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Polynomial Filtering of Discrete-Time Stochastic
Linear Systems with Multiplicative State Noise

Francesco Carravetta, Alfredo Germani, and Massimo Raimondi

Abstract—In this paper, the problem of finding an optimal
polynomial state estimate for the class of stochastic linear mod-
els with a multiplicative state noise term is studied. For such
models, a technique of state augmentation is used, leading to the
definition of a general polynomial filter. The theory is developed
for time-varying systems with nonstationary and non-Gaussian
noises. Moreover, the steady-state polynomial filter for stationary
systems is also studied. Numerical simulations show the high
performances of the proposed method with respect to the classical
linear filtering techniques.

Index Terms—Kalman filter, Kronecker algebra, polynomial
filter, stochastic bilinear systems, stochastic stability.

I. INTRODUCTION

SYSTEMS with multiplicative state noise, also known in
literature as bilinear stochastic systems (BLSS’s), have

been widely studied since the 1960’s because, from an en-
gineering point of view, they constitute a more adequate
mathematical model for the analysis and control of some im-
portant physical processes. In particular, we stress that bilinear
models are often derived from basic principles in chemistry,
biology, ecology, economics, physics, and engineering [3].
Moreover, the well-known bilinear systems (BLS’s) become
BLSS’s when the input is affected by additive noise.

In control engineering, BLS’s are appealing for their better
controllability with respect to the linear ones [2]. In this
framework, considerable importance is devoted to control and
stabilization problems, as shown in [5]–[11]. The problem of
parameter estimation for BLS’s and BLSS’s was considered
in [12]–[15].

The state estimation problem for BLSS’s constitutes an
important topic in all those cases in which the state itself is not
available directly. In [4], the filtering problem for linear control
systems is considered. In [16], the same problem, for a class of
nonlinear systems including the bilinear ones, is studied, and
a linear filter is obtained by considering the nonlinear term as
an additive noise. BLSS’s can be considered as linear systems
whose dynamic matrices are a random process and vice versa
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[26]–[31]. In [17] and [18], following this interpretation, a
linear filtering technique for the state estimation of BLSS’s is
proposed.

In this paper we consider the following class of BLSS’s:

(1)

(2)

where and are
white sequences (not necessarily Gaussian) in and

, respectively, and are matrices of suitable dimen-
sions, whereas is a bilin-
ear map. Moreover, we will assume the independence of

and .
The problem we would like to face is the filtering of the

state , given the measurement process . It
is well known that when , this problem is solved by
the famous Kalman filter which yields the linear minimum
variance optimal state estimate (actually optimal among all
filters in the Gaussian case) [32]. The general case is, until
now, unsolved. As mentioned above, a suboptimal solution
can be obtained by substituting the stochastic forcing term in
(1), namely

(3)

by a process having the same first- and second-order prop-
erties. Indeed, it is readily proved that is a white
sequence so that the Kalman filter can be implemented in order
to have the optimal linear estimate. Of course, the stochastic
sequence given by (3) is not Gaussian so that the Kalman filter
does not give the optimal estimate. Recently, the problem of
finding nonlinear filters for non-Gaussian linear models has
been considered. In particular, a quadratic filter is proposed in
[19], and its extension to a more general polynomial case is
considered in [20].

In this paper, we are able to define a filter for a BLSS
such as (1) and (2), which is optimal in a class of polynomial
transformations. We also stress that a Gaussian-noise setting
is meaningful in the present case. The theory developed here
includes, as a particular case, the one described in [20],
which can be simply obtained by setting to zero the bilinear
form in (1). It should also be noted that a converse point
of view could be adopted in that a way of constructing
a polynomial filter for BLSS’s could be to compute all
moments of the stochastic forcing term (3) and then using

0018–9286/97$10.00 1997 IEEE



CARRAVETTA et al.: POLYNOMIAL FILTERING WITH MULTIPLICATIVE STATE NOISE 1107

the polynomial filter for linear non-Gaussian systems defined
in [20]. However, this way is not convenient at all. Indeed, the
computation of the moments of (3) requires the computation of
the state moments. The application of the procedure described
in [20] for state-moments computation leads, in this case,
to a very cumbersome nonlinear equation, giving very hard
implementation problems that are difficult to analyze as far
as its convergence properties are concerned. In the general
polynomial case, it is much more convenient to assume
as a starting point for the development of the theory, the
representation (just used in [17] and [18]) of the BLSS (1),
(2) as a linear system with a stochastic dynamical matrix. In
this framework, in order to obtain a self-contained general
solution of the polynomial filtering problem for the class of
the BLSS, here we will adopt just the basic strategy described
in [20]. The resulting algorithm will be sufficiently general to
include as a very particular case the polynomial filter for the
linear non-Gaussian systems.

Roughly speaking, the method used here consists of defining
a linear system whose state and output processes include
Kronecker powers and products of the original state and
output processes so that it is amenable to be treated with
Kalman filtering theory. For this purpose, the main tool is
the Kronecker algebra. Some important formulas about this
subject are also deduced (e.g., the expression of the Kronecker
power of a vector polynomial).

