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Abstract. The aim of this paper is to present a new approach to the filtering problem for
the class of bilinear stochastic multivariable systems, consisting in searching for suboptimal state-
estimates instead of the conditional statistics. As a first result, a finite-dimensional optimal linear
filter for the considered class of systems is defined. Then, the more general problem of designing
polynomial finite-dimensional filters is considered. The equations of a finite-dimensional filter are
given, producing a state-estimate which is optimal in a class of polynomial transformations of the
measurements with arbitrarily fixed degree. Numerical simulations show the effectiveness of the
proposed filter.

Key words. square integrable martingales, wide-sense Wiener processes, stochastic bilinear
systems, Kronecker algebra, Kalman–Bucy filtering, polynomial filtering, vector Ito formula

AMS subject classifications. 93E10, 93E11, 60H10

PII. S0363012997320912

1. Introduction. Let us consider the class of nonlinear stochastic systems de-
fined on some probability space, namely (Ω,F , P ), described by the Ito equations

dX(t) = A(t)X(t)dt+B1(X(t), dW (t)),(1.1)

dY (t) = C(t)
(
X(t)

)
dt+B2(X(t), dW (t)),(1.2)

whereX(t) ∈ Rn; Y (t) ∈ Rq;W (t) ∈ Rp is a standard Wiener process with respect to
some increasing family of σ-algebras, namely {Ft}; A(t), C(t) are matrices of proper
dimensions; B1 and B2 are bilinear forms. System (1.1), (1.2) is commonly referred
to in the literature as a bilinear stochastic system (BLSS) [4], [5], [6], [7], [8], [10].

The problem we are faced with consists in searching for finite-dimensional filters
for the BLSS (1.1), (1.2). Indeed, for such a system even the linear optimal finite-
dimensional filtering problem is still an interesting one.

With the name of finite-dimensional filter, we understand a stochastic differential
equation in the form

dz(t) = f(z(t))dt+ g(z(t))dY (t),(1.3)

endowed with an output transformation

X̂(t) = h(z(t)),(1.4)

where {z(t), t > 0} is some process taking values on a finite-dimensional linear space.
We say that (1.3), (1.4) is a finite-dimensional optimal filter for system (1.1), (1.2) if

X̂(t) = E(X(t)/FYt ),(1.5)
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where we have denoted FYt the σ-algebra generated by the observations {Y (s), 0 ≤
s ≤ t}.

As is well known, the optimal filter for system (1.1), (1.2) is an infinite-dimensional
one. Nevertheless, from an application point of view, it becomes crucial to look for
finite-dimensional approximations of the optimal filter.

In this paper we will derive, as an auxiliary result, the optimal linear filtering equa-
tions for a BLSS in the form of (1.1), (1.2) which will result in the finite-dimensional
form (1.3), (1.4). We point out that in [3] the optimal linear filter is derived in
the more general setting of linear stochastic equations driven by wide-sense Wiener
(WSW) processes, resulting in a Kalman–Bucy scheme [1], [2]. Then, the optimal
linear filter is defined for a scalar BLSS by representing the bilinear form as a WSW
process. We will follow the same basic methodology in deriving the optimal linear
filter for a vector BLSS.

Because of the infinite-dimensionality of the optimal filter for system (1.1), (1.2),
it is of a great interest from an application point of view to search for finite-dimensional
suboptimal filters showing a better performance with respect to the linear one.

This suboptimal approach has been recently developed for discrete-time systems
in [9], [10], where a general polynomial filter of any arbitrarily fixed degree is defined
for linear non-Gaussian systems [9] and bilinear systems [10]. The polynomial filter
is able to produce, recursively, the optimal state-estimate in a class of polynomials
of all the currently available measurements including the linear transformations. For
this reason, in a non-Gaussian setting, it represents an improvement of the classical
Kalman filtering. Indeed, many numerical simulations have shown that the improve-
ment in performance may be very large especially when noise distributions are very
far from Gaussianity.

In this paper we will propose this suboptimal approach for the filtering problem
of continuous-time BLSSs. This will allow us to define a finite-dimensional filter in
the form (1.3), (1.4), giving the optimal state-estimate in a suitably defined class of
polynomial transformations of the measurements.

The program of the polynomial filtering methodology consists essentially in the
following three steps.

(i) A class of polynomial estimators is defined.
(ii) The problem of finding the optimal filter for the BLSS in the above class

of polynomial estimators is reduced to an optimal linear filtering problem
for a suitable augmented system. The augmented system will result in a
linear SDE with WSW diffusions. In particular, the state of the augmented
system (augmented state) contains the original state, its Kronecker powers,
and also Kronecker products with the observation process. The output of
the augmented state (augmented observation) contains the original output
process together with its Kronecker powers up to a fixed degree.

(iii) A Kalman–Bucy scheme is applied to the augmented system. This will give
us the required polynomial filter.

The paper is organized as follows. Section 2 deals with point (i). In section 3,
the overall setup of the problem is presented. Sections 4, 5, and 6 are concerned
with some preliminary results. In particular, in section 4, a method for transforming
a vector BLSS in a linear system with WSW diffusions is presented. In section 5 a
vector Ito formula is defined by using the Kronecker formalism. In section 6, a general
formula defining the stochastic differential of the Kronecker power of some process,
solution of a bilinear SDE, is found. In section 7, point (ii) is treated. Finally, in
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section 8, the complete solution of the problem is presented, resulting in a system
of equations which defines a polynomial filter (of an arbitrarily fixed degree) for a
BLSS. In section 9, numerical simulations are presented for a linear and third degree
polynomial filter applied to a second order BLSS. A comparision is made with respect
to the extended Kalman filter, which shows an unstable behavior for the presented
case. Two appendices are included in order to make the paper more readable.

2. Suboptimal filtering. This section is devoted to the definition of the class
of estimators considered in this paper. First of all, let us recall some results of linear
filtering [3].

Let I be an interval (bounded or not) in the real line and consider a family
{ξt, t ∈ I} of L2 random variables valued on some finite-dimensional euclidean space.
For t ∈ I, let us define the subspace Lt(ξ) ⊂ L2 linearly spanned by {ξs, s ≤ t} as the
L2-closure of the set L′

t(ξ):

L′
t(ξ)

∆
=

{
λ ∈ L2 : ∃j ∈ N,∃t1, . . . , tj ∈ I, t1 ≤ · · · ≤ tj ≤ t,

∃ matrices Mt1 , . . . ,Mtj ,∃ a vector b, such that λ =

j∑
i=1

Mtiξti + b
}
.

Let Π(·/Lt(ξ)) denote the orthogonal projection operator onto Lt(ξ). Then, for any
given L2 random variable η we can define the optimal linear estimate of η given
{ξs, s ≤ t} as Π(η/Lt(ξ)). Now, suppose there exists an integer ν such that

E(‖ξt‖2ν) ≤ +∞ ∀ t ∈ I.
Let us denote byX [i] the ith Kronecker power of a vectorX. We can give the following
definition.

Definition 2.1. We call νth degree polynomial estimate of η given {ξs, s ≤ t}
the random variable Π(η/P(ν)

t (ξ)), where

P(ν)
t (ξ)

∆
=Lt(ξ(ν))

and ξ(ν) is the process

ξ(ν)
∆
=


ξ[ν]

ξ[ν−1]

...
ξ
1

 .

From Definition 2.1 we see that Π(η/P(ν)
t ) is the mean square optimal estimate

of η among all estimates, namely λ, that are either in the form

λ =
k∑

i,j=1

Mi,jξ
[j]
ti + b

for such a k ∈ N, t1, . . . , tk ∈ I, t1 ≤ · · · ≤ tk for such a vector b and matrices

Mi,j , i, j = 1, . . . , k, or are mean square limits of these. Π(η/P(ν)
t ) includes the linear

estimates and, moreover,

P(ν)
t (ξ) ⊂ P(ν+1)

t (ξ) ∀ ν ≥ 1,
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so that, for the polynomial estimates η̂(ν) = Π(η/P(ν)
t (ξ)), η̂(ν+1) = Π(η/P(ν+1)

t (ξ))
one has

E(‖η − η̂(ν+1)‖2) ≤ E(‖η − η̂(ν)‖2) ∀ ν ≥ 1.

That is, the estimation quality is not decreasing for increasing ν.
Now, the aim of this paper can be expressed in a more precise manner as follows:

for any given ν find a finite-dimensional filter in the form (1.3), (1.4) such that X̂(t)
is the optimal νth degree polynomial estimate of the state of system (1.1), (1.2). Such
a filter will be referred to in the following as a νth degree polynomial filter.

A crucial topic involved in the derivation of the polynomial filter is the linear
estimation of stochastic processes generated by linear models driven by WSW pro-
cesses, which we briefly describe below (see [3, Chap. 15], for a detailed discussion
with proofs).

Let W̃ (i)(t) ∈ Rl, i = 1, . . . ,m, be mutually uncorrelated WSW processes. Let
us consider the linear stochastic system

dX(t) = A(t)X(t)dt+

m∑
i=1

Bi(t)dW̃
(i)(t), X(0) = X̄,

dY (t) = C(t)X(t)dt+

m∑
i=1

Di(t)dW̃
(i)(t), Y (0) = 0,

(2.1)

where t ∈ [0 tM ], X(t) ∈ Rn, Y (t) ∈ Rq, A(t), C(t), Bi(t), Di(t), i = 1, . . . ,m, are
suitably dimensioned matrices and X̄ is a square integrable random vector. Model
(2.1) can be interpreted as a continuous-time linear non-Gaussian system. We can
consider the processes X,Y evolving in suitable L2 spaces of square integrable random
vectors. Let us denote with X̂(t) the optimal linear estimate of X(t), that is X̂(t) =
Π(X(t)/Lt(Y )). Then the following system of equations can be easily derived from
[3, Thm. 15.3]:

(2.2)

dX̂(t) = A(t)X̂(t)dts

+

(
m∑
i=1

Bi(t)Di(t)
T + P (t)C(t)T

)
R(t)

−1
(dY (t)− C(t)X̂(t)dt),

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +Q(t)

−
(

m∑
i=1

Bi(t)Di(t)
T + P (t)C(t)T

)
R(t)

−1

(
m∑
i=1

Bi(t)Di(t)
T + Pt(t)C(t)

T

)T
,

X̂(0) = E(X̄), P (0) = E
(
(X̄ − E(X̄))(X̄ − E(X̄))T

)
,

where

R(t)
∆
=

m∑
i=1

Di(t)Di(t)
T ; Q(t)

∆
=

m∑
i=1

Bi(t)Bi(t)
T ,

and P (t) represents the filtering error covariance matrix. Note that in (2.2) the
nonsingularity of the matrix function R(t) over the time interval [0 tM ] is required.
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As we will see in the next section, the BLSSs can be represented in the form
(2.1). Then, (2.2) will allow us to obtain the optimal linear filter for a BLSS. This is
a crucial point in the methodology here described. The way to derive the polynomial
filter equations will consist indeed in reducing the original filtering problem to a linear
one for a suitably defined BLSS.

