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Linear Filtering for Bilinear Stochastic Differential by minimizing the trace of the error covariance matrix. This technique
Systems With Unknown Inputs has been recently parameterized [10] [18] to extend previous results.
Many contributes treat the loss of information by modeling the
Alfredo Germani, Costanzo Manes, and Pasquale Palumbo unknown-input system as a descriptor system and then applying a
previously developed filtering algorithm for this class of systems
(see [6]-[8], [11], [17], and [27]). Other contributions (see [5], [12],
_ Abstract—This note inyestiga_tes the_ problem of_state estimation for b| [13], and [24]) take inspiration from an algorithm, also used for the
linear stochastic multivariable differential systems in presence of an addi- construction of unknown-input observers, which is able to remove

tional disturbance, whose statistics are completely unknown. A linear filter he infl f the di b b | f th
is proposed, based on a suitable decomposition of the state of the bilinear tN€ INfluénce of the disturbance by a clever use of the measurement

system into two components. The first one is a computable function of the process. In [15], Hsieh proposes a robust two-stage Kalman filter
observations while the second component is estimated via a suitable linear [14], optimal with respect to the minimum variance, which is shown
filtering algorithm. No a priori information on the disturbance is required g pe equivalent to the one of Kitanidis [19].

for the filter implementation. The proposed filter is robust with respect to . - -
the unknown input, in that the covariance of the estimation error is not af- Unfortunately, neither the descriptor system nor the decoupling

fected by such input. Numerical simulations show the effectiveness of the @PProach can be directly applied to the continuous-time case, in that
proposed filter. they would require the knowledge of the noisy output derivatives.

An hypothesis that in the stochastic framework can not be assumed.
On the contrary in the deterministic linear continuous-time case, a
wide literature is available that treats all the cases of interest (e.g.,
[9] and the references therein).

|. INTRODUCTION This work investigates the problem of defining a robust linear filter

In many fields of applications, the mathematical model describi g stoghastlc blllnea_r dlfferentlgl systems forceq by comp_letely un-
wn inputs. In particular, a suitable class of estimators is introduced

the dynamic relationships among the state variables, the inputs and D8 the minimum variance filter in this class is computed

measurements is given by the following nonlinear stochastic differe- . 'Mp )

tial system, described by the Ito equations: The sections are structured as follows. In Section Il, the class of the
' system to be filtered is defined. In Section Ill, the filtering algorithm is

proposed. Some simulation results given in Section IV show the effec-
tiveness of the proposed algorithm.

Index Terms—Bilinear systems, linear filtering, state estimation,
unknown-input systems.

da(t) = A(t)x(t) dt + B(t) du(t) + Bi(z(t), dW (1))

t>to
dy(t) = C(t)a(t) dt + D(t) du(t) + Bz(a(t), dW(t)) Il. BILINEAR SYSTEMSWITH UNKNOWN INPUTS
z(to) = o @ Let(Q, F, P) be a probability space ar(d;, t > to } be a family

of nondecreasing sub-algebras ofF. As is well known, a bilinear

wherez(t) € R" is the stateu(t) € R:’_is the unknown input, gqchastic differential system in the Ito formulation is described by the
y(t) € R? isthe measured outpdd/ (¢) € R’ is a Wiener process with

. : . equations
respect to some increasing familyoflgebras, namelfF,, ¢t > ¢},
referred to a probability spa¢€, F, P); A(t), B(t), C(t), D(t)are b
matrices of suitable dimensions alid. 5. are bilinear forms (see [1],  dux(t) = A(t)x(t) dt + B(t) du(t) + Z(Nk(t);r(t) + Fu(t)
[3], [4], [20]-[23], and [26] for more details on discrete and contin- k=1
uous-time bilinear systems and filtering problems related to them). AW (1)

The unknown input:(¢) in system (1) may model the presence of
an additive noise with na priori statistical informations (deterministic .
disturbance). The unknown-input can be used also to describe uncer-, . )
tainties in the system equations, for instance derived from Iinearizationdy(f) =C®)(t)dt + D) du(?) + ;(Mk B)(®) + G (1))
errors, or it can be used to modallure systemsAmong applications, . -

. g . ; - dWi(t) (2)
unknown-inputs systems are of great interest in the geophysical and
environmental framework, as shown in [19].