We stress that, in the present case, the existence of a stable
solution for the polynomial filter is not guaranteed simply by
the stability of the dynamic matrix as in the linear case.

The paper is organized as follows: in Section II, we recall
some notions in estimation theory which are essential to better
understanding the meaning of polynomial estimate. In this
framework, we define the class of polynomial estimators and
recursive algorithms which we will use later. In Section III,
we make precise the problem statement, and Sections IV
and V explain how to build up the augmented system. In
Section VI, the way to implement the filter on the augmented
system is described. In Section VII, we present the stationary
case and the steady-state theory. Section VIII contains some
remarks about the computer implementation of the algorithm.
In Section IX, numerical simulations are presented showing
the high performance of polynomial filtering with respect to
the standard linear methods. Two appendixes are included:
Appendix A, containing the proof of the main theorem of the
paper defining the augmented system, and Appendix B, where
the main definitions and properties about Kronecker algebra
are reported together with some new results.

II. POLYNOMIAL ESTIMATES

Our aim is to improve the performance of standard linear
filtering for the class of the BLSS (1), (2). For this purpose we
will look for the optimal filter among the class of estimators
constituted by all the fixed-degree causal polynomial transfor-
mations of the measurements. We now clarify this point by
giving some definitions which will be useful in the following.

Let be a probability space. For any given sub-
algebra of and integer , let us denote by

the Banach space of the-dimensional -measurable random
variables with finite th moment as

measurable,

where is the euclidean norm in . Moreover, when is
the -algebra generated by a random variable ,
that is , we will use the notation to indicate

. Finally, if is a closed subspace of ,
we will use the symbol to indicate the orthogonal
projection of onto .

As is well known, the optimal minimum variance estimate
of a random variable with respect to a random
variable , that is , is given by the conditional
expectation (C.E.) . If and are jointly Gaussian,
then the C.E. is the following affine transformation of:

(4)

where .
Moreover, defining

(4) also can be interpreted as the projection on the subspace

such that

Unfortunately, in the non-Gaussian case, no simple charac-
terization of the C.E. can be achieved. Consequently, it is
worthwhile to consider suboptimal estimates which have a
simpler mathematical structure that allows the treatment of
real data. The simplest suboptimal estimate is the optimal
affine one, that is , which is still given by
the right-hand side (RHS) of (4). In the following, such an
estimate will be denoted with and shortly called the optimal
linear estimate. Suboptimal estimates comprised between the
optimal linear and the C.E. can be considered by projecting
onto subspaces, greater than , like subspaces of
polynomial transformations of Y. We define theth degree
space of the polynomial transformations of as
the following (closed) subspace of :

where the symbol denotes the Kronecker power (see
Appendix B). By defining the vector

...
(5)

we have that
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We define the th-order polynomial estimateas the random
variable . Since

the polynomial estimate improves (in terms of error variance)
the linear one. Let be the closure in of

=

since, in general, for we cannot assert
that the polynomial estimate “approaches” the optimal one
for increasing polynomial degrees. Nevertheless, the C.E. of

can be decomposed as

where is the orthogonal subspace of. From the pre-
vious relation we infer that the polynomial estimate can be
considered as an approximation of the optimal one only when

is suitably small. However, the polynomial
estimate always yields an improvement with respect to the
performance of a linear estimator. Moreover, we can calcu-
late it by suitably modifying the space of observed random
variables and using (4)

(6)

where

Now, let us consider asequence of random variables in
and another of observed ones in .

The problem of estimating , given , can
be solved by defining the vector

...

and applying (4) with so that the
optimal linear estimate of is obtained. When the joint
sequence is Gaussian, (4) yields the optimal estimate

. Similarly, if the moments
are finite and known, theth-order

polynomial estimate can be obtained by extending the vector
as in (5). However, such a method is highly inefficient,

because it leads to a fast growth of the dimensions of involved
matrices so that it does not result in being very useful from an
application point of view. A more realistic approach should
consist of searching for a recursive algorithm able to yield
the above estimates. For this purpose, we give the following
definition.

Definition 2.1: We say that the estimate of (not
necessarily optimal) is recursive of order if there exists
a sequence of random variables and transformations

such that the following equations hold:

(7)

(8)

As is well known, in the Gaussian case and when the
sequences are the state and output evolutions of a
linear discrete-time dynamic system, the optimal estimator of
the state satisfies a recursive equation as in (7), (8), with
given by a suitable linear transformation, ( identity
matrix) and (the Kalman filter). The same equations
give, in the non-Gaussian case, the optimal linear estimate.

In the next section, we will prove that when and
are the state and output processes, respectively, for a BLSS as
in (1), (2), it is possible to find a structure (7), (8) where
has the form

with linear and polynomialsuch that (7) and (8) yield
the sequence of optimal estimates in a certain subclass
of all the polynomial transformations of fixed and finite degree.
In order to define more precisely this subclass of polynomial
estimators, we need to give some preliminary definitions.