3. The system to be filtered. Let T = [0 t
M
], let (Ω,F , P ) be a probabil-

ity triple, and let {Ft}, t ∈ T , be a family of nondecreasing sub-σ-algebras of F .
Moreover let (W (t),Ft) be an Rp-valued standard Wiener process and X̄ ∈ Rn an
F0-measurable random variable, independent of W , such that

E(‖X̄‖2ν) < +∞

for some integer ν ≥ 1. For the random variable X̄ we suppose the moments, namely

m
(i)

X̄
,

m
(i)

X̄

∆
=E(X̄ [i]), i = 1, . . . , 2ν,(3.1)

are known. Let us consider the stochastic system

dX(t) = A(t)X(t)dt+H(t)u(t)dt(3.2)

+

p∑
k=1

(
BkX(t) + Fk

)
dWk(t), X(0) = X̄,

dY (t) = C(t)X(t)dt(3.3)

+

p∑
k=1

(
DkX(t) +Gk

)
dWk(t), Y (0) = 0,

where A(t) ∈ Rn×n, C(t) ∈ Rq×n, H(t) ∈ Rn×m, Bk ∈ Rn×n, Fk ∈ Rn, Dk ∈ Rq×n,
Gk ∈ Rq, for k = 1, . . . , p, Wk(t) denotes the kth component of the standard Wiener
process W (t) ∈ Rp, and u(t) ∈ Rm is a deterministic input. Equation (3.2) is
endowed with the initial condition X(0) = X̄. In the following, we shall denote with
Iα, α = 0, 1, . . ., the α×α identity matrix; we assume I0 = 1. We make the following
assumption on system (3.2), (3.3).

Assumption 3.1. There exists a k̄, 1 ≤ k̄ ≤ p, such that the matrix Dk̄D
T
k̄

is
nonsingular.

Remark 3.2. Assumption 3.1 implies that we can assume, without loss of gener-
ality, that there exists a k̄, 1 ≤ k̄ ≤ p, such that

Dk̄ = [Iq 0].(3.4)

Indeed, let k̄ be such that Dk̄D
T
k̄
is nonsingular, and define the matrix T ∈ Rn×n as

T =

[
Dk̄
R

]
,

where R ∈ R(n−q)×n is chosen such that the whole T results in a nonsingular matrix.
It is easy to verify that Dk̄T

−1 = [Iq 0]. Hence we can always modify system (3.2),
(3.3) by using T as a matrix performing a change of coordinates in the state space,
and we can ensure that the representation (3.4) holds for at least one k̄ ∈ {1, . . . , p}.
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The problem we are faced with consists in finding a finite-dimensional filter in
the form of (1.3), (1.4), such that

X̂(t) = Π
(
X(t)/P(ν)

t (Y )
)
,(3.5)

where the space P(ν)
t (Y ) is given by Definition 2.1.

As above mentioned (see point (ii) in the introduction), we will prove that there
exists an augmented linear system for which the optimal linear filtering problem is
equivalent to the original polynomial filtering problem for system (3.2), (3.3). To this
purpose, in the next two sections we state some preliminary results.

4. Optimal linear filtering for BLSSs. Before treating the more general poly-
nomial case, in this section we limit ourselves in considering the optimal linear filtering
problem for the BLSS (3.2), (3.3). The reason for considering this particular case in
advance is twofold. First of all, as we will see later, the polynomial case reduces to
the linear one once a suitable augmented system has been constructed. Moreover,
the optimal (finite-dimensional) linear filtering problem for a BLSS is interesting by
itself, in that it was up to now unsolved in the general case [3]. In this section, we give
a solution of this problem, in that we will prove the existence of a linear stochastic
system with WSW diffusions, which is equivalent to the original BLSS (3.2), (3.3).
Indeed, a version of the classical Kalman–Bucy theory [3] solves the optimal linear
filtering problem in this case.

LetM ∈ Rα×α be a symmetric positive semidefinite matrix, such that rank(M) =
ρ ≤ α. As is well known, there exists a full rank matrix N ∈ Rα×ρ such that
NNT =M . We will use the notation

M ( 1
2 ) ∆
=N,

that is, a “rectangular square root” of the matrix M . Note that, by definition, the

matrix M (1/2)TM (1/2) is nonsingular.
Let ξ be a random vector; in the following we will use the notation cov(ξ, ξ) =

E
(
(ξ−E(ξ))(ξ−E(ξ))T ). Let us denote m

X
(t) = E(X(t)), ΨX(t) = cov(X(t), X(t)),

where X is the state process of system (3.2), (3.3). Moreover, let us denote m̄
X

=
E(X̄) and Ψ̄X = cov(X̄, X̄), where X̄ is the initial state vector of (3.2).

Theorem 4.1. Let us consider the system (3.2), (3.3). Suppose that the matrix
ΨX(t) is nonsingular for any t ∈ T . Let us consider, for k = 1, . . . , p, the integers
ρk ≤ n, σk ≤ q such that

ρk =
∆ rank

{
Bk ·ΨX(t) ·BkT

}
σk =

∆ rank
{
Dk ·ΨX(t) ·DkT

} ∀ t ∈ T.(4.1)

Then there exists the representation

dX(t) = A(t)X(t)dt+H(t)u(t) +

2p∑
k=1

B̃k(t)dW̃k,1(t), X(0) = X̄,(4.2)

dY (t) = C(t)X(t)dt+

2p∑
k=1

D̃k(t)dW̃k,2(t), Y (0) = 0,(4.3)
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where, for k = 1, . . . , p: B̃k(t) ∈ Rn×ρk and D̃k(t) ∈ Rn×σk are given by

B̃k(t)
∆
=

(
Bk ·ΨX(t) ·BTk

)( 1
2 )

,(4.4)

D̃k(t)
∆
=

(
Dk ·ΨX(t) ·DkT

)( 1
2 )

(4.5)

for k = p+ 1, . . . , 2p:

B̃k(t)
∆
=Bk−pE

(
X(t)

)
+ Fk−p,(4.6)

D̃k(t)
∆
=Dk−pE

(
X(t)

)
+Gk−p.(4.7)

For i = 1, 2, the set {W̃k,i, k = 1, . . . , 2p} is a set of 2p mutually uncorrelated standard
WSW processes. In particular, for k = 1, . . . , p, W̃k,1(t) ∈ Rρk , W̃k,2(t) ∈ Rσk ; for
k = p+ 1, . . . , 2p:

W̃k,1(t) = W̃k,2(t) =Wk−p(t).(4.8)

Proof. For k = 1, . . . , p, let us define the processes W̃k,1, W̃k,2 as

W̃k,1(t) =

∫ t

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

TBk
(
X(τ)−m

X
(τ)

)
dWk(τ),(4.9)

W̃k,2(t) =

∫ t

0

(
D̃k(τ)

T D̃k(τ)
)−1
D̃k(τ)

TDk
(
X(τ)−m

X
(τ)

)
dWk(τ),(4.10)

where B̃k, D̃k are given by (4.4), (4.5). Let us show that W̃k,i, i = 1, 2, are standard
WSW processes. As a matter of fact, using well-known properties of the Ito integral
and (4.4), it results, for s < t:

E
(
W̃k,1(t)W̃k,1(s)

T )
=

∫ s

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

T
(
BkΨX(τ)B

T
k

)
B̃k(τ)

(
B̃k(τ)

T B̃k(τ)
)−1

dτ

=

∫ s

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

T
(
B̃k(τ)B̃k(τ)

T
) · B̃k(τ)(B̃k(τ)T B̃k(τ))−1

dτ

= Iρk · s.
Similarly, taking again an s < t, it can be proved that

E
(
W̃k,2(t)W̃k,2(s)

T )
= Iσk

· s,
and hence, since the Wiener’s process components W1, . . . ,Wp, are mutually inde-

pendent, we have that, for i = 1, 2, {W̃k,i, k = 1, . . . , p} is a family of mutually
independent (vector) WSW processes with identity covariance.

Now let us show that, for k = 1, . . . , p (almost surely),

B̃k(t)dW̃k,1(t) = Bk
(
X(t)−m

X
(t)

)
dWk(t),(4.11)

D̃k(t)dW̃k,2(t) = Dk
(
X(t)−m

X
(t)

)
dWk(t).(4.12)

From the hypotheses the symmetric positive-definite matrix Ψ(t)1/2 is well defined.
Hence, for any y(t) ∈ Rn we can define ȳ(t) ∈ Rn such that y(t) = Ψx(t)ȳ(t). Next,
let us consider the decomposition ȳ(t) = ȳ1(t) + ȳ2(t), where

(4.13) ȳ1(t) ∈ R(
ΨX(t)

1/2BTk
)
, ȳ2(t) ∈

{
R(

ΨX(t)
1/2BTk

)}⊥
= N (

BkΨX(t)
1/2

)
,
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where N (M), R(M) denote the null-space and the range, respectively, of a matrix
M . Using (4.13) and choosing a z̄(t) such that ȳ1(t) = ΨX(t)

1/2Bkz̄(t), we have

Bky(t) = BkΨX(t)
1
2 ȳ(t) = BkΨX(t)

1
2 ȳ1(t) = BkΨX(t)B

T
k z̄(t) = B̃k(t)B̃k(t)

T z̄(t),

where the definition of B̃k(t), given by (4.4) has been used. It follows that for any
y(t) ∈ Rn there exists a z(t) ∈ Rρk (indeed z(t) = B̃k(t)

T z̄(t)) such that

Bky(t) = B̃k(t)z(t) ∀ t ∈ T.(4.14)

Then, for any y(t) we have

B̃k(t)
(
B̃k(t)

T B̃k(t)
)−1

B̃k(t)
TBky(t) = B̃k(t)

(
B̃k(t)

T B̃k(t)
)−1

B̃k(t)
T B̃k(t)z(t)

= B̃k(t)z(t) = Bky(t),

from which, using the definition of W̃k,1 given by (4.9), equality (4.11) follows. A
similar argument can be used to prove (4.12).

Finally, by adding and subtracting the state-expectation m
X
(t), in the bilinear

forms of (3.2), (3.3) and taking into account (4.11), (4.12), we obtain the representa-
tion (4.2), (4.3). The thesis follows as soon as it is proven that, for i = 1, 2, W̃k′,i(t)

(p + 1 ≤ k′ ≤ 2p) is uncorrelated with W̃k′′,i(t) (1 ≤ k′′ ≤ p). As a matter of fact,
from (4.8), for p+ 1 ≤ k′ ≤ 2p, k′′ �= k′ − p,

E
(
W̃k′′,1(t)W̃k′,1(t)

T
)
= E

(
W̃k′′,1(t)Wk′−p(t)T

)
= 0,

and, for k′′ = k′ − p,
E
(
W̃k′′,1(t)W̃k′,1(t)

T
)
= E

(
W̃k′′,1(t)Wk′′(t)

T
)

= E

(∫ t

0

(
B̃k′′(τ)

T B̃k′′(τ)
)−1
B̃k′′(τ)

TBk′′
(
X(τ)−m

X
(τ)

)
dWk′′(τ) ·

∫ t

0

dWk′′(τ)

)

=

∫ t

0

E
((
B̃k′′(τ)

T B̃k′′(τ)
)−1
B̃k′′(τ)

TBk′′
(
X(τ)−m

X
(τ)

))
dτ = 0.