This note investigates the problem of estimating the state of a i

;l'(f()) =20

n}/(\_/}i_th z(t) € R" the state of the systema,(¢) € R” an additive un-

varying bilinear stochastic differential system, affected by additive di§NOWn input,y(t) € R? the measured output, a random variable
turbances that involve both the state and measurement equatioas. MGth mean valueno = m.(fo) = E[xo], and covariance matrit, =
priori knowledge is assumed on the disturbances. V. (to) = Cov(zg), Wi (¢) the kth component qf a standard Wiener
A great deal of literature is available in the field of filtering aProcess(W (). ), W(t) € R’, and the matricesi(t), Ni(t) €
discrete-time stochastic linear system with unknown inputs: a fil ", B(t) € R™*?, C(t), Mi(t) € R**", D(t) € R¥*?, Fi(t) €
recursive algorithm, consisting of an optimization technique can B& ™', Gx(t) € R**'. Moreover, it will be assumed thab(t) is

found in [19], where Kitanidis developed an unbiased Kalman filtdtill-column rank,¥¢ > to.
For the sequel, let the matric&%(t), 7> (¢) defined as
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With respect to the output(¢), the bilinear stochastic system (2) carwhere

be represented in the robust form (independent of the unknown input)

given by the following lemma. dea(t) = A(t)za(t) dt + B(t) dy(t)
Lemma 1: The bilinear stochastic differential system described by 24(to) = E[x0]

(2) can be rewritten as

b

dos(t) = A()ws(t) dt + > (Ni(t)(@a(t) + 2o () + Fi(t))

da(t) = A(t)x(t) dt + B(t) dy(t) + D _(Ne(t)2(t) + Fa(t)) - AWy (t) (10)
k=1
. f”’Vk(‘/Z) Ts ('l’o) =Ty — E[Io]
b
(to) = o dza(t) = C()aa(t) dt + > (M) (wa(t) + () + Gi(t))
b k=1
d=(t) =C(t)a(t)dt + > (My(t)a(t) + Gi(t)) dWi(t) 5) - dWi(t). (11)
k=1
) Proof: The proof is readily obtained by direct computations
with Remark 4: Proposition 3 shows the decomposition of the system
/ , o statex(t) in two terms:z,(t) is the totally observed component and
Alt) = A(t) - BT (1)C(t) € R xs(t) is the partially observed zero-mean component endowed with
B(t)=B(t)Ti(t) € R"** the new measurement processt) from timet, up to timet. o
Nu(t) = Np(t) — B(t)Th (H) My, (t) € R™*" Remark 5: It must be stressed that the evolution of (10) completely
_ _ nx 1 determined by the measurements does not depend @h whereas,
F’i(t) = Fe(®) B(f)T(lq(j;i’“n(t) €R on the contrary, (11), forced also by the evolution of the totally known
Ct) =Tx(t)C(t) ER x4(t), admits the representation
Mi(t) =To(t) My (t) € RI—Px" ,
Gi(t) = To (1) Gi(t) € RO DXL, 6)  deu(t) =AWty dt+ > (Ne(®haslt) + Filt) ) dWi(t)
k=1
Proof: Note first that, by definition, the matricds (¢) andZ>(¢) zs(to) =xo — E[zo]
are such thails (1)D(t) = I, andTa>(t)D(t) = Oy—pyxp. From b :
these, it follows: dza(t) = COaa(t)dt+ > (A/lk(t);vs(t) + G (t)) AW, (t)
k=1
12)
Ty (t) dy(t) =Ty (H)C(#)a(t) dt + du(t) + Ty () Y
k=1 where
(M (H)a(t) + Gi(t)) dWi(t 7 .
(M ()a(t) + Gr (1)) dWi(t) (7) Folt) = Fult) + Ne(t)ra(t) € R
dz(t) =Tu(t) dy(t) . (a—p)x1
b Qk(f) = gk(f) + J\/lk(t),’ﬂd('/?) eR . (13)
=To(t)C(H)a(t)dt + To(t) > .
k=1 The aforementioned remarks suggest the following.
(Me(t)a(t) + Gr(t)) dWi(t). (8)

Definition 6: A state estimator for the class of bilinear stochastic
ifferential systems with unknown inputs is said to be input insensitive