Consider the above-defined vector and let be a
fixed integer; we define the subspace

as

where the ’s are suitably dimensioned matrices. Since
the subspace is finite dimensional, and there-
fore closed, we have that for any it is possible to orthopro-
ject there the random variable . Then, we can give the
following definition.

Definition 2.2: The random variable , given by

is said to be the -order polynomial estimate of .
The random variable represents the optimal estimate

of among all the -degree polynomials, including cross
products between observations which lie in a time window of
width . Since
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and

the result is that the estimate quality had to improve for
increasing and/or .

III. T HE PROBLEM

The problem we are faced with is the filtering one for the
following class of stochastic discrete-time bilinear systems:

(9)

(10)

where, for any

Moreover, , whereas
is a bilinear form in . The random variable (the initial
condition) and the random sequences
satisfy the following conditions for any .

1) There exists an integer such that

2) The initial state forms, together with the sequences
a family of independent ran-

dom variables.
3) All random sequences are

white.

It should be noted that the vector , in (9),
due to the bilinearity hypothesis, can be written in the form

where is a suitable matrix and denotes
the th entry of the vector . Then, system (9), (10) can
be rewritten as

(11)

(12)

where

(13)

System (11), (12) is a linear system with a stochastic dynamic
matrix. It is equivalent to the original bilinear system because it
generates exactly the same state and output processes. Hence,
in order to obtain a state estimate, we can consider this latter
system in place of (9), (10).

Our goal is the determination of a discrete-time filter, that
is a recursive algorithm in the form (7), (8), which gives at
any time the optimal polynomial state estimate of -
order (see Definition 2.1) for the system (9), (10), given all
the available observations at time .

In the next sections, it will be shown how to obtain such
a polynomial filter. Moreover, in the constant parameter case,
conditions will be defined assuring the existence of a stationary
polynomial filter.

The approach that follows goes along the same line as in
[20], consisting essentially of the transpose of the originary
problem to a linear filtering one, solvable by means of the
Kalman filter. In order to define a polynomial estimator which
also takes into account cross products between observations at
different times, we need to introduce the following so-called
“extended memory system.”

IV. THE EXTENDED MEMORY SYSTEM

Given the system (9), (10), and having chosen an integer
, let us define the following vectors:

...
...

(14)
with and . Taking into account
the equivalent equations (11), (12), we have that
satisfy the following relations:

(15)

(16)

where

...
...

...
...

...
...

(17)

...
...

...
...

(18)

...

...
...

...
...

We call (15), (16) anextended memory system.
In the next section, which contains the main result of this

paper, we will be able to derive the evolution of the Kronecker
powers of the above-defined extended state and output.
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V. THE AUGMENTED SYSTEM

Let us consider the integer for which Property 1) of
Section III holds. We define theaugmented observationas the
vector

...
(19)

Moreover, we define theaugmented stateas the vector
, where

...
(20)

Now, for a bilinear system such as (9), (10), satisfying the
Properties 1) and 2) of Section III, let us build up the extended
memory system (15), (16), the augmented observations (19),
and the augmented state (20). Let and be the
identity matrix in and in , respectively. Then, the
following theorem holds.

Theorem 5.1:The processes and defined
in (19) and (20) satisfy the following equations:

(21)

(22)

where

...

...

Moreover, are zero mean uncorrelated se-
quences such that

(23)

whose auto- and cross-covariance matrices

have the following block structure:

where, for are
matrices, respectively, given by the

following formulas:

(24)

(25)

(26)
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(27)

(28)

Proof: See Appendix A.
We call system (21), (22) anaugmented system. It is

a classical time-varying stochastic linear system. Its state
and observation noises are zero mean uncorrelated sequences
and are also mutually uncorrelated at different times. For
these noises we are able to calculate their auto- and cross
covariances. Hence, for the augmented system the optimal
linear state estimate can be calculated by means of the Kalman
filter equations. In order to proceed along this way, we first
need to determine the quantities and
for which appear in the augmented system
matrices and in (23)–(28).

The matrices can be recursively
calculated from , as stated in the following theorem.

Theorem 5.2:Let, for

and then we have

(29)

where are given by the following
recursive equations:

(30)

(31)

with initial conditions

(32)

(33)

Proof: First of all, note that the matrix , defined in
(17), can be rewritten in the compact form

(34)

where the null blocks are suitably dimensioned, is
defined in (13), and denotes as usual the identity
matrix in (we conventionally assume that it vanishes
for ). From (34), and for , (35) follows,
as shown at the bottom of the page. Moreover, for any pair of
integers using Theorem B.3 and Property (93c), we have

(36)

where

(35)
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Taking into account (34), we have the resulting (37), as shown
at the bottom of the page, where

(38)

Equation (37) substituted in (36) yields, by exploiting (38) and
(35), (30) and (31). From (38) we have

and substituting this in (35), we obtain (29). Finally, note that
from (13) and taking into account (34), the initial condition
(32) follows. Moreover, from (29)–(31) we infer that to
compute it is enough to know the matrices ,
for , which are given by (33), as immediately
follows from (38).