In the same way, it is possible to show that E
(
W̃k′′,2(t)W̃k′,2(t)

T
)
= 0 for p + 1 ≤

k′ ≤ 2p.
In the following theorem a sufficient condition will be given which guarantees the

nonsingularity of ΨX(t). Let us consider a time-invariant version of the BLSS given
by (3.2), (3.3):

dX(t) = AX(t)dt+Hu(t)dt+

p∑
k=1

(BkX(t) + Fk)dWk(t), X(t0) = X̄,(4.15)

dY (t) = CX(t)dt+

p∑
k=1

(DkX(t) +Gk)dWk(t), Y (t0) = 0,(4.16)

where t0 ∈ R is any “initial time.” We suppose that system (4.15), (4.16) is well
defined over the time interval [t0 ∞).

Theorem 4.2. Let the matrix ΨX(t0) be nonsingular (or the pair (A,Fk) of
the state equation (4.15) be controllable for at least one k = 1, . . . , p); then the state
covariance matrix ΨX(t) is nonsingular for any t ≥ t0, (t > 0).
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Proof. Let us denote X̃(t) = X(t)−m
X
(t). Taking the expectations of (4.15), we

have

dm
X
(t) = Am

X
(t)dt+Hu(t)dt, m

X
(0) = m̄

X
.

Subtracting this from (4.15) results in

dX̃(t) = AX̃(t)dt+

p∑
k=1

BkX̃(t)dWk(t)+

p∑
k=1

(BkmX
(t)+Fk)dWk(t), X̃(t0) = X̄−m̄

X

or

X̃(t) = eA(t−t0)X̃(t0) +

p∑
k=1

∫ t

t0

eA(t−τ)BkX̃(τ)dWk(τ)

+

∫ t

t0

eA(t−τ)(BkmX
(τ) + Fk)dWk(τ).

(4.17)

From (4.17) the following equation is easily recognized to hold for ΨX(t):

ΨX(t) = e
A(t−t0)ΨX(t0)eA

T (t−t0) +
p∑
k=1

∫ t

t0

eA(t−τ)BkΨX(τ)BTk e
AT (t−τ)dτ

+

p∑
k=1

∫ t

t0

eA(t−τ)(BkmX
(τ) + Fk)(BkmX

(τ) + Fk)
T eA

T (t−τ)dτ.

(4.18)

The thesis follows by noting that the three terms in the right-hand side of (4.18)
are at least symmetric nonnegative definite and, in particular, the nonsingularity
of φX(t0) implies the positive definiteness of the first term, whereas the hypothesis
of controllability of (A,Fk) for some k implies the positive definiteness of the term∫
eA(t−τ)FkFTk e

AT (t−τ)dτ .
Remark 4.3. Note that, when theorem 4.2 holds with t0 < 0, it results that,

for any finite time-interval T ⊂ [t0 + ∞), the state-covariance has the property
ΨX(t) > α · I ∀ t ∈ T (I denotes the identity) for some real number α > 0, (it is
unifomly nonsingular in T ).

Now, we can state the following theorem, which defines the optimal linear filter
for a BLSS.

Theorem 4.4. Let the time-invariant BLSS as defined in (4.15), (4.16) be given.
Let the hypotheses of Theorem 4.2 be satisfied. Moreover, let us suppose that

(H1) rank(Dk) = q or rank(Gk) = q for some k.
Then, with reference to the notations of section 2, the optimal linear estimate
of the state process X, namely X̂, and the error covariance

P (t) = E
(
(X(t)− X̂(t))(X(t)− X̂(t))T

)
satisfy the following system of equations:

dm
X
(t)

dt
= Am

X
(t) +Hu(t), m(0) = m̄,(4.19)

dΨX(t)

dt
= AΨX(t) + ΨX(t)A

T +

p∑
k=1

BkΨX(t)B
T
k
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+

p∑
k=1

(BkmX
(t) + Fk)(BkmX

(t) + Fk)
T , ΨX(0) = Ψ̄X ,(4.20)

B̃k(t) =


(
Bk ·ΨX(t) ·BTk

)( 1
2 )

, 1 ≤ k ≤ p,
Bk−pmX

(t) + Fk−p, p+ 1 ≤ k ≤ 2p,

(4.21)

D̃k(t) =


(
Dk ·ΨX(t) ·DTk

)( 1
2 )

, 1 ≤ k ≤ p,
Dk−pmX

(t) +Gk−p, p+ 1 ≤ k ≤ 2p,

(4.22)

R(t) =

2p∑
i=1

D̃i(t)D̃i(t)
T ,(4.23)

dP (t)

dt
= AP (t) + P (t)AT +R(t),

−
(

2p∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)
R(t)−1

(
2p∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)T
,(4.24)

P (0) = Ψ̄X ,(4.25)

dX̂(t) = AX̂(t)dt+

(
2p+1∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)
R(t)−1(dY (t)− CX̂(t)dt),(4.26)

X̂(0) = m̄.(4.27)

Proof. (4.19) readily derives by taking the expectations of both sides of (4.15).
Moreover, (4.20) is easily obtained by differentiating (4.18). From Theorem 4.2 and
Remark 4.3, ΨX(t) is uniformly nonsingular in T . Then, we can apply Theorem 4.1
in order to put system (4.15), (4.16) in the form of a linear stochastic system with
suitable WSW state and output diffusions, deriving from (4.2), (4.3). Note that such
an equivalent system is a time-varying one even if it is derived from the time-invariant
BLSS (4.15), (4.16). Now from (4.22), (4.23) it results that

R(t)
∆
=

p∑
k=1

DkΨX(t)D
T
k +

p∑
k=1

(DkmX
(t) +Gk)(DkmX

(t) +Gk)
T ,

which is uniformly nonsingular in T , by the hypothesis (H1) (and possibly by the
uniform nonsingularity of ΨX(t)). The thesis easily derives from an application of [3,
Thm. 15.3] to the representation (4.2), (4.3).

Remark 4.5. In the general case, when the BLSS is time-varying the uniform
nonsingularity of ΨX(t) cannot be guaranteed. Nevertheless, in all the cases of a
nonsingular ΨX(t), the equations of the optimal linear filter can be still derived us-
ing the representation given by Theorem 4.1. The resulting system of equations is
formally similar to (4.19)–(4.27), but the constant parameters are replaced with the
corresponding time-varying ones.

5. The vector Ito formula in the Kronecker formalism. In this section,
by using a formalism derived from the Kronecker algebra, we present a new version of
the Ito formula which has, with respect to the classical formulation, the advantage of
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being much more compact and will allow us to calculate, for a given stochastic process
φ, the stochastic differential of the process φ[h], where [h] is any integer Kronecker
power.

Let x ∈ Rn and F be any C2 function in Rm×p; we introduce the matrix (d/dx)⊗
F (x), having dimensions m× (n · p), defined as

d

dx
⊗ F (x) ∆

=
[∂F (x)
∂x1

· · · ∂F (x)
∂xn

]
,(5.1)

where the operator d/dx is given by

d

dx

∆
=

[ ∂
∂x1

· · · ∂

∂xn

]
.(5.2)

Note that in (5.1) the rules defining the Kroneker product between matrices (see
Definition A.1) are formally satisfied, provided that the “multiplication” between the
differential operator ∂/∂xi and a matrix function F (x) is conventionally defined as

∂

∂xi
· F (x) = ∂F (x)

∂xi
,

where the right-hand side has the usual meaning. Similarly, we can define the opera-
tor:

d

dx
⊗ d

dx

∆
=

[ ∂2

∂x2
1

∂2

∂x1∂x2
· · · ∂

2

∂x2
n

]
.

Also in this case the composition rule of the Kronecker product is satisfied, but the
“multiplication” between the differential operators ∂/∂xi and ∂/∂xi had to be inter-
preted as resulting in the differential operator ∂2/∂xi∂xj . In general, we will adopt
the convention: the multiplication between a differential operator and a function F
results in a function (the derivative of F ), whereas the multiplication between two
differential operators results in a differential operator (the second order differential
operator). Obviously, this convention could be generalized in order to give a precise
meaning to the quantity

d[h]

dx[h]
⊗ F (x)

for any integer h ≥ 0. However, in this paper we are concerned at most with second-
order derivatives.

It is easy to recognize that for any matrix, namely M , and for any pair of dif-
ferentiable matrix functions having suitable dimensions, namely V (x) and W (x), it
results that

d

dx
⊗ (V (x)⊗W (x)) =

( d
dx

⊗ V (x)
)
⊗W (x) + V (x)⊗

( d
dx

⊗W (x)
)
,(5.3)

d

dx
⊗ (MW (x)) =M

( d
dx

⊗W (x)
)
.(5.4)

Moreover, the following “associative” property holds:

d

dx
⊗ d

dx
⊗ F (x) =

( d
dx

⊗ d

dx

)
⊗ F (x) = d

dx
⊗

( d
dx

⊗ F (x)
)
.
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Using the above notation, we can prove the following lemma, which will be very
useful in the following sections.

Lemma 5.1. For any integer h ≥ 1 and x ∈ Rn, it results that

d

dx
⊗ x[h] = Uhn (In ⊗ x[h−1]),(5.5)

and for any h > 1,

d

dx
⊗ d

dx
⊗ x[h] = Ohn(In2 ⊗ x[h−2]),(5.6)

where the matrices CTu,v, u, v ∈ N, are the commutation matrices defined by Theorem
A.3 and

Uhn
∆
=

(
h−1∑
τ=0

CTn,nh−1−τ ⊗ Inτ

)
, Ohn

∆
=

h−1∑
τ=0

h−2∑
s=0

(CTn,nh−1−τ ⊗ Inτ )(In ⊗ CTn,nh−2−s ⊗ In).