This last equation gives back the new measure equation, Wﬁaﬁs structure does not depend explicitly on the unknown input.e

eliminating du(t) from the state equation of (2) by (7), the thesis Throughout this notez’(#) will denote the process (#) evaluated

immediately follows. on the measured output patt). Moreover, the superscriptwill in-

. Rem.ark 2: The structulre (5) for thg.bilinear. systemlwith unknowqjicate all the processes that include a dependence @hwhen com-
inputs is obtained by suitably exploiting the information brought b uted on the detected patfi(#). For instance, the processesand-,

the output on the unknown inputs. The "new” measurement procegineq by (12) with substitution of, with 2 will be denotedr? and
z(t) is, in some sense, what remains after all information available on respectively
s :

the unknown input has been exploited, gnd_constitutes the “rema_linin”(j"According to its definition (10), the best estimateaf(t), given
part of the output that can be used for filtering. Moreover, as a kind e observations, is indeed () itself. Therefore, taking into account

confirmation, it is worth noting that the new measure equation vanis 82 decomposition (9), a possible estimator:(f) can be obtained by
if ¢ = p, so it follows that the filtering approach presented in this wor dding toza(t) an esti,mate of its naf,” -measurable part;. (+). A

requiresy > p. way to define such estimate is through the best linear estimate of the
process:; (t) given the observation] . This approach is summarized
[ll. THE LINEAR FILTERING ALGORITHM in the following definition.
In this section, the new measurement vecton defined in (4) s Definition 7: The classP of estimators is defined as the set of all
used to develop a state estimator for system (5). In order to propeffput-insensitive state estimataist) such that
take into account the presence of the original outguj as a forcing

: _ : - (t) = wa(t) + 25(t) (14)
term in the state equation (5), a suitable decomposition of the system
is required, as given by the following proposition. where &3 (¢t) is any estimate of the process (¢) among all the
Proposition 3: The system (5) can be written in the splitform  7/* -measurable functions. &R-estimator is any state estimator in
the classP. .
x(t) = xa(t) + xs() As is well known, the optimal choice fof’(¢) is given by

dz(t) =dzs(t) + C(t)xa(t) dt 9) E[mg(t)|]:tZ;], whose computation in general can not be obtained
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through algorithms of finite-dimension. Nevertheless, from an aprovided thatR* (¢) is positive—definitev ¢ > to.

plicative point of view, it is useful to look for finite-dimensional Proof: The proof is just a straightforward extension to the time
approximations of the optimal filter, that is estimates described warying case of the proof of [4, Th. 4.4]. [ ]
stochastic differential equations of the form Remark 10: Note that a sufficient condition for the positive defi-

niteness of matrix®* (¢) defined in (19) is the nonsingularity of
d(t) = F(E(1)) dt + g(&(t)) d={ (t)

F(t) =h(£(t)) (15) Zg; (t)Gr" (1) (22)

where{{(t), t > to} is a process taking its values on a finite-dimen-
sional space. The finite-dimensional system (15) is an optimal linear i
filter for the random process; (t) if Now, the optimalP-linear state estimator for system (2) can be pre-
sented.
E2(t) = Uk ()|Li(2)] (16) Theorem 11: Under the same hypotheses of Theorem 9, according
' to (17), the optimalP-linear estimate of the bilinear stochastic differ-

wherelI[|L,(z)] denotes the projection onto the spdcé ) lin- ential system (2) is given by the following algorithm:
early spanned by the family of random variables(r), to < 7 < t}.

It follows that the state estimator da(t) = A(t)x(t) dt + B(t) dy(t)
ra(t) + W (D]L(20)] (17) <Z FLOGE (0 + P (¢ <t>>
is a> estimator, and in the following it will be denoted as tgimal TRI)(dy” (1) — C(OF(E) dt)
P-linear estimatorfor (2). #(to) = E[xo] (23)
Remark 8: It can be readily proved that the optini@tinear esti- P*(t) =A(t)P*(t) + p*(t)AT(t) + R (t)
mator (17) is unbiased. Actually, af~estimator of the type (14) with b
#(t) € Li(=]) is unbiased. . <Z (DG (1) + P*(f)CT(t)>
The computation ofl[«%(¢)|L:(z7)] for the bilinear system (12) k=1
forced byz; can be done following the approach in [4]. b r
Theorem 9: Let ¥, (t) = Cov(x}(t)) be the covariance matrix of SRA() <Z (G (t) + P (H)C (t))
2% (t), whose evolution is given by the following equations: =1
P*(to) = Tq. (24)
W, (t) = (t)\If S(t) + T (AT (1)
. . where
+ Z (,/\/}C(t)\l’,r;(f),r’\",f () + f,j(f)f,:’T(t)) )
, k=1 Gr(t) =G (t) + My (H)x (1)
Prpto) = Wo 18 R (1) =TE (R ()T (25)