Theorem 5.2 allows us to compute recursively the matrices
for from the initial conditions

(32), (33). Condition (32) is immediately given from the data,
whereas to obtain (33) we use the following result.

Theorem 5.3:The matrices are given by the
following formula:

(39)

Proof: By applying (106) and Corollary B.8, and by
exploiting (13), we have

As far as , the vectors appearing
in the expressions of the augmented noise covariances, are
concerned, the following theorem shows that their calculation
is possible by means of a recursive algorithm.

Theorem 5.4:The vector of the expected values ,
defined as

...

satisfies the following recursive equation:

(40)

where

...

Proof: See Appendix A.

(37)
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VI. POLYNOMIAL FILTERING

Now we are able to apply the Kalman filter to system (21),
(22). It should be highlighted that since the samples of the
augmented state and output noises are in general correlated at
the same time, the system needs to use the Kalman filter in a
version given by [22], which takes into account this nonzero
correlation. The equations to use are the following:

(41)

(42)

(43)

(44)

(45)

(46)

where is the filter gain, are the filtering
and one-step prediction errors covariances, respectively, and
the other symbols are defined as in Theorem 5.1. If the matrix

is singular, it is possible to use
the Moore–Penrose pseudo-inverse.

Equation (41) yields recursively the vector , that is the
optimal linear estimate of with respect to the aggregate
vector of all the augmented observations up to time:

...

(we remind readers that here the unit element allows us to
reduce anaffine estimation problem to astrictly linear one).
From Definition (20) of and (14) of , it follows
that the original state, , is the aggregate of the first
entries of the vector . Since the optimal linear estimate
with respect to is the projection of the random vector

on the subspace linearly spanned by, it follows that
we can obtain the optimal linear estimate of with respect
to , i.e., , by extracting in the first entries

(47)

Equation (47) implies that the error covariance of the original
state, namely , is given by

(48)

where is given by (45) and hence is the top
left block of . By remembering the structure of the
extended observation (14) and of the augmented one (19), from

Definition 2.2 we infer that is the -optimal poly-
nomial estimate with respect to the originary measurements

. As in [20], we call a polynomial
filter the whole set of operations constituted by the recursive
equations (41), (42) and by the extraction of the firstentries
in , resulting in an algorithm having the form (7), (8).

VII. STATIONARITY AND STEADY-STATE BEHAVIOR

Equations (41), (47) allow us the recursive calculation of the
state polynomial estimate for the time-varying bilinear system
(9), (10). However, in the time-varying case the result will be
in general dependent on the initial conditions, whose statistics
are often unknown. Moreover, the gain equations (43)–(46)
need to be implemented simultaneously to the filter equations
(41), (42).

Due to the high complexity of this filter, it assumes great
importance from a practical point of view, to know when there
exists the steady-state version of (44)–(46). Here we will limit
ourselves to examining some important subclasses of bilinear
systems for which we will be able to give necessary conditions
under which a stationary behavior can be achieved.

First of all, let us consider the case when the system
matrices and the bilinear form of
system (9), (10) are time independent: ,
and . Moreover, let us assume the
noises are weakly stationary sequences (that
is, their moments are time invariant). This case is modeled by
the following stationary bilinear system:

(49)

(50)

which can be rewritten, as in the time-varying case, in the
linear form with stochastic dynamic matrix

(51)

(52)

where

(53)

The corresponding augmented system is

(54)

(55)

As is well known, the Kalman filter implemented on a time-
invariant system such as (54), (55), having second-order
weakly stationary noises, admits a steady-state gain under the
additional hypotheses of stabilizability and detectability [22].
Moreover, from Theorem 5.4, it follows that the extended
state moments, , given by (40),
converge if and only if the matrix is asymptotically
stable. By observing the structure of , we infer that
it is asymptotically stable if and only if the eigenvalues of
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all the matrices , for , belong to
the unit circle of the complex plane. It also follows that
the stability of the matrices , for ,
implies the asymptotic stationarity of the augmented noises.
Such a condition is then sufficient to assure the existence of
a stationary filter. Now, the main problem is to give sufficient
conditions for the stability of .

We will see that for a strictly bilinear system, even time-
invariant and with stationary noises, the possibility to imple-
ment a stationary polynomial filter is not, in general, assured.
Indeed, we are able to find a counterexample in a particular
but important case, that is when the noises are Gaussian, as
shown in the following theorem.

Theorem 7.1:For the matrices

(56)

with given by

...
...

...
...

...
...

(57)

...
...

...
(58)

and under the hypotheses that is Gaussian and
for it results that there exists

such that (56) is unstable for all .
Proof: Let us suppose, for sake of simplicity, that the

entries of have unit variance and are mutually independent.
By using Property (93h) and taking into account the structure
of (57) and that of (58), we have

where . Hence

Since are Gaussian and independent, we
have

odd,
otherwise;

and hence

Note that all the terms of the summation in the right side have
the same sign. Finally, we have

where the right side is obtained by calculating the sum for
and taking into account that

Hence, we have , for , faster
than . Since

where are the eigenvalues of , this implies the
existence of at least one eigenvalue greater than one.