Proof. According to the definition of the differential operator (5.1) and using
(5.3), we have

Qh
∆
=
d

dx
⊗ x[h] =

d

dx
⊗

(
x⊗ x[h−1]

)
= In ⊗ x[h−1] + x⊗

(
d

dx
⊗ x[h−1]

)
= In ⊗ x[h−1] + x⊗Q(h−1),

(5.7)

from which, using Theorem A.3, we obtain

d

dx
⊗ x[h] =

h−1∑
τ=0

x[h−1−τ ] ⊗ In ⊗ x[τ ] =

h−1∑
τ=0

CTn,nh−1−τ

(
In ⊗ x[h−1−τ ]

)
⊗ x[τ ],

from which (5.5) follows, taking into account the property (A.3c).
Similarly, by exploiting (5.3), (5.5), and (A.3c), it results that

d

dx
⊗ d

dx
⊗ x[h]

=
d

dx
⊗

((
h−1∑
τ=0

CTn,nh−1−τ ⊗ Inτ

)(
In ⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
d

dx
⊗

(
In ⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

(
d

dx
⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

((
h−2∑
s=0

CTn,nh−2−s ⊗ Ins

)(
In ⊗ x[h−2]

)))

=

h−1∑
τ=0

h−2∑
s=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

((
CTn,nh−2−s ⊗ Ins

)(
In ⊗ x[h−2]

)))
=

h−1∑
τ=0

h−2∑
s=0

(
CTn,nh−1−τ ⊗ Inτ

)((
In ⊗

(
CTn,nh−2−s ⊗ Ins

))(
In ⊗

(
In ⊗ x[h−2]

)))
,
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so that the proof is completed.
Now, we are able to rewrite the vector valued version of the Ito formula in the

Kronecker formalism.
Theorem 5.2. Let (Xt,Ft) be a vector-continuous semimartingale in Rn de-

scribed by the Ito stochastic differential

dXt = dβt + dMt,(5.8)

where (βt,Ft) is an almost surely continuous bounded variation process and (Mt,Ft)
is a square integrable martingale. Let

F : Rn → Rp

be a continuous function endowed with the first and second derivatives. Then the
process Zt = F (Xt) is a square integrable semimartingale, whose differential is given
by

dZt =

(
d

dx
⊗ F (x)

)
x=Xt

dXt +
1

2

(
d

dx
⊗ d

dx
⊗ F (x)

)
x=Xt

(dMt)
[2],(5.9)

with (dMt)
[2] denoting the associate quadratic variation process whose arguments are

(dMt)
[2] =


d < M1,M1 >t
d < M1,M2 >t

...
d < Mn,Mn >t

 ,(5.10)

with obvious meaning of symbols [11, 12].
Proof. Formula (5.10) can be directly verified by using the Ito formula in the scalar

case (see for instance [11, Thm. 4.2.1]) and by taking into account the definition of
the differential operator d/dx.

6. Stochastic differential for the Kronecker power of a BLSS solution.
Using the Ito formula, in the version given by Theorem 5.2, we can now prove the
following theorem, which defines the stochastic differential for the power process of
the solution of a bilinear SDE. This will be the fundamental tool in the derivation of
the augmented system.

Theorem 6.1. Let φ(t) ∈ Rd be the process defined by the following SDE:

dφ(t) = (Γ(t)φ(t) + γ(t))dt+

p∑
k=1

(Θkφ(t) + χk)dWk(t),(6.1)

where Γ(t),Θk ∈ Rd×d, γ(t), χk ∈ Rd. Then, defining

Φ2
∆
=

p∑
k=1

Θ
[2]
k , Φ1

∆
=

p∑
k=1

(Θk ⊗ χk + χk ⊗Θk), Φ0
∆
=

p∑
k=1

χ
[2]
k ,(6.2)

it results for i ≥ 2 that

dφ[i](t) =
(
M0

i (t)φ
[i](t) +M1

i (t)φ
[i−1](t) +M2

iφ
[i−2](t)

)
dt

+

p∑
k=1

(
G0
k,iφ

[i](t) + G1
k,iφ

[i−1](t)
)
dWk(t),
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where

M0
i (t) = U

i
d(Γ(t)⊗ Idi−1) +

1

2
Oid(Φ2 ⊗ Idi−2),

M1
i (t) = U

i
d(γ(t)⊗ Idi−1) +

1

2
Oid(Φ1 ⊗ Idi−2),

M2
i =

1

2
Oid

(
Φ0 ⊗ Idi−2

)
,

G0
k,i = U

i
d(Θk ⊗ Idi−1),

G1
k,i = U

i
d(χk ⊗ Idi−1).

Proof. By using property (A.3c) the following formula is easily recognized to hold

for any k = 0, 1, . . ., j = 1, 2, . . ., ψ ∈ Rσ, M ∈ Rr×σ
k

:(
Ir ⊗ ψ[j]

)
Mψ[k] = (M ⊗ Iσj )ψ[k+j].(6.3)

Let us apply Theorem 5.2 for X = φ, F (φ) = φ[i], dβ = (Γφ + γ)dt, and dM = dΛ,
where Λ is the martingale:

Λ(t)
∆
=

∫ t

0

p∑
k=1

(
Θk(τ)φ(τ) + χk(τ)

)
dWk(τ).

Using formulas (5.5), (5.6), it results that (understanding time dependencies)

dφ[i] = U id

(
Id ⊗ φ[i−1]

)
(Γφdt+ γdt+ dΛ) +

1

2
Oid

(
Id2 ⊗ φ[i−2]

)
(dΛ)[2].(6.4)

By exploiting the definition (5.10) it results that

(dΛ)[2] =
(
Φ2φ[2] +Φ1φ+Φ0

)
dt,(6.5)

where Φ2, Φ1, and Φ0 are given by (6.2). By substituting (6.5) in (6.4) and using
formula (6.3), the thesis follows.

7. The augmented system. Let us return to consider the BLSS (3.2), (3.3).
In this section, by means of a repeated application of Theorem 6.1, we will show
that the process (X,Y ) and its powers up to a certain degree represent a solution
of a suitably defined bilinear SDE. The latter will be next transformed into a linear
system with WSW diffusions, generating the powers of the observation Y up to the
required degree (the augmented system).

Let x ∈ Rd and h be a positive integer. We recall that the following relations
hold, linking together the reduced hth Kroneker power of x [3], [15], namely x[h] and

the (ordinary) hth Kronecker power x[h]:

x[h] = Thd x[h], x[h] = T̃
h
d x

[h],(7.1)

where Thd and T̃hd are suitably dimensioned transformation matrices [3].
Let us define the process Z as

Z(t)
∆
=

[
Y (t)
X(t)

]
(7.2)
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and let δ = dim(Z). Moreover, let us define the augmented process:

Z(t)
∆
=


Z(t)
Z[2](t)

...
Z[ν](t)

 .(7.3)

We can derive an SDE for the process Z in the following way. First, note that, from
(3.2), (3.3), Z satisfies the following SDE:

dZ(t) =
(
Ã(t)Z(t) + α(t)

)
dt+

p∑
k=1

(
BkZ(t) + β̃k

)
dWk(t),(7.4)

where

Ã(t)
∆
=

[
0 C(t)
0 A(t)

]
; α(t)

∆
=

[
0
Hu

]
; Bk

∆
=

[
0 Dk
0 Bk(t)

]
; βk =

[
Gk
Fk

]
.(7.5)

Next, by applying Theorem 6.1 to the process Z, it results for i = 2, . . . , ν that

dZ [i](t) =
(
L0
i (t)Z

[i](t) + L1
i (t)Z

[i−1](t) + L2
iZ

[i−2](t)
)
dt

+

p∑
k=1

(
V 0
k,iZ

[i](t) + V 1
k,iZ

[i−1](t)
)
dWk(t),

(7.6)

where

L0
i (t) = U

i
δ

(
Ã(t)⊗ Iδi−1

)
+

1

2
Oiδ (Ψ2 ⊗ Iδi−2) ,(7.7)

L1
i (t) = U

(i)
δ (α(t)⊗ Iδi−1) +

1

2
Oiδ (Ψ1 ⊗ Iδi−2) ,(7.8)

L2
i =

1

2
Oiδ (Ψ0 ⊗ Iδi−2) ,(7.9)

V 0
k,i = U

i
δ

(
B̃k ⊗ Iδi−1

)
,(7.10)

V 1
k,i = U

i
δ(βk ⊗ Iδi−1),(7.11)

and Ψ2, Ψ1, and Ψ0 are given by

Ψ2
∆
=

p∑
k=1

B̃
[2]
k , Ψ1

∆
=

p∑
k=1

(
B̃k ⊗ βk + βk ⊗ B̃k

)
, Ψ0

∆
=

p∑
k=1

β
[2]
k .

Observing that, from (7.1) we have

Z [i] = T iδZ[i], Z[i] = T̃
i
δZ

[i],

and using (7.6), we can state the following proposition.
Proposition 7.1. The process Z defined in (7.3) satisfies the bilinear SDE

dZ(t) = (A(t)Z(t) + U(t))dt+ p∑
k=1

(BkZ(t) + Vk
)
dWk(t),(7.12)
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where

A(t) =



Ã(t) 0 . . . 0
L1

2(t) T̃ 2
δ L

0
2(t)T

2
δ 0

L2
3 T̃ 3

δ L
1
3(t)T

2
δ T̃ 3

δ L
0
3(t)T

3
δ

...
. . .

. . .
. . .

0 . . . T̃ νδ L
2
νT

ν−2
δ T̃ νδ L

1
ν(t)T

ν−1
δ T̃ νδ L

0
ν(t)T

ν
δ

 ,(7.13)

Bk =



B̃k 0 . . . 0

V 1
k,2 T̃ 2

δ V
0
k,2T

2
δ

...

0 T̃ 3
δ V

1
k,3T

2
δ T̃ 3

δ V
0
k,3T

3
δ

...
. . .

. . .

0 . . . T̃ νδ V
1
k,νT

ν−1
δ T̃ νδ V

0
k,νT

ν
δ

 ,(7.14)

U(t) =


α(t)
L2

2

0
...
0

 , Vk =


βk
0
...
0

 .(7.15)

The block matrices in (7.13), (7.14) are given by (7.7)–(7.11) and (7.5), and the
matrices T̃ ·

· , T
·
· , are the reduction matrices defined in (7.1).

Now, we can use Theorem 4.1 in order to rewrite the bilinear SDE (7.12) in
the form of a linear SDE with WSW diffusion term. The underlying hypothesis
is that the covariance matrix of the process Z defined in (7.3), namely ΦZ(t), is
uniformly nonsingular over T . There are many ways to assure this, starting from
some suitable, nonrestrictive hypothesis on the original system. As a matter of fact,
since we are here concerned with a finite interval T , it is easy to recognize that the
uniform nonsingularity of ΦZ(t) is assured as soon as it is assumed that the covariance
of the initial original state X(0) is positive definite. Henceforth, we will understand
the uniform nonsingularity in T of ΦZ(t).

Proposition 7.2. Let ρk, k = 1, . . . , p, be the ranks of the matrices Bk, given in
(7.12). Then the process Z satisfies the SDE

dZ(t) =
(A(t)Z(t) + U(t))dt+ 2p∑

k=1

B̃k(t)dW̃k(t),(7.16)

where W̃k, k = 1, . . . , 2p are independent standard WSW processes, W̃k ∈ Rρk for
k = 1, . . . , p, W̃k =Wk ∈ R, for k = p+ 1, . . . , 2p, and

B̃k(t) ∆
=

{(BkΨZ(t)BTk )( 1
2 )
, 1 ≤ k ≤ p,

Bk−pmZ
(t) + Vk−p, p+ 1 ≤ k ≤ 2p,

(7.17)

with m
Z
= E(Z).

