,mp/*
) @ G o) = medh)| ]
O st(B) ® am
Moreover, let us recall the following recursive formula [20]. ={U(s-m)® Cfn)(l(m) ® C,Z )
Lemma B.5:For anya, b € R™ and for anyl =1, 2---, (st(A) @ st(B
let &; be then(*1) x n(+1) matrix such that (5A) (8))
so that the proof is completed. |
W @ a=Gila@bll). (98)  cCorollary B.8: Given a matrix4 € IR"*™, Vh € N there

exists a matrixD{"),, € RC*™"*m)" sych that
Then the sequencg,} satisfies the following equations:

st(AM) = DI, - (st(A)1 (104)
G =T,
G =1 ©Gi1) - (G1 @ 1), I>1 (99) Where
. . . L. " D(h) _
where I,. is the identity matrix inIR™ . n,m |
In [20] can be found the proof of a binomial formula for {I(” -m), - it h=1;
the Kronecker power, which generalizes the classical Newton | Dpi-1, mi=1 - (Dnm’ @ I(n-m)),  if h>1.

one, as is asserted by the following theorem. (105)
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Proof: Equation (104) is obviously true fo¥ = 1. Let If ¢ = p, it is equal to
h > 1; by supposing (104) true fokt — 1 with Dgf;ll) as in

h—1 [41] Jp
(105), we obtain (M} oh) (e @l eay)
st(AM) =ML o) (@M e - @dintt)
=st(AlU e A) If i # p, then

= Dyt it m(56(AP ) @ st(A))
= Dn“_l, rn“_l,n,rn((Dr(L},L;ll)(St(A))[h_u) @ St(A))
= Dn“—l,rn“—l,n,rn(D(h_l) @ I(TL : m))(St(A))[M

n,m

(Mh—l (a[ljﬂ @@ a;)jp})) ® a;

Jis s dp

_ (Mh—l . ®Il) ((a[ljﬂ ® - ® agjﬂ)

@ (Giiat sy (i@l @ - @afiel)

from which the thesis follows. O _ (gt I a

We can also generalize formula (100) to the polynomial = g1, e dp ® 1)('ﬂ'l+"'+ﬂ'f © Gjiat oo iy)
case. Obviously, given any polynomial + --- + a,, a; € (@Me . ed™e ... ®a][pjp1)
R", 1 <4< p,p €N, its hith Kronecker power admits a o .
representation as then, taking into account (106) we can write

5 9 h )
(a1 +az + -+ +a,)" > Mg, e - eaf)
= Y M @M ed e et AR

By, oo hp>0

p—1
hi+ - +hp=h
(106) > >

i=1 ji+ - +jp=h—1
h i i iNi- h—1
where My, .., ~are suitable matrices. We extend the defini- . (M2 @) (Lt 4y @ Gyt 4dy)

tion of symbolA} ., , with [ > 0 when at least one of the [71] [j: +1] bl
I's is negative, such as (@it @ 0T O O [?)1 '
+ Z (M'Y oIV @ - @ali i),
l _ n!xn! J15 00, dp L P
M .., =0€R"™™. (107) PR !

Moreover, we can prove the following statement. (110)

. . h nthh . . . . .
Lemma B.9:The matricesMy;, .., € R in (106)  Now, by considering the generic term of the summation on

satisfy the recursive formula the left-hand side of (110), that i)' ~% , (/"1 @ . @
My =1, for h=1 (108) glf#!), we must look at the RHS for those terms which are
] — characterized by the indexés, - --, h,. They are of the form
}}Ll, v hy Z (M}}Lh.l.., hi—1, ., hyp ® 1) y &3 p y
lsisp—1 (Mjhh_ldp QI 4.4y © Gji+l+"'+jp)

: (I}L1+"'+hi_1 ® G}Li+l+"'+hp)
+(My o, eh)  for h>L
(109) with jl = hlvj? = h27 7JZ =h; — 1 7Jp = hp! for
t=1,---, p—1, wheneverh; # 0, and
Proof: Equation (108) is obvious. In order to prove

.(a[ljﬂ @ - ®a£jf+l] @ - ®a£)jp1)

i i h—1 J qo41
(109), let us consider the polynomial power (M7 5 eh)de .. @ afrtil)
(a1 + - +ay)™ with j, = hy, jo = ha,--+ j, = h, — 1. Then, taking into
= (ay + ..+ ap)[h—l} ®(ay+ - +ap) account (107), (109) is proved. O
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