The circumstance that the availability of the steady-state
moments of any order is not assured for a bilinear system
represents a limitation in designing stationary polynomial
filters. In order to be more precise about this limitation, let
us introduce the following definition.

Definition 7.2: For a stochastic bilinear system such as
(49), (50), we define the stochastic stability degreeas
the maximum order for which the extended state moments

converge to a finite value for
, for any initial condition . We

set when the first moment is not convergent.
For a stochastic time-invariant linear system having finite

noise moments of all orders, can assume only the values
zero or ; that is, if the dynamic matrix is stable (unstable),

. This fact is a trivial reformulation of
the theory developed in [20]. For a bilinear system such as
(49), (50), it is possible to implement a stationary polynomial
filter of order, for any IN and (here

denotes integer part). The determination of the stochastic
stability degree is hence useful for stating in advance the
maximum order for which the state polynomial estimate is
computable by means of a stationary filter. For this purpose,
some results, useful for the determination of the stochastic
stability degree, can be found in [17], [18], [24], and [25].
Here we specialize the above-mentioned results in order to
study the stochastic stability of the Kronecker powers, up to
the th degree of the extended state or the stationarity of the
extended state moments, which is the same.
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Lemma 7.3: The stochastic system

(59)

where is a sequence of independent identically dis-
tributed stochastic matrices, has itsth moment asymptotically
stable if

where denotes the maximum eigenvalue of matrix.
Proof: Taking the th Kronecker power in (59) we have

(60)

From the hypotheses it follows that

hence

The thesis follows by applying [18, Lemma 3.2] to (60).
It is now possible to determine a sufficient condition for the

stability of (40). In fact, the following theorem holds.
Theorem 7.4:If

(61)

then is stable.
Proof: Observe that the function is convex on the

set of symmetric nonnegative matrices. This easily follows by
the property [21]:

; hence, using the Holder
and Jensen inequality and (61),

which, using Lemma (7.3), proves the thesis.
Corollary 7.5: A sufficient condition for the stability of

(40) relative to (49), (50) is

Proof: The thesis follows from the inequality:

applying Theorem 7.4 with and taking into
account of the block-triangular structure of .

VIII. I MPLEMENTATION REMARKS

Some numerical simulations have been carried out on a
Digital “alpha” workstation by implementing the polynomial
filter equations in order to produce for any pair of integers

the -order optimal polynomial state
estimate of a BLSS.

For this purpose, we have written a C-language program
whose main part is devoted to the efficient implementation of
the algorithms, described in Sections V and VI and Appendix
B, for the computation of the filter parameters. By observing
the formulas which define the augmented system parameters,
in the statement of Theorem 5.1, it becomes evident that the
computational effort of the whole polynomial filter algorithm
quickly grows for increasing and/or . Nevertheless, we
point out that even low-order polynomial filters (quadratic or
cubic filters) which do not require a particularly sophisticated
implementation show very high performances with respect to
the classical linear filter. Indeed, as shown in some numerical
simulations of the polynomial filter for linear systems [20], the
error variance of a cubic filter may be 80% smaller than the
Kalman filter. As we will see later, these high performances
are confirmed by low-order polynomial filters for a BLSS. In
the case presented here, the second-degree polynomial filter
yields a signal error variance of 54% less than linear filter. In
the same case we have been able to compute the fourth-degree
polynomial filter (indeed, a high-order filter, in that it requires
a state space of dimension 30 for two-state variables of the
system) which yields an improvement of 75% with respect to
the linear filter. As shown in some pictures, the restoration of
the noisy signal is very impressive.

We would like to stress that the high dimensionality of the
filter is not by itself a true limitation for the implementation.
In fact, by using an efficient implementation scheme for those
data structures which appear in the formulas as matrices of pro-
hibitive dimension, it is possible to overcome such difficulties.
It should be noted that the computational effort is mostly due to
the calculation of the augmented system parameters. In many
cases that are relevant from an application point of view, that
is, time-invariance of system parameters, stationarity of noises,
polynomial degree less than the stochastic stability degree (see
Section VII), we can separate the augmented system matrix
computation from the filter equations (41)–(46) that do not
show relevant computational troubles. In all of these cases,
polynomial filtering is amenable to real-time applications. The
numerical simulations presented here concern the filtering
of time-invariant BLSS’s with stationary noises and degree
less than the stochastic stability degree so that the stationary
polynomial filter is implemented using the steady-state gain,
and the augmented matrices are calculated before filtering.

Among all the algorithms which are necessary for the
computation of the augmented system parameters, the most
burdensome are those involved in the computation of the
extended state moments , that
appear in the augmented noise covariance (24)–(28). These are
obtained by running (40) until convergence is achieved. The
dynamical matrix of (40) may be very large and exceed
the available computer memory space. We think that for large
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degrees (i.e., three or more) many tricks can be conceived,
when a larger computer memory is not available, in order to
save memory space (for instance, to save and use only suitably
small blocks of the matrix).