In order to write down the equations of the augmented system we need to split
out the vector SDE (7.12) into two SDEs: one for the observed components of Z and
the other one for the remaining entries.
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From the definition (7.2) we see that the components of the vector Z are of the
form

Xi11 · · ·Xinn · · ·Y j11 · · ·Y jqq ,(7.18)

where Xl, Yl denote the lth component of vectors X,Y , respectively, and 0 ≤ il, jr ≤ ν
for l = 1, . . . , n, r = 1, . . . , q,

∑n
l=1 il ≤ ν,

∑q
r=1 jr ≤ ν. The observed components

are those of the form (7.18) with i1 = · · · = in = 0. Denote by Y the vector of all
such components:

Y ∆
=


Y
Y[2]

...
Y[ν]

 .
Moreover, let us denote by EY the (0, 1)-matrix such that

Y = EYZ.(7.19)

It is easy to recognize that

EY =


E1
Y 0 . . . 0

0 E2
Y

. . .
...

. . .
. . .

0 . . . 0 EνY

 ,(7.20)

where the diagonal blocks EjY , j = 1, . . . , ν are defined as

EjYZ[j] = Y[j](7.21)

and have the expressions

EjY = [Iq 0][j]T jδ ,(7.22)

where T jδ is the expansion matrix defined in (7.1). Let us denote with X the aggregate
vector of all the components in Z which are not components of Y. Moreover, let us
denote by EX the (0, 1)-matrix such that

X = EXZ.(7.23)

A simple way to compute EX is just to remove from the identity matrix IdZ with
dZ = dim(Z) (note that IdZ includes all the rows of EY) all those rows which are rows
of EY .

From the above the aggregate matrix I,

I ∆
=

[ EY
EX

]
(7.24)

results to be invertible. Let us consider the matrices I1, I2 such that

Z = I1Y + I2X .(7.25)
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Note that, from (7.19), (7.23), and because of the invertibility of the matrix I, it
results that the matrices I1, I2 defined in (7.25) are obtained by means of a suitable
partition of the matrix I−1 = [I1 I2].

Using (7.19), (7.23), (7.25), and (7.12), we can now state the following proposition.
Proposition 7.3. The processes X , Y defined in (7.23) and (7.19) satisfy the

pair of SDEs (augmented system)

dX (t) =
(A1(t)Y(t) +A2(t)X (t) + U1(t)

)
dt+

2p∑
k=1

B1
k(t)dW̃k(t),(7.26)

dY(t) = (C1(t)Y(t) + C2(t)X (t) + U2(t)
)
dt+

2p∑
k=1

D1
k(t)dW̃k(t),(7.27)

where

(7.28)

A1(t) = EXA(t)I1, A2(t) = EXA(t)I2, U1(t) = EXU(t), B1
k(t) = EX B̃k(t),

C1(t) = EYA(t)I1, C2(t) = EYA(t)I2, U2(t) = EYU(t), D1
k(t) = EY B̃k(t),

A, B̃k, U , are the matrix coefficients of (7.16), the matrices EX , EY , I1, I2, are
defined by means of (7.19), (7.23), (7.25), and {W̃k, k = 1, . . . , 2p} is a set of mutually
uncorrelated standard WSW processes.

8. Polynomial filter equations. Proposition 7.3 states that the augmented
observation process Y defined in (7.19) can be generated as the output process of the
augmented representation (7.26), (7.27). This implies that the problem of finding the
νth degree polynomial filter for the original system (7.26), (3.3) is now reduced to
an optimal linear filtering problem for the linear system (7.26), (7.27). Indeed, by
denoting with X̂ (t) the optimal linear estimate given {Ys, s ≤ t} of the augmented
state X (t), we have (see section 2)

X̂ (t) = Π
(
X (t)/Lt(Y)

)
.

On the other hand, from Definition 2.1 and taking into account the structure of the

augmented observation Y, it results that Lt(Y) = P(ν)
t (Y ), where Y is the original

observation process given by (3.3). Hence we have

X̂ (t) = Π
(
X (t)/P(ν)

t (Y )
)
,

and, as we will see later, we can get X̂(t) (which is given by (3.5)) by extracting a
suitable subvector in X̂ (t).

In [3] the optimal linear filter is defined for the class of linear stochastic systems
whose noise terms are represented by WSW processes. System (7.26), (7.27) comes
within this class of systems, and we can use here the same approach as in [3] in order
to obtain the optimal linear filter with respect to the augmented observation process
Y (and, hence the optimal νth degree polynomial filter with respect to the original
observed process Y ). In order to do this, first of all we state the following theorem,
whose proof is given in Appendix B, showing the uniform nonsingularity in T of the
output-noise covariance of system (7.26), (7.27), namely

R(t)
∆
=

2p∑
k=1

D1
k(t)D1

k(t)
T .(8.1)
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Indeed, the uniform nonsingularity of (8.1) is required, in order to apply the Kalman–
Bucy scheme to system (7.26), (7.27).

Theorem 8.1. The noise covariance matrix function of the augmented measure-
ment equation (7.27), given by (8.1), is uniformly nonsingular over T .

Proof. See Appendix B.
Now, we can prove the main theorem, defining the νth degree polynomial filter for

system (3.2), (3.3). We remind readers that ρk is the dimension of the WSW process
W̃k when k = 1, . . . , p, and for k = p+1, . . . , 2p, W̃k =Wk ∈ R. Let us denote with γ
the dimension of the augmented process Z. Moreover, we shall denote with cov(χ, η)
the cross-covariance between two random variables χ, η. Finally, we shall denote with
M† the Moore–Penrose pseudoinverse of the square matrix M .

Theorem 8.2. The νth order polynomial filter for system (3.2), (3.3) is described
by the following system of equations:

dm
Z
(t)

dt
= A(t)m

Z
(t) + U(t),(8.2)

B̄k(t) = BkmZ
(t) + Vk, 1 ≤ k ≤ p,(8.3)

dΨZ(t)

dt
= A(t)ΨZ(t) + ΨZ(t)A(t)

T
+

p∑
k=1

BkΨZ(t)BTk +

p∑
k=1

B̄k(t)B̄k(t)T ,(8.4)

B̃k(t) =
(
BkΨZ(t)BTk

)( 1
2 )

, 1 ≤ k ≤ p,(8.5)

J (t) =

p∑
k=1

EX
(B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)ETY ,(8.6)

R(t) =

p∑
k=1

EY
(
B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)
ETY ,(8.7)

Q(t) =

p∑
k=1

EX
(
B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)
ETX ,(8.8)

dP(t)

dt
= A2(t)P(t) + P(t)A2(t)

T +Q(t)

−
(
J (t) + P(t)C2(t)

T )R(t)−1(J (t) + P(t)C2(t)
T
)T
,(8.9)

dX̂ (t) =
(
A1(t)Y(t) +A2(t)X̂ (t) + U1(t)

)
dt+

(
J (t) + P(t)C2(t)

T
)
R(t)−1

·(dY(t)− (C1(t)Y(t) + C2(t)X̂ (t) + U2(t)
)
dt

)
,(8.10)

X̂(t) = TνX̂ (t),(8.11)

where Tν is the operator extracting the first n entries of a vector, the matrices A(t),
U(t), A1(t),A2(t), B1(t),B2(t),U1(t),U2(t) are defined in (7.16) and (7.28), the matri-
ces Bk are defined in (7.14), ρk = rank(Bk), and (8.2), (8.4), (8.9), (8.10) are endowed
with the initial conditions

m
Z
(0) = E(X (0)),

ΨZ(0) = cov(X (0),X (0)),

X̂ (0) = E(X (0)) + cov(X (0),Y(0))cov(Y(0),Y(0))†(Y(0)− E(Y(0))),
P(0) = cov(X (0),X (0))− cov(X (0),Y(0))cov(Y(0),Y(0))†cov(X (0),Y(0))T .
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Proof. Equations (8.6)–(8.10) easily derive from an application of [3, Thm. 15.3]
to the representation (7.26), (7.27). The augmented-state covariance ΨZ(t), appearing
in the definition of B̃k given by (8.5) (see also (7.17)), satisfies the ODE (8.4). This
can be readily proved in the same way of (4.20), but the time-varying BLSS (7.12) is
considered now, and the semigroup generated by {A(t), t ∈ T} should be used.

The so-obtained estimate X̂t is the optimal one among all the linear transforma-
tion of the augmented observation process {Ys, s ≤ t}, and hence it is the νth degree
polynomial estimate of the augmented state Xt. In order to obtain the νth degree
polynomial estimate of the state Xt of the original system (3.2), (3.3), first of all note
that, because X̂t is the L2-projection of Xt onto the closed subspace linearly spanned
by {Ys, s ≤ t}, we have that each entry of X̂t agrees with the L2-projection (onto the
same subspace) of the corresponding entry in Xt. Now, by definition, X (t) includes
the components of the original state Xt. From (7.2), (7.3), and by the definition of
the extracting operator EX , it results that these components are placed in the first n
entries of the vector X . Hence, X̂(t) can be obtained simply by extracting the first n
components of X̂t, that is (8.11).

9. Simulation example. In order to test the algorithm described in the pre-
vious sections, the filtering problem for the following second-order system has been
considered:

dX(t) = AX(t)dt+BX(t)dW (t) + UdN(t), X(0) = 0,(9.1)

dY (t) = CX(t)dt+DX(t)dV (t), Y (0) = 0,(9.2)

where

A =

[
a1 1
0 a2

]
, B =

[
b1 0
0 b2

]
, U =

[
u1

u2

]
,

C = [ 1 1 ] , D = [ g 0 ] ,

and W , N , and V are mutually independent scalar Wiener processes.
The well-known extended Kalman filter (EKF) was up to now the classical tool

for the filtering of a nonlinear system in the form of (9.1), (9.2). However, noth-
ing is known about the working conditions or the performances of the EFK. In the
present case, for instance, the EKF does not work at all. Indeed the state-expectation
is zero and hence the state process is expected to cross the zero. Since the term
DX̂(t)X̂(t)TDT (X̂ denoting the EKF estimation) needs to be inverted in the EKF
equations, we should expect a failure of the algorithm. This really happens in the
simulations we carried out for several values of the parameters a1, a2, b1, b2, u1, u2, g.
We have always observed a sudden and strong deviation to infinity. In order to
improve the working conditions we have substituted the term DX̂(t)X̂(t)TDT with
ε + DX̂(t)X̂(t)TDT , where the number ε has been chosen small enough. In these
cases we have observed an improvement of the algorithm, in that for a small initial
time-interval the EKF shows a good performance, even better than the third-degree
polynomial filter below described (no theoretical argument is known about this). How-
ever, unavoidably, the EKF diverges in spite of the trick used, whereas the polynomial
filters continue to work.

