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Input—output linearization with delay cancellation for nonlinear
delay systems: the problem of the internal stability

A. Germani™', C. Manes and P. Pepe
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SUMMARY

This paper investigates the issue of the internal stability of nonlinear delay systems controlled with a
feedback law that performs exact input—output, linearization and delay cancellation. In previous works the
authors showed that, unlike with the case of systems without state delays, when the relative degree is equal
to the number of state variables and the output is forced to be identically zero, delay systems still possess a
non-trivial internal state dynamics. Not only, in the same conditions delay systems are also characterized
by a non-trivial input dynamics. Obviously, both internal state and input dynamics should give bounded
trajectories, otherwise the exact input—output linearization and delay cancellation technique cannot be
applied. This paper studies the relationships between the internal state and input dynamics of a controlled
nonlinear delay system. An interesting result is that a suitable stability assumption on the internal state
dynamics ensures that, when the output is asymptotically driven to zero, both the state and control
variables asymptotically decay to zero. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: nonlinear systems; delay systems; output regulation; infinite dimensional systems; delay
cancellation

1. INTRODUCTION

Some control problems for nonlinear systems can be solved through a preliminary
compensation of nonlinearities, so that virtually all control techniques developed for linear
systems can be applied to the linearized system (see e.g. [1]). In the same way, when dealing with
delay systems, a feasible approach to control problems is the preliminary compensation of all
delays, followed by the application of control techniques developed for systems without delays.
Nonlinear systems with state and input delays can be the object of various kinds of
compensation of nonlinearities and delays: the linearization can be exact or approximated, the
delay can be partially compensated through prediction or, in some cases, can be exactly
cancelled. The approach of preliminary delay compensation through prediction is pursued in
[2-4]. After delay compensation, classical tools of differential geometry can be applied for the
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analysis of nonlinear systems and for control synthesis. A different approach is followed in
References [5-10], where preliminary delay compensation is avoided and suitable extensions of
differential geometry have been developed for dealing with delay systems. The papers [7, 8] were
concerned mainly with the problem of disturbance decoupling, while papers [5,6,9,10] developed
the extension to delay systems of the classical technique of input—output (I/O) lincarization
[1,16]. In these works exact I/O linearization was obtained together with exact delay cancellation
by means of a state feedback. After exact I/O linearization and delay cancellation the problem
of driving the output exponentially to zero becomes an easy task. However, output stabilization
is not sufficient to achieve state stabilization, because the control law that achieves an identically
zero output may create an unobservable dynamics, called zero-dynamics. As in the case of
systems without delays, the stability of the zero-dynamics is a necessary condition for the
practical use of the control law that linearizes the I/O map and removes the delay. It is well
known that systems without state delay do have non-trivial zero-dynamics if and only if the
relative degree is smaller than the number of state variables. This situation is investigated in
Reference [10] for the case of delay systems, and it is shown that, under suitable assumptions,
the local asymptotic stability of the zero-dynamics implies the local asymptotic stability of the
origin of the controlled delay systems. In Reference [6] it has been shown that, different from
the case of systems without state delays, nonlinear delay systems with relative degree equal to
the number of state variables (full relative degree) may have, in general, a non-trivial zero-
dynamics. For such systems a sufficient stability criterion of the state zero-dynamics is discussed
in Reference [6]. The existence of the state internal dynamics in the case of full relative degree is
due to intrinsic infinite dimensionality of delay systems. A necessary and sufficient condition
which characterizes delay systems that do not admit state internal dynamics is reported in
Reference [11].

This paper points out that in addition to the internal state dynamics, the output stabilizing
control law through I/O linearization and delay cancellation induces also an internal dynamics
of the control variable (input dynamics). This means that the true zero-dynamics for nonlinear
delay systems is composed of both the internal state and input dynamics, and both the state and
input trajectories must be uniformly bounded, otherwise the technique of exact input—output
linearization with delay cancellation cannot be applied. The remarkable result obtained in this
work is that the stability of the input dynamics is not an additional assumption, but is implied
by a suitable stability property of the internal state dynamics. Such property will be proved with
reference to the class of nonlinear systems with delay only in the state. Similar results are proved
in [12] with reference to the class of linear systems with delays both in the state and in the input;
in this case an additional stability condition is also needed.