In order to calculate the matrix and the augmented
noises covariances, the computation of the matrix moments

is needed. These are obtained by
means of the algorithm defined by Theorem 5.2, which in turn
requires the matrices given by (39). The matrices

, which appear in (39) (and are defined
in Corollary B.8), are dimensioned; that is, they may
be too large. In our example, for they
have 2 entries! Nevertheless, this very high dimensionality
is only apparent. In fact, by considering (104) we realize that

can be viewed as an operator which simply permutes the
entries of a vector (permutation matrix). A permutation matrix
is a zero–one square matrix with one (and only one) unity on
each row and column so that it can be simply implemented
as a string of 2 integers, each one representing the column
index of the unity in a row. Also note that the commutation
matrices, given by B.6, which appears in many formulas, are
permutation matrices.

Finally, the last kind of matrices widely used in the whole
algorithm, which can easily grow toward huge dimensions,
is the binomial matrix , defined in Theorem B.6, and
the generalization defined in Theorem B.9. These
are integer matrices with many null entries; for this reason
we have implemented them as integer sparse matrices. In
spite of this expediency, we have observed that the matrices

used in (39) can still exceed the computer memory.
Anytime this happens we adopt the method, mentioned above,
consisting of calculating only small blocks of the matrices
and removing them after their utilization. Thus, we can avoid
overcoming space memory availability, in spite of a growth of
the CPU time. This method surely can be adopted for higher-
polynomial degrees and system orders and always assures that
the computation will be made with the same memory usage.

It should be underlined that, in the most important stationary
case, all the above-mentioned expediences are useful, and
sometimes necessary, in order to treat efficiently the major
critical parts of the whole algorithm, even if they can produce
a great growth of the CPU time needed for the filter parameter
computations. However, they do not affect filter measurement
processing.

IX. SIMULATION EXAMPLE

The example of an application we are going to consider
belongs to the class of the so-calledswitching systems, widely
used in many research areas such as failure detection, speech
recognition, and, more generally, in the modeling of phys-
ical systems affected by abrupt changes in the parameters
[26]–[31]. In particular, we are interested in the class of
systems described by the following partially observed equation
defined on , evolving in :

(62)

where are white sequences and
is a white random matrix sequence taking values in

the finite set with probabilities
. System (62) can be easily represented as

a BLSS in the following way. Let be the
canonical base in , and let us define the white sequence

assuming values in with
. Then

(63)

From the above hypotheses, it follows that
, and using this in (63) results in

(64)

By combining (62) and (64), we obtain the BLSS (11), (13)
with .

Now, in order to test the filter, let us consider the switching
system (62), with

and . Moreover, let the white random
sequences be defined as

where denotes the characteristic function of
and the disjoint events and
have probability

Following the above described procedure, such a switching
system is represented by the following BLSS:

(65)

where and is a white sequence
defined as with .

For this system, we have built the steady-state augmented
system for the polynomial degrees with

and the quadratic and cubic also with .
To each one of these augmented systems we have applied
(43)–(46) in order to obtain the steady-state gains and error
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Fig. 1. True and measured signal.

covariances. Then, for all these cases, we have used the gains
in the filter equations (41), (42), starting from initial condition

. The corresponding estimates for the signal
are readily obtained by using the relation .
Moreover, the signal error variance, namely, is given by
the relation , where is the steady-state value
of the state error covariance given by (48). By denoting
with the a priori state error
covariances given by the 1, 2, 3, 4th-degree polynomial filters,
respectively (all with ), and with the
covariances relative to the quadratic and cubic cases,
respectively, the obtained values are the following:

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

where we have the 2 2 matrix blocks on the top left side
because they contain in the main diagonal the steady-state esti-
mate error variance of each component of the state. The corre-

sponding values,
for the signal error variances are

As implied by the overall theory described in Section II,
we can see that both signal-error variances and state-error
variances of each component of the state decrease with the
increasing of polynomial degree. In the case,
the signal-error variance is 75% less than in the linear filtering
case. Also for the error-variance values relative to the quadratic
and cubic cases with , we observe, as expected, an
improvement with respect to the same cases with .
However, in our experience, the contribution of the increasing

is less effective than the increasing of the polynomial
degree.

In Table I, the sampled variances of the state and signal,
obtained with a number iterations, are reported.
As expected, these values are close to the abovea priori
variance values. In the same table are also reported the signal
sampled variances for the Monte Carlo run of 60 iterations
relative to Figs. 1–5. Fig. 1 displays the sample paths obtained
for the observed and true signal, whereas Figs. 2–4 display
the same path of the true signal with different polynomial
estimates.

X. CONCLUSIONS

The -optimal polynomial filter for the BLSS (1), (2),
given the -order polynomial estimate (see Definition



1118 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997

Fig. 2. True and filtered signal with� = 1; � = 0.

TABLE I

2.2) of the state by means of recursive equations in the form
(7), (8), has been defined for any pair of integers
. In particular, the polynomial filter equations are (41), (42),

and (47). These need to use, at each step, only powers of the
last observations so that the computational burden remains
constant over time. The polynomial filter is obtained by means
of the following steps:

1) construction of the extended memory system (15), (16)
(if this step is skipped);

2) construction of the augmented system;
3) application of the Kalman filter equations to the aug-

mented system.