The linear, the second degree (quadratic), and the third degree (cubic) filters
have been built up by using (8.2)–(8.11). We remind the reader that the matrices
A, U , Bk, and Vk that appear in the filter equations are the system-matrices of the
augmented (7.12). These matrices can be obtained from the original system-matrices
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by using the formulas given in section 7 for any polynomial degree. We show below
our simulation results for the linear and cubic filters, with the following values of the
parameters:

a1 = −0.01, a2 = −0.5, u1 = 30, u2 = 2,

b1 = 0.1, b2 = 0.1, g = 0.1.
(9.3)

We do not show graphs related to the quadratic filter simulation because, in our case,
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Fig. 9.3

Fig. 9.4

the quadratic filter does not show any valuable improvement with respect to the linear
case. Differently from the EKF, for the polynomial filters we are able to compute the
a priori state-estimate error variances that are entries of the matrix P(t) given by
(8.9), that is P1,1(t), P2,2(t) for the first and second state components, respectively.
In our example these values are growing with time. The reason for this is that system
(9.1), (9.2), with the values given by (9.3), is unstable. Nevertheless, as shown in
Figure 9.1, the time-evolution of P1,1(t) for the cubic filter (namely P

C
(t)) is ever less

than the P1,1(t) for the linear filter (namely P
L
(t)). In Figure 9.2 the evolution of
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the ratio ρ(t) = P
L
(t)/P

C
(t) is shown. We can see that ρ(t) stabilizes over the value

ρ̄ = 1.30. Hence the improvement in the a priori performance of the cubic filter with
respect to the linear one can be considered almost 30%.

The time-evolutions of filtered paths for the linear and cubic filters, compared
with the corresponding true 1st component state path, are reported in Figures 9.3,
9.4. As we can see, even a visual comparison between the signal time-evolutions shows
a valuable improvement in the estimation quality of the cubic filter with respect to
the linear one. Several Monte Carlo runs have been carried out. For each one of
these runs, the ratio, namely ρ

S
, between the sampled error variances of the linear

and cubic filters has been computed. We have chosen the paths with ρ
S
= 1.35.

The simulation of the EKF confirms also in this case its unsatisfactory behavior.
Indeed, after almost 0.01 time units the EKF estimate starts up and quickly goes to
infinity.

All the simulations have been carried out using the standard functions of the
Matlab software package for Windows. The computer was a PC, endowed with a 200
MHz Pentium processor.

10. Conclusions. Equations (8.2)–(8.11) define a finite-dimensional filter for
the BLSS (3.2), (3.3) which is optimal in a class of polynomial estimates. Although
the considered class does not include all the polynomials of the currently available
measurements, it includes the linear estimates, and, moreover, it defines a nonde-
creasing sequence of spaces for increasing polynomial degree. This implies that the
polynomial filter had to improve the estimation performance for increasing polynomial
degree.

We underline that the proposed filter is finite-dimensional. Of course, it is always
possible to approximate the optimal filter (for instance, by applying a finite-elements
method to the Zakai equation, as shown in [13]) with an arbitrary approximation de-
gree. However, the more accurately the approximation level is chosen, the heavier the
computational burden of the algorithm is. The computational effort is prohibitive even
for small approximation degrees. Moreover, it makes no sense, within this approach,
to use a large approximation degree in order to make the filtering algorithm really
implementable. Counterwise, our suboptimal approach allows us to get meaningful
estimates also for small polynomial degrees, which do not present difficult implemen-
tation problems.

In section 4 we have presented the equations of the optimal linear filter for a BLSS.
We highlight that this result is interesting by itself in that it was up to now known
only for the scalar case. The main tool is given by Theorem 4.1, stating the existence
of a linear representation for a general vector BLSS. The optimal linear filter is then
obtained by an application of a classical Kalman–Bucy scheme. Nevertheless, in the
framework of this paper, the main purpose of Theorem 4.1 remains its application to
the bilinear SDE (7.12), which allows us to obtain the linear representation (7.16).

Theorem 8.1 states that the output noise covariance of the augmented system is
uniformly nonsingular, as required by the Kalman–Bucy scheme, provided that the
output noise covariance of the original system (3.2), (3.3) is nonsingular. The proof
is presented in Appendix B.

In section 9 a numerical simulation is shown, where a second-order BLSS has been
filtered using the polynomial filters up to the third degree. The EFK has been also
simulated, however its performance is resulted to be unsatisfactory. The simulation
results show that the estimation quality really improves as polynomial degree grows,
and for the cubic filter we obtained an improvement valuable over 30% with respect
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to the linear filter.
We stress that, due to the well-known approximation capabilities of the polyno-

mial functions, with the aim to define better and better implementable approximation
schemes of the optimal filter, the use of polynomial estimators appears to be very
promising.

Appendix A. Kronecker algebra.
Throughout this paper, we have widely used Kronecker algebra [14], [15]. Here,

for the sake of completeness, we recall some definitions and properties on this subject.
Definition A.1. Let M and N be matrices of dimension r × s and p × q,

respectively. Then the Kronecker product M ⊗ N is defined as the (r · p) × (s · q)
matrix

M ⊗N =

m11N . . . m1sN
. . . . . . . . . . . . . . . . . .
mr1N . . . mrsN

 ,
where the mij are the entries of M .

Of course this kind of product is not commutative.
Definition A.2. Let M be the r × s matrix

M = [m1 m2 . . . ms ] ,(A.1)

where mi denotes the ith column of M , and then the stack of M is the r · s vector

st(M) = [mT1 m2 . . . ms ]
T
.(A.2)

Observe that a vector as in (A.2) can be reduced to a matrix M as in (A.1) by
considering the inverse operation of the stack denoted by st−1. With reference to the
Kronecker product and the stack operation, the following properties hold [15]:

(A+B)⊗ (C +D) = A⊗ C +A⊗D
+B ⊗ C +B ⊗D,(A.3a)

A⊗ (B ⊗ C) = (A⊗B)⊗ C,(A.3b)

(A · C)⊗ (B ·D) = (A⊗B) · (C ⊗D),(A.3c)

(A⊗B)T = AT ⊗BT ,(A.3d)

st(A ·B · C) = (CT ⊗A) · st(B),(A.3e)

u⊗ v = st(v · uT ),(A.3f)

tr(A⊗B) = tr(A) · tr(B),(A.3g)

where A, B, C, and D are suitably dimensioned matrices, u and v are vectors, and
tr(M) denotes the trace of a square matrix M . The Kronecker power of the matrix
M is defined as

M [0] = 1,

M [n] =M ⊗M [n−1] =M [n−1] ⊗M, n > 0.

As an easy consequence of (A.3b) and (A.3g), it follows that

tr(A[h]) =
(
tr(A))h.(A.3h)
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It is easy to verify that for u ∈ Rr, v ∈ Rs, the ith entry of u⊗ v is given by

(u⊗ v)i = ul · vm; l =

[
i− 1

s

]
+ 1, m = |i− 1|s + 1,(A.4)

where [·] and | · |s denote integer part and s-modulo, respectively. Although the
Kronecker product is not commutative, the following property holds [9, 15].

Theorem A.3. For any given pair of matrices A ∈ Rr×s, B ∈ Rn×m, we have

B ⊗A = CTr,n(A⊗B)Cs,m,(A.5)

where the commutation matrix Cu,v is the (u · v) × (u · v) matrix such that its (h, l)
entry is given by

{Cu,v}h,l =
{
1 if l = (|h− 1|v)u+

([
h−1
v

]
+ 1

)
,

0 otherwise.
(A.6)

Observe that C1,1 = 1; hence in the vector case when a ∈ Rr and b ∈ Rn, (A.5)
becomes

b⊗ a = CTr,n(a⊗ b).(A.7)

Corollary A.4. For any given matrices A,B,C,D, having dimensions nA ×
mA, nB×mB, nC×mC , nD×mD, respectively, denoted with I(l), the identity matrix
in Rl, we have

A⊗B ⊗ C ⊗D =
(
I(nA)⊗ CTnCnD,nB

)
(A⊗ C ⊗D ⊗B) (I(mA)⊗ CmCmD,mB

) .

Proof. See [3].

Appendix B. Proof of Theorem 8.1. We need to state in advance some
preliminary definitions and lemmas.

Let δ and j be two positive integers.
Definition B.1. Let r, s ∈ {1, 2, . . . , δj}. The pair (r, s) is said to be (δ, j)-

redundant ((δ, j)-R for short) if ∀ x ∈ Rδ, it results that
(
x[j]

)
r
=

(
x[j]

)
s
, where(

x[j]
)
l
denotes the lth entry of the vector x[j]. Otherwise, the pair (r, s) is said to be

(δ, j)-nonredundant ((δ, j)-NR for short).
Example B.2. The pair (2, 3) is (2, 2)-R; however, it is (3, 2)-NR. The pairs (1, 1),

(2, 2), . . . are (δ, j)-NR for any δ and j.
Remark B.3. Let x ∈ Rδ. For some s, r ∈ {1, 2, . . . , δj} let us consider the

multi-indexes s1, . . . , sj and r1, . . . , rj in {1, . . . , δ} defined by the identities(
x[j]

)
s
= xs1xs2 · · ·xsj ,

(
x[j]

)
r
= xr1xr2 · · ·xrj .

Then, we immediately realize that (r, s) is (δ, j)-R if and only if there exists a permu-
tation of indexes transforming s1, . . . , sj in r1, . . . , rj (and vice versa).

Remark B.4. It is easy to verify that the (δ, j)-R condition defines an equivalence
relation in the set {1, 2, . . . , δj}. We shall denote with ρ(s; δ, j) the equivalence class
generated by s ∈ {1, . . . , δj} via the (δ, j)-R relation

ρ(s; δ, j)
∆
=

{
r ∈ N : 1 ≤ r ≤ δj , (s, r) is (δ, j)−R

}
.(B.1)
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We shall denote with δj the number of equivalence classes of the (δ, j)-R rela-
tion, partitioning the set {1, 2, . . . , δj}. Moreover, we introduce the sets ρ′(s; δ, j),
ρ′′(s; δ, j) ⊂ ρ(s; δ, j) defined as

ρ′(s; δ, j) ∆
=

{
i ∈ ρ(s; δ, j)

/[
i

δj−1

]
=

[ s

δj−1

]}
,(B.2)

ρ′′(s; δ, j) ∆
= ρ(s; δ, j) \ ρ′(s; δ, j),(B.3)

where we have used in (B.2) the notation [ · ] to indicate the integer part. The above
defined sets have the following meaning. Let x ∈ Rδ and note that

x[j] =


x1 · x[j−1]

x2 · x[j−1]

...
xδ · x[j−1]

 ,(B.4)

where every subvector xix
[j−1] has dimension δj−1. By setting l = [s/δj−1] and

observing in (B.4) the structure of x[j], we realize that the set defined in (B.2) is
composed with the integers i such that (i, s) is (δ, j)-R and

(
x[j]

)
i
∈ xlx[j−1]. Coun-

terwise, the set defined in (B.3) is composed with the integers i such that (i, s) is
(δ, j)-R and

(
x[j]

)
i
does not belong to xlx

[j−1]. Let us denote by |n1|n2 the remainder
of the integer division n1/n2. Then, again from (B.4), it is easily recognized that(

x[j]
)
s
= xl

(
x[j−1]

)
r
, r

∆
= |s|δj−1 .(B.5)

Remark B.5. Note that the number δj agrees with the number of entries of x[j]

for x ∈ Rδ.
Lemma B.6. Let r, s ∈ {1, . . . , δj−1} such that (r, s) is (δ, j − 1)-R. Then, for

any l = 0, 1, . . . , δ − 1, the pair (r + lδj−1, s + lδj−1) is (δ, j)-R. Counterwise, if
r, s ∈ {1, . . . , δj} are (δ, j)-R and r′ = s′ with

r′ ∆
=

[ r

δj−1

]
, s′ ∆

=
[ s

δj−1

]
,

then, denoting r′′ = |r|δj−1 , s′′ = |s|δj−1 , it results that (r′′, s′′) is (δ, j − 1)-R.
Proof. From Definition B.1 it results that(

x[j−1]
)
r
=

(
x[j−1]

)
s

∀ x ∈ Rδ.(B.6)

From (B.4) we see that(
x[j]

)
r+lδj−1 = xl

(
x[j−1]

)
r
,

(
x[j]

)
s+lδj−1 = xl

(
x[j−1]

)
s
,

and hence, from (B.6), (
x[j]

)
r+lδj−1 =

(
x[j]

)
s+lδj−1 .