2. PROBLEM STATEMENT AND PRELIMINARIES

This paper considers delay systems described by the following equations:
x(0) = f(x(0),x(t = A)) + g(x(0), x(t — A)u(®), =0 (D

W) = h(x(2)) )

where A >0, x(r) € R", u(f) € R and y(¢) € R, the vector functions f and g are C*™ with respect to
both arguments, and 4 is a C™ scalar function. The model description is completed by the
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INTERNAL STABILITY 911

knowledge of the function x(t), T € [-A, 0], in a suitable function space, which represents the
initial state in the classical infinite dimensional description of delay systems. It is assumed that
system (1) and (2) is such that

f(0,0) =0, ¢(0,0)#0, h(0)=0 (€)

These positions imply that the state x(r) =0, 7 €[—A,0], is an equilibrium point. In the
following, some notations are introduced in order to simplify the writing of mathematical
expressions. Throughout the paper the symbol 0,,; denotes the zero matrix in R**?, while 7,
denotes the identity matrix in R**“. The symbols 4% . B> . C% . will denote the
block- Brunowsky triplet defined by

_quq [q O‘IXIJ_
Oqu
Oqu Oqu e Oqu
Oqu
B __ . . . pPgxpq B __ praxq
‘4Pﬂ - : : e : eR > lgpﬂ o . eR
Oqu Oqu e lq I
q
_Oqu Oqu e Oqu_
Cou=1ly Opeg -+ OgugleRTPY 4)

The symbol % ;, with i, j integer numbers, will denote a vector in RUHDn - composed of
subvectors y;, € R" as follows:

Li Li
Lit1 Ai-1

lflgj %i,j: ; 1f_]<l 3{,‘,/‘: (5)
Xxj Xxj

In the same way, the symbol ¥7; ;, will denote a vector in Ry composed of scalar v, as
follows:

ifigj: V= e if j<i: ;= _ (6)

vj vj

As in the case of nonlinear systems without delay, an important concept for the development of
an [/O linearizing feedback control law is the concept of relative degree, the integer that
indicates how many time derivatives of the output should be made in order to have a direct
relationship with the input. The concept of relative degree for nonlinear delay systems was
introduced independently in [5,7,10,13], with little differences. Indeed, many extensions of this
concept can be made for nonlinear delay systems. Based on References [5,7,10,13], three possible
definitions of relative degree are reported here.
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912 A. GERMANI, C. MANES AND P. PEPE

Definition 2.1 (Type-I relative degree)
The nonlinear delay system (1), (2) is said to have type-I relative degree » in an open set
Q, e R if, defining

[ oo x) ]
S 12) o
F#or) = : . G(&,) = [dlagt‘o ;g(xi, xiﬂ)}]
S Glrm1s 20) "
On><l
H(Z0,) = h(y) o

the following conditions are satisfied V%, € Q,
LeLEH(Z0,) =0, k=0,1,...,r—2
LoLy "H(Zo,) #0 ®)
where
LyH(Zo,) = H(Zo,)

LpH(Z o) = (M0 L’;“H)F(%o,), k<r
o
LLEH(Zo,7) = <ML§H> GZo,), k<r—1 )

If Q, = R""D | the system is said to have uniform type-I relative degree r.

Remark 2.2

Note that the Lie derivative L’,ﬁ-H (Zo,) is well defined only for £ <r and is a function of %y, a
sub-vector of Z,. Similarly, the term LgLLH(Z,) is well defined only for k<r —1 and is a
function of % +1.

Definition 2.3 (Type-11 relative degree)

The nonlinear delay system (1), (2) is said to have type-II relative degree » in an open set
Q, e R"HD f, defining the vector functions F(Z,), G(Zo,), H(Zo,) as in (7), the following
conditions are verified Y%, € Q,

LoLEH(Z0,) =0, k=0,1,...,r =2

P0(Z0,) #0 (10)
where
0 r—1 r—1 1
Yo(Zo,) = ng H(Zo,) )90, 21) = LoLy  H(Zo,) (11)
(o (r—1)x1

If Q, = RV the system is said to have uniform type-II relative degree r.
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Definition 2.4 (type-III relative degree)

The nonlinear delay system (1), (2) is said to have type-III relative degree » in an open set
Q, e R"*V if, defining the vector functions F(Z 0r), G(Zo,), HZo,) as in (7), the following
conditions are satisfied V%, € Q,:

LGLEH(Z0,) =0, k=0,1,...,r =2 9,(Z0,)#0 (12)

9 Zoy)=0, i=1,...,r—1
where

o .
Vi@ = (a L;: lH(%O,r)> 9is Aiv1) (13)

1

If Q, = RV, the system is said to have uniform type-III relative degree r-

Remark 2.5

The computation of the (types I-III) relative degree of a nonlinear delay system is made by
constructing the vector functions F(%,), G(Z,), H(Z,) defined in (7), for increasing values of
the integer r, starting from » = 1, and checking for each r if condition (8) is satisfied. If an r is
found such that (8) holds, then the system has type-I relative degree r. If, moreover, condition
(10) holds, then the system has type-II relative degree . If, in addition, condition (12) is satisfied,
then the system has type-III relative degree r.