Equations (43) and (46) allow the computation of filter
parameters. These need, in general, to be implemented simul-
taneously to the filter equations (41) and (43). Nevertheless, if
the BLSS is time invariant, the noises are stationary sequences
and the matrix (defined in the statement of Theorem 5.4)
is asymptotically stable, then we can adopt the steady-state
approximation of the Kalman filter, thus obtaining a great
reduction of computational effort.

In Section VII, it is shown that the stability of the ma-
trix , or equivalently the stability of all the matrices

is not implied by the stability
of so that in general the steady-state polynomial
filter can be implemented only up to a certain finite degree.
Corollary 7.6 gives a sufficient condition for the stability of
the matrix .

Even if the computational burden of polynomial filtering
grows when and/or increase, many tricks (e.g., as in
Section VIII) can be conceived in order to considerably reduce
computer memory and CPU time utilization. Numerical simu-
lations presented in Section IX show the high performance of
polynomial filtering with respect to standard linear filtering.
For a second-order BLSS, we have observed for the (4,0)-
order filter, an error-variance reduction of 75%. It should be
stressed that the (2, 0)-order (quadratic) filter also shows a high
performance (54%). In this case, computer time for executing
steps 1), 2), and 3), has been less than 1 s and practically all
devoted to filter parameter computations.

We think that future research work on polynomial filtering
should concern the following points:

1) reducing the computational burden of the algorithm in
order to actually make very high-order filters imple-
mentable;

2) investigation of the possible convergence of polynomial
estimators, with respect to and increasing, toward
C.E. and evaluation of the convergence error;

3) analysis of the influence of values on the polynomial
filter performance. We conjecture that, for a stable
BLSS, this influence tends to vanish whenincreases
because the observations tend to be uncorrelated when
their mutual distance in time grows;

4) extension of the polynomial filtering to the class of linear
systems with a multiplicative state noise modeled as a
Markov chain or, more in general, as a colored stochastic
sequence.
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Fig. 3. True and filtered signal with� = 2; � = 0.

Fig. 4. True and filtered signal with� = 4; � = 0.

To conclude, we say that this paper represents a first tenta-
tive attack upon nonlinear filtering problems via a polynomial
algorithm. We feel that this could be a way of construct-
ing suboptimal filters for a more general class of nonlinear
systems.

APPENDIX A
AUGMENTED SYSTEM CONSTRUCTION

In this Appendix, the proof of Theorem 5.1, which defines
the structure and the main properties of the augmented system,
is reported. For this purpose we need to state some preliminary

results (Lemma A.1 and Lemma A.2). In particular, Lemma
A.2 will allow us to readily prove Theorem 5.4.

Let denote positive integers, ,
sequences of random matrices in and , respec-
tively, and , sequences of random vectors in

and , respectively. For any , let the following
properties be satisfied.

1)

where denotes the Euclidean norm.
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2) and the set
are mutually independent.

3) and the set are mutually
independent.

In the following thebinomial matrices(101), (102) will be
used often, which will be denoted as , highlighting the
dependence from the dimensionof the vectors involved in
the Kronecker power; moreover, the symbol will denote
the identity matrix in .

In order to simplify the notations, let us introduce the
following symbols:

(66)

Obviously for we have

(67)

With the above notations, it is now possible to state the
following two lemmas.

Lemma A.1: Let be a sequence of stochastic ma-
trices in and be a deterministic matrix in .
Moreover, let us define, for the following
functions:

(68)

with

(69)

(70)

Then, for any couple of (deterministic) matrices in
and , respectively, we have that

(71)

and furthermore, for we have that

(72)

(73)

(74)

(75)

(76)

where

(77)

(78)

Proof: From 3) it follows that for any, , ,
and are mutually independent; hence taking into ac-
count (66), (67) we have

As far as (72) is concerned, taking , we have

where Condition 2) and (67) have been exploited.
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Similarly, from 2) and (67) again, the result is

In order to prove (73), consider (92); the result is

(79)

where is given by

By applying Properties (93c) and (93e) it follows that

(80)

By applying Corollary B.4 we obtain

(81)

(82)

By substituting (82) and (81) in (80) and then the result in (79),
using Property 3) and taking into account (66), we obtain (73).

Equations (74) and (75) easily follow by applying Property
3):

It remains to prove (76). For this purpose, note that
is shown to be formally equal to

with the substitution of with
and with . As a consequence,

noting that with these substitutions, and taking into account
(66), (78) becomes equal to (77), it follows that (76) holds
true too.

Lemma A.2: Let be the vector

(83)

where is a deterministic matrix and
an integer. Let us consider the augmented vectors

...
...

...
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and the matrix

where

(84)

then there exists the following representation:

(85)

with defined as

...
(86)

where are defined as (68).
Proof: Let us consider theth Kronecker power of both

sides of (83)

Using Theorem B.6 and Property (93c) we have

and by adding and subtracting to
their expected values, we obtain

By adding and subtracting to and
their expected values, in the first two terms

of the right side of the previous expression the result is

which can be rewritten as

(87)

where the are defined by (68)–(70). By aggregating in
a vector the given by (87) and taking
into account (66), we obtain (85).