Counterwise, if r, s ∈ {1, . . . , δj} are (δ, j)-R, then, taking into account (B.5), we have(
x[j]

)
r
= xr′

(
x[j−1]

)
r′′ = xs′

(
x[j−1]

)
s′′ =

(
x[j]

)
s

∀ x ∈ Rδ.(B.7)
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Since, by hypothesis, r′ = s′, (B.7) implies that
(
x[j−1]

)
r′′ =

(
x[j−1]

)
s′′ .

Let I ⊂ N and n ∈ N. In the following, we will use the notation I−n to indicate
the translated set:

I − n = {i / i ∈ N, ∃i′ ∈ I, such that i = i′ − n}.(B.8)

Lemma B.7. Suppose that [ s

δj−1

]
= l < δ.(B.9)

Then, for any q < δ − l it results that
ρ′(s; δ, j) = ρ′(s+ qδj−1; δ, j)− qδj−1,

where ρ′ is the set defined in (B.2).
Proof. It suffices to show that for any r ∈ {1, . . . , δj} such that [r/δj−1] = l

and such that (r, s) is (δ, j)-NR ((δ, j)-R), the pair (r + qδj−1, s+ qδj−1) is (δ, j)-NR
((δ, j)-R).

Suppose first that (r, s) is (δ, j)-NR. Let x ∈ Rδ and z = x[j]. From the structure
(B.4) of the vector z and taking into account (B.9), we see that zs, zr ∈ xl · x[j−1].
Hence since (s, r) is (δ, j)-NR, we have that, there exist integers h1, . . . , hδ and
h′1, . . . , h

′
δ, h1 + · · ·+ hδ = h′1 + · · ·+ h′δ = j − 1 such that it results that

zs = xl · xh1
1 · · ·xhδ

δ ,

zr = xl · xh
′
1

1 · · ·xh′
δ

δ .
(B.10)

Since zr �= zs it follows that

xh1
1 · · ·xhδ

δ �= xh′
1

1 · · ·xh′
δ

δ .(B.11)

Again, looking at (B.4), we readily realize that

zs+qδj−1 = xl+q · xh1
1 · · ·xhδ

δ ,(B.12)

and

zr+qδj−1 = xl+q · xh
′
1

1 · · ·xh′
δ

δ ,(B.13)

and hence, taking into account (B.11), it follows that zs+qδj−1 �= zr+qδj−1 ; that is
(s+ qδj−1, r + qδj−1) is (δ, j)-NR.

Next, suppose that (r, s) is (δ, j)-R. Then zs, zr ∈ xl · x[j−1], zs = zr, and
by (B.10) it follows that hi = h′i, i = 1, . . . , δ. This in turn implies, taking into
account (B.12), (B.13), that zs+qδj−1 = zr+qδj−1 ; that is (s + qδj−1, r + qδj−1) is
(δ, j)-R.

Lemma B.8. Let (r, s) be a (δ, j)-R pair such that[ r

δj−1

]
= l,

[ s

δj−1

]
= m, l < m < δ.(B.14)

Then for any q < δ − l the pair (r + qδj−1, s+ qδj−1) is (δ, j)-NR.
Proof. As in the proof of Lemma B.7 it is readily verified that, for some integers

h1, . . . , hδ such that h1 + · · ·+ hδ = j − 1, it results that

zr = xl · xh1
1 · · ·xhl

l · · ·xhm
m · · ·xhδ

δ .(B.15)
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Since zs = zr, (B.15) implies that

zs = xm · xh1
1 · · ·xhl+1

l · · ·xhm−1
m · · ·xhδ

δ .

Hence we have

zr+qδj−1 = xl+q · xh1
1 · · ·xhl

l · · ·xhm
m · · ·xhδ

δ = xl+q
zr
xl
,

zs+qδj−1 = xm+q · xh1
1 · · ·xhl+1

l · · ·xhm−1
m · · ·xhδ

δ = xm+q
zs
xm
.

From this, since zr = zs and l �= m, it follows that zr+qδj−1 �= zs+qδj−1 .
Let us consider the state and output processes X,Y , of system (3.2), (3.3). We

remind the reader that q and δ are the dimensions of the vectors Y and Z = [Y T XT ]T ,
respectively. Note that the components of Z [j] can be divided into two groups: the
one including monomials composed only with components of the vector Y , and the
other one including the remaining monomials. We shall call the components belonging
to the former group the Y -monomials.

Let us consider the extraction matrix EY defined in (7.19), and recall that the
diagonal blocks EjY , j = 1, . . . , ν, appearing there are such that (7.21) holds. According
to the above defined notation (see Remark B.5), we shall denote by qj the dimension

of the vector Y[j]. Finally, let us consider the reduction matrix T̃ jδ defined in (7.1)

and the matrix U jδ defined in (5.5). We can prove the following lemma.

Lemma B.9. There exists a full (row) rank matrix, namely Ljδ, having dimensions
qj × qδj−1, such that

EjY T̃ jδU jδ = [Ljδ 0 ] .

Proof. Using (7.21) and property (5.4) we have

EjY
( d
dZ

⊗ Z[j]

)
=
d

dZ
⊗ EjYZ[j] =

d

dZ
⊗ Y[j]

=
[ ∂
∂Y

∂

∂X

]
⊗ Y[j] =

[ ∂
∂Y

⊗ Y[j] 0
]
.

(B.16)

On the other hand, by (7.1), (5.3), and using formula (5.5),

EjY
( d
dZ

⊗ Z[j]

)
= EjY

( d
dZ

⊗ T̃ jδZ [j]
)
= EjY T̃ jδU jδ

(
Iδ ⊗ Z [j−1]

)
= EjY T̃ jδU jδ

[
Iq ⊗ Z [j−1] 0

0 Iδ−q ⊗ Z [j−1]

]
.

(B.17)

Using (B.16), (B.17), and defining Ljδ as the matrix composed by the first qδj−1

columns of EjY T̃ jδU jδ , it results that

[ ∂
∂Y ⊗ Y[j] 0 ] = [Ljδ S ]

[
Iq ⊗ Z [j−1] 0

0 Iδ−q ⊗ Z [j−1]

]
,

from which it follows that S = 0 and

d

dY
⊗ Y[j] = L

j
δ

(
Iq ⊗ Z [j−1]

)
.(B.18)
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Let V = (d/dY )⊗ Y[j]. Note that the components of the matrix V are either zero or
they are monomials of j− 1st degree. It results that V has linearly independent rows
(in the sense of linear independence of monomial functions). As a matter of fact, any
row is different from zero, and there cannot exist two (nonzero) similar monomials
on the same column, because Y[j] has not repeated entries. Hence Ljδ necessarily has

linearly independent rows. Indeed, suppose there exists u �= 0 such that uTLjδ = 0;
then we would have uTV = 0 ∀ Y ∈ Rq, which is a contradiction.

Lemma B.10. Let s ∈ {1, . . . , qδj−1} and denote with λi, i = 1, . . . , qδj−1, the
ith column of the matrix Ljδ. The following properties hold:

(A) ∀ i ∈ {1, . . . , qδj−1}, λi has zero entries, but possibly one, nonnegative;
(B) the set {λi/ i ∈ ρ′(s; δ, j)}, with ρ′(s; δ, j) given by (B.2), is a set of linearly

dependent vectors;
(C) if the sth component of Z [j] is not a Y -monomial, then λs = 0.
Proof. Let us define l and r as

l
∆
=

[ s

δj−1

]
, r

∆
= |s|δj−1 .(B.19)

Consider again the relation (B.18):

d

dY
⊗ Y[j] =

[ ∂
∂Y1
Y[j] . . . ∂

∂Yq
Y[j]

]
= Ljδ

(
Iq ⊗ Z [j−1]

)
.(B.20)

From (B.20) it results that

∂

∂Yl
Y[j] = L̃

(l)Z [j−1],(B.21)

where

L̃(l) ∆
= [λ(l−1)δj−1+1 λ(l−1)δj−1+2 . . . λlδj−1 ] .

Now, from (B.21) we see that each component of (∂/∂Yl)Y[j] either is equal to zero or

is equal (unless an integer positive coefficient) to some component of Z [j−1]. Let h be
the position of a nonzero entry of (∂/∂Yl)Y[j], and let r ∈ {1, . . . , δj−1} be a position

for which it appears (unless a coefficient, and possibly repeated) in Z [j−1]. Then it
results that the hth row of L̃ has, possibly, nonzero (hence positive) elements in the
set ρ(r; δ, j − 1). Indeed, this set of positions is determined by the position (r) of the
component to be extracted in Z [j−1], endowed with all its (δ, j − 1)-R positions.

Let i ∈ {1, . . . , lδj−1} such that λ(l−1)δj−1+i has a nonzero component, namely

the hth. Then
(
λ(l−1)δj−1+i

)
k
= 0 for k = 1, . . . , qj and k �= h. As a matter of fact,

if
(
λ(l−1)δj−1+i

)
k
�= 0, and k �= h, then some monomial, equal to the ith, would be

taken in Z [j−1], and hence we would have two equal components in (∂/∂Yl)Y[j], which
is impossible because Y[j] has no redundancies. This proves part (A) of the lemma.

From the above it follows that all the columns {λ(l−1)δj−1+i, i ∈ ρ(r; δ, j−1)} have
zero entries, but possibly one, placed in the same position h for any i ∈ ρ(r; δ, j − 1).
Hence, they constitute a set of linearly dependent vectors. Part (B) of the lemma
follows as soon as it is noticed that, using Lemma B.6 and taking into account (B.19),
it results that {λ(l−1)δj−1+i, i ∈ ρ(r; δ, j − 1)} = {λi, i ∈ ρ′(s; δ, j)}.