where Fi(t) = Fi(t) + Ni(Haji(t) and Gi(t) = Gu(t) +

M (t)x;(t). Moreover, letR*(t) be the square matrix defined asandR () is given by (19), defined in Theorem 9.

Proof: Taking into account the decomposition (9) in Proposition

follows: 3 and (17) of the optimaP-linear estimate, (23) fafz(¢) is obtained
b by addingdx4(t) from (10) andii () from (20). [ ]
R*(t) = Z (,J\/lk.(t)\l/z;(t),/\/l{(f) + Q;(t)g;T(t)) .19 Remark 12: Note that if B = O,.x, andD = O,x, in system
k=1 (2), the problem reduces to the filtering of a stochastic bilinear system

_ ) _ , o without unknown inputs. The linear and polynomial optimal solutions
Then, the optimal linear estimate of the staf¢?) of (12), is given by  of the filtering problem for this class of systems are reported in [4]. On
the other hand, wheiV;, M;., Fi., G are zero matrices the system

o ok b e T T reduces to a deterministic linear one. Some solutions of the state-ob-
A, () = AT (1) dt + Z FEMGi™ () + PHHC (1) servation problem for this class of systems can be found in [9] and the
L e references therein. o
(1) (dz (t) = C(H)FL (1) dt) Remark 13: The estimator presented in Theorem 11 can be regarded
Fi(tg) =0 (20) as the optimal linear filter whem, is not a random variable, but is

the output of (10) driven by the “detected patj(t). Therefore, the
where P*(t) = Cov(z}(t) — 25(t)) is the error covariance matrix, presented filter in some sense is designed considering the detected path

given by the following equations: y(t) as a deterministic input to (2), once that is rewritten in the split
form (9). In this framework the filter in some sense is designed for the
P*(t) =A)P*(t)+ P* (tjAT(t) + R*(t) “open-loop” system and then it is used in “closed-loop,” becauise
is in fact the output of system (9). Note that the optimal filter for an
(Z Fr)Git (1) + P ()¢ (t)) open-loop system, when used for state estimation of the closed-loop
system, gives back the optimal filter for the closed-loop system, and

Z suggests the conjecture that the proposed algorithm is indeed efficient
= in the class ofP-linear estimators. The formal proof of this assertion
P (tg) =T, (21) would require the extension of the results given in [2] to suboptimal

b L therefore is efficient. This result, recently presented in [2], strongly
)" ( )Gi (#) + P (t)C ))
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Fig. 1. The unknown input.
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Fig. 3. The true and estimated states: second component.

filtering. This is indeed not an easy task, and is the object of a curren

research work. .

4 T T T T T T T T T

— the real state
- the filtered state —

Fig. 4. The true and estimated states: third component.

IV. NUMERICAL SIMULATIONS

This section presents simulation results on a bilinear system whose
state and measurement equations are forced by a standard Wiener
process. A scalar unknown input is also considered on the system. The
matrices in (2), in which = b = 1,n = 3, ¢ = 2, are the following:

-4 01 0 1
A= 0 -3 -1| B=| 05
04 0 =5 -15
[1 05 =2 1
¢= 1 1 —0.2} b= {0} ")
-1 0 0.1 -1
N=| 0 -2 0 F=1] 12
| 0 04 05 -2
[0 —05 -1 1
M = 0 -2 0} G_{M}. (28)

The simulation results here reported are obtained with the unknown
input plotted in Fig. 1. Figs. 2—4 present the comparison between the
real and the estimated state for each state component. The good be-
havior of the optimafP-linear filter can be appreciated.
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