Proof of Theorem 5.1:Let us apply Lemmas A.1 and
A.2 by setting

and with these choices, from Conditions 1) and 2) of
Section III, it follows that Properties 1)–3) are satisfied;
moreover, we have

, and then (21) holds true, with given by

...
(88)

From (88), (72) it follows that the sequence is
uncorrelated. Moreover, from (88) and (73)–(76) follows (24)
with

from which (25) and (26) follow, taking into account (77),
(78).

Now, let us apply Lemmas A.1 and A.2 by setting

Then, Properties 1)–3) are again verified and we have
, , , . Hence, (21) holds
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with given by

...
(89)

From (89) and (72) the uncorrelation of the sequence
follows. Moreover, since , from (78) we
have that

and then from (88) and (89), (28) follows.
From (51), (52) and applying Lemmas A.1 and A.2 with

(hence , , , ) (23) follows. With
the same assignments, from (31) we have

and then from (73)–(77), (28) follows, giving the cross-
correlation matrix between augmented noises.

Now, we can also prove Theorem 5.4.
Proof of Theorem 5.4:Let us apply Lemma A.2 by set-

ting

These choices yield and , hence (85)
has in this case the following form:

(90)

where

...

...

By applying Lemma A.1, from (71) it follows that
and

then . Hence, taking the expectations on both
sides of (90), (40) follows.

APPENDIX B
KRONECKER ALGEBRA

Throughout this paper, we have widely used Kronecker
algebra [21]. Here, for the sake of completeness, we recall
some definitions and properties and also give some new results
on this subject.

Definition B.1: Let and be matrices of dimension
and , respectively. Then the Kronecker product
is defined as the matrix

where the are the entries of .
Of course, this kind of product is not commutative.
Definition B.2: Let be the matrix

(91)

where denotes theth column of , then the stack of
is the vector

(92)

Observe that a vector such as in (92) can be reduced to a
matrix as in (91) by considering the inverse operation of
the stack denoted by . With reference to the Kronecker
product and the stack operation, the following properties hold
[21]:

(93a)

(93b)

(93c)

(93d)

(93e)

(93f)

(93g)

where are suitably dimensioned matrices, are
vectors, and denotes the trace of a square matrix.
The Kronecker power of the matrix is defined as

As an easy consequence of (93b) and (93g), it follows that

(93h)

It is easy to verify that for , , the th entry
of is given by

(94)
where and denote the integer part and-modulo, re-
spectively. Even if the Kronecker product is not commutative,
the following property holds [20], [23].
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Theorem B.3:For any given pair of matrices ,
, we have

(95)

where the commutation matrix is the
matrix such that its entry is given by

if ;

otherwise.
(96)

Observe that , hence in the vector case when
and , (95) becomes

(97)

Corollary B.4: For any given matrices having
dimensions
respectively, denoted with the identity matrix in we
have

Proof: By applying Properties (93b) and (93c) and The-
orem B.3 we have

Moreover, let us recall the following recursive formula [20].
Lemma B.5: For any and for any

let be the matrix such that

(98)

Then the sequence satisfies the following equations:

(99)

where is the identity matrix in .
In [20] can be found the proof of a binomial formula for

the Kronecker power, which generalizes the classical Newton
one, as is asserted by the following theorem.

Theorem B.6:For any integer the matrix coefficients
of the following binomial power formula:

(100)

constitute a set of matrices such that for

(101)

(102)

where and are as in Lemma B.5.
Lemmas B.7 and B.9 and Corollary B.8 constitute new

results about Kronecker algebra.
Lemma B.7: Given , , there exists a

matrix such that

where

and is the identity in IN.
Proof: Let us express the vector as

(103)

where are the th column of and , respectively.
Using Theorem B.3, (103) can be rewritten as

...

so that the proof is completed.
Corollary B.8: Given a matrix IN there

exists a matrix such that

(104)

where

if ;
if .

(105)
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Proof: Equation (104) is obviously true for . Let
; by supposing (104) true for with as in

(105), we obtain

from which the thesis follows.
We can also generalize formula (100) to the polynomial

case. Obviously, given any polynomial
IN, its th Kronecker power admits a

representation as

(106)

where are suitable matrices. We extend the defini-
tion of symbol , with when at least one of the

’s is negative, such as

(107)

Moreover, we can prove the following statement.
Lemma B.9: The matrices in (106)

satisfy the recursive formula

for (108)

for

(109)

Proof: Equation (108) is obvious. In order to prove
(109), let us consider the polynomial power

Now, let us consider the term

If , it is equal to

If , then

then, taking into account (106) we can write

(110)

Now, by considering the generic term of the summation on
the left-hand side of (110), that is

, we must look at the RHS for those terms which are
characterized by the indexes . They are of the form

with , for
, whenever , and

with , . Then, taking into
account (107), (109) is proved.
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