Finally, in order to prove part (C), note that, since l ≤ q (and hence, by recalling
the structure of Z, given by (7.2), it results that Zl = Yl), we have that the sth
component of Z [j] is of the form YlZ

h1
1 · · ·Zhδ

δ , where the powers h1, . . . , hδ are such
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that h1 + · · · + hδ = j − 1, and it is not a Y -monomial by the hypothesis. Hence
the monomial Zh1

1 · · ·Zhδ

δ is not a Y -monomial of Z [j−1], and then it cannot belong
to the left-hand side of (B.21). This in turn implies, again by (B.21), that the rth
column of L̃(l) (that is the sth column of Ljδ, because l, r are defined by (B.19)) must
be zero.

Before proving Theorem 8.1, we need to give the following definition.
Definition B.11. We define the (δ, j)-Kronecker space, namely K(δ, j), as the

following subspace of Rδ
j

:

K(δ, j) = span
({
z ∈ Rδ

j
/

∃x ∈ Rδ such that z = x[j]
})
.

Remark B.12. From Definition B.11 it follows that

K(δ, j) =
{
z ∈ Rδ

j
/
zr = zs if (r, s) is (δ, j)−R

}
.

Proof of Theorem 8.1. By exploiting the definition of D1
k given in (7.28), and the

definition of B̃k given by (7.17), we can rewrite the matrix R(t), defined in (8.1), as

R(t) =

p∑
k=1

EYBkΦZ(t)BTk ETY +

p∑
k=1

EY
(BkmZ

(t) + Vk
)(BkmZ

(t) + Vk
)TETY .(B.22)

We will prove the theorem by showing that the matrix EYBkΦZBTk ETY is uniformly
nonsingular for some k = 1, . . . , p, or (which is the same because ΦZ(t) is uniformly
nonsingular over T ) that EYBk is a full (row) rank matrix for some k.

In order to verify this, first of all note that, from Assumption 3.1 and Remark
3.2, it results that there exists a k̄ such that rank(Dk̄) = q (we remind the reader that
q is the dimension of the original observation Y ). Indeed, we have

Dk̄ = [Iq 0].(B.23)

For such a k̄, let us show that

rank
(EYBk̄) = q + q2 + · · ·+ qν ;(B.24)

that is, it is a full (row) rank matrix (remember that qi is the dimension of Y[i]).
From the definition of Bk and EY , given in (7.14) and (7.20), respectively, using (7.10)
and taking into account the block triangular structure of Bk, it results that condition
(B.24) is equivalent to:

rank
(E1

YB̃k̄
)
= q,(B.25)

rank
(EjY T̃ jδU jδ (B̃k̄ ⊗ Iδj−1)T jδ

)
= qj ∀ j = 2, . . . , ν.(B.26)

Now, from (7.22) we see that E1
Y ∈ Rq×δ, E1

Y = [Iq 0]. Hence, by the definition of

B̃k given in (7.5) and taking into account (B.23), it results that E1
YB̃k̄ = [0 Iq 0], and

hence condition (B.25) is verified.
It remains to prove (B.26). In order to do this, first note that, from the definition

of B̃k given in (7.5) and taking into account (B.23), we can consider the following
partition of the matrix B̃k̄ ⊗ Iδj−1 :

B̃k̄ ⊗ Iδj−1 =

[
M1

M2

]
,(B.27)
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where M1 has dimensions qδj−1 × δj and has the following structure:

M1 = [ 0 Iqδj−1 0 ] ,(B.28)

where the first null-block has dimensions qδj−1×qδj−1. Using Lemma B.9 and (B.27),
we have

EjY T̃ jδU jδ (B̃k̄ ⊗ Iδj−1)T jδ = [Ljδ 0 ]

[
M1

M2

]
T jδ = LjδM1T

j
δ .(B.29)

Now note that the range of the expansion matrix T jδ is equal to the Kronecker space

K(δ, j) (we remind the reader that T jδ performs the operation Z [j] = T jδZ[j]). Then
by (B.29), we have that (B.26) is implied by the following condition: the operator

LjδM1 : Rδ
j → Rqj , restricted to K(δ, j) is surjective.

Let y ∈ Rqj , and we will prove that there exists a z ∈ K(δ, j) such that
y = LjδM1z. By Lemma B.9, rank(Ljδ) = qj ; then there exist qj indexes. 1 ≤
i1, i2, . . . , iqj ≤ qδj−1, such that the columns λi1 , λi2 , . . . , λiqj (λi denotes as usual the

ith column of Ljδ) are linearly independent. For every is, s = 1, . . . , qj , let us consider
the sets ρ′(is; δ, j) ⊂ ρ(is; δ, j) defined in (B.2). Let us define λ̄is as

λ̄is
∆
=

∑
i∈ρ′(is;δ,j)

λi.(B.30)

From Lemma B.10, parts (A) and (B), we have that the set {λ̄is , s = 1, . . . , qj} is a set
of linearly independent vectors, and hence there exist real numbers αi1 , αi2 , . . . , αiqj ,

such that

y = αi1 λ̄i1 + · · ·+ αiqj λ̄iqj .(B.31)

Now let us show that the elements of the set {is + qδj−1 s = 1, . . . , qj} are pair-
wise (δ, j)-NR. To this purpose, for any pair (ir, is), r �= s, r, s = 1, . . . , qj , we can
distinguish the following two cases.

(i) [
ir
δj−1

]
=

[
is
δj−1

]
.

In this case, since λir and λis are linearly independent, it follows that (ir, is)
is (δ, j)-NR. Indeed, if (ir, is) were (δ, j)-R, then Lemma B.10, part (B) would
imply that λir and λis are linearly dependent vectors. Hence, since (ir, is) is
(δ, j)-NR, Lemma B.7 implies that (ir + qδ

j−1, is + qδ
j−1) is (δ, j)-NR.

(ii)

i′r
∆
=

[
ir
δj−1

]
�=

[
is
δj−1

]
∆
= i′s.(B.32)

In this case, if (ir, is) is (δ, j)-R then Lemma B.8 directly implies the same
conclusion of (i). Else, if (ir, is) is (δ, j)-NR, then we can show that (ir +
qδj−1, is + qδ

j−1) is again (δ, j)-NR. For, let h1, . . . , hδ, h
′
1, . . . , h

′
δ such that

h1 + · · ·+ hδ = h′1 + · · ·+ h′δ = j − 1 and(
Z [j]

)
ir

= Zi′rZ
h1
1 · · ·Zhδ

δ ,(
Z [j]

)
is
= Zi′sZ

h′
1

1 · · ·Zh′
δ

δ ,
(B.33)
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where i′r, i
′
s are given by (B.32). Since λir and λis are linearly independent

(hence nonzero), Lemma B.10, part (C) implies that both the monomials in
(B.33) are Y -monomials. If (ir + qδ

j−1, is + qδ
j−1) were (δ, j)-R, we should

have

Zi′r+qZ
h1
1 · · ·Zhδ

δ = Zi′s+qZ
h′
1

1 · · ·Zh′
δ

δ ,

which is possible if and only if

hi′r+q = h
′
i′r+q − 1, hi′s+q = h

′
i′s+q

+ 1,

hi = h
′
i ∀ i �= i′r + q, i′s + q.

(B.34)

Now i′r, i
′
s ≤ q, and then we have that Zi′r+q and Zi′s+q are not components

of the vector Y , hence condition (B.34) can be verified if and only if both the
monomials in (B.33) are not Y -monomials, which is a contradiction.

Since the elements of the set {is+ qδj−1, s = 1, . . . qj} are pairwise (δ, j)-NR, we
have that

ρ(is + qδ
j−1; δ, j) ∩ ρ(ir + qδj−1; δ, j) = ∅ ∀ r, s = 1, . . . , qj , r �= s.(B.35)

From (B.35) it results that the following vector z ∈ Rδ
j−1

is well defined:

zl =

{
αis if l ∈ ρ(is + qδj−1; δ, j),
0 otherwise.

(B.36)

Noting that, by construction, z ∈ K(δ, j), the theorem is proven as soon as it is shown
that y = LjδM1z with y given by (B.31).

Let z′ =M1z. By the structure of the matrix M1 (B.28), it follows that

z′l =
{
αis if l ∈ ρ(is + qδj−1; δ, j)− qδj−1,
0 otherwise,

(B.37)

where the definition of translated set, given by (B.8), has been used. Observing (B.37),
(B.31), and the definition of the λ̄iss (B.30), we see that the equality y = Ljδz

′, and
hence the theorem is implied by the condition∑

i∈ρ′(is;δ,j)
λi =

∑
i∈ρ(is+qδj−1;δ,j)−qδj−1

λi ∀ s = 1, . . . , qj .(B.38)

Now, from Lemma B.7 we have ρ′(is; δ, j) = ρ′(is + qδj−1; δ, j)− qδj−1; moreover, by
(B.3)

ρ(is + qδ
j−1; δ, j) = ρ′(is + qδj−1; δ, j) ∪ ρ′′(is + qδj−1; δ, j),

and hence (B.38) becomes ∑
i∈ρ′′(is+qδj−1;δ,j)−qδj−1

λi = 0 ∀ s = 1, . . . , qj ,

which is implied by

λi = 0 ∀ i ∈ ρ′′(is + qδj−1; δ, j)− qδj−1.(B.39)
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In order to prove (B.39), first note that by Lemma B.8, for any i ∈ ρ′′(is+qδj−1; δ, j)−
qδj−1, we must have that (i, is) is (δ, j)-NR and such that (i + qδj−1, is + qδ

j−1) is
(δ, j)-R. Now, let h1, . . . , hδ, h

′
1, . . . , h

′
δ such that h1 + · · ·+hδ = h′1 + · · ·+h′δ = j− 1

and (
Z [j]

)
i
= Zi′Z

h1
1 · · ·Zhδ

δ ,(
Z [j]

)
is
= Zi′sZ

h′
1

1 · · ·Zh′
δ

δ ,
(B.40)

with i′ = [i/δj−1], i′s = [is/δ
j−1]. Since (i + qδj−1, is + qδ

j−1) is (δ, j)-R, it results
that

Zi′+qZ
h1
1 · · ·Zhδ

δ = Zi′s+qZ
h′
1

1 · · ·Zh′
δ

δ ,

which in turn implies the following condition:

hi′+q = h
′
i′+q − 1, hi′s+q = h

′
i′s+q

+ 1,

hi = h
′
i ∀ i �= i′ + q, i′s + q.

(B.41)

Since i′, i′s ≤ q, Zi′+q and Zi′s+q are not components of the vector Y . Hence, condition
(B.41) implies that both the monomials in (B.40) are not Y -monomials. In partic-
ular, since

(
Z [j]

)
i
is not a Y -monomial, Lemma B.10, part (C) gives λi = 0, that

is (B.39).
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