In order to study the role of the three types of relative degrees in the input—output
relationship, it is useful to define a stack operator as follows. For a given function ¢(z) € R™, the
symbol ¢;a(¢), with i a non-negative integer, will denote its translation by —iA, i.e. g;a(¢) = g X
(t — iA). x(¢) being defined for 1> — A, the delayed function x;x(¢) is defined for 1= (i — 1)A, while
u;a(2) is defined for 1>=iA, u(t) being defined for =0.

Definition 2.6

Consider a function ¢(r) € R", defined for ¢ € [#;, ] = R. The symbol Stack; ;(g), with i, j such
that 0<|j — i{|<(&, — t1)/A, denotes a vector function, defined for ¢ € [t} + jA, t, + iA], if i<,
and for t € [t; + iA, &, + jA] if j > i, defined as follows:

qia(?) qin(?)
qa+na®) qa-na(?)
if i<j: Stack; ;(g)(1) = . ; if j<i: Stack; j(q)(t) = ' . (14)
q;a(?) q;a(1)
Using the stack operator, the following vector functions can be defined:
X; (1) = Stack; ;(x)(¢), U, ;(t) = Stack; j(u)(r) (15)

that collect the values of the system variable x and of the input « at different time instants.
Lemma 2.7
Assume that system (1), (2) has relative degree equal to r (of type-I, type-II or type-III) in an

open set Q, < R**D_ Then for r>(r — 1)A the time derivatives of the output until order » can

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:909-937



914 A. GERMANI, C. MANES AND P. PEPE

be written in Q, as

YO0 = LiHXou(0), k=0,1,...,r—1 (16)

YO0) = L H(Xo 0) + LoLi H(Xo, (0) Up,—1(0)
= Ly H(Xo, (1)) + 70(Xo, (0)u(t) + T(Xo, (0)U1,1(0)

r—1
= Lp(Xo(0) + Y 7,(Xo(0)uia®) (17)
i=0

where 7;(%0,) has been defined in (13), and
O1x(—1

[(%o,) = LoLy "H(Zo,) [
L1

] = [71 (%‘0,1‘) T Vrfl(%‘o,r)] (1 8)

Proof
The proof is readily obtained by direct calculations, taking into account the definitions of
relative degree.

As said before, the concept of relative degree for nonlinear delay systems was introduced
independently in References [5,7,10,13]. In particular, the definition given in Reference [7]
corresponds to type-I relative degree, while the one given in Reference [5] corresponds to type-I1
relative degree and the one in References [10,13] is of a type-III relative degree. A system with
type-I relative degree r is such that the output derivative of order r at time ¢ is an affine function
of the inputs at time ¢ — iA, for some of integers i € [0, — 1]. A system with type-II relative
degree r is such that the rth output derivative at time 7 is an affine function of the input at time ¢
and possibly of the inputs at times ¢ — iA, for some of the integers i € [1,7 — 1]. A system with
type-III relative degree » has the rth output derivative at time ¢ that is an affine function of the
input at time ¢ and is not function of the input at times ¢ — iA, for all integers i € [1,r — 1]. In
Reference [14] an observation delay relative degree was defined and that is a type-I relative
degree. For a nonlinear delay system the assumption to have a type-11I relative degree is rather
strong. In this paper, following the approach of [5], we will consider systems with type-II relative
degree.

It is well known that for nonlinear systems without delay when the relative degree is equal to
the dimension of the state space n, the existence of a state feedback that achieves exact
linearization of the input—output map implies the existence of the solution of the problem of
exact linearization of the system through a static state feedback and a nonlinear change of co-
ordinates (see Reference [1]). The new co-ordinates are the output derivatives up to order n — 1.
The stabilization of the system is obtained assigning the eigenvalues to the system in the linear
form. If the relative degree r is strictly less than n, only a subsystem of dimension » can be
linearized and stabilized through linearization and stabilization of the input-output map. r
eigenvalues can be assigned in this case. The linearizing feedback induces an unobservable
dynamics, the so-called zero-dynamics that is unaffected by the assigned eigenvalues. The
control via exact linearization can be pursued only if the zero-dynamics is stable. On the other
hand, systems with full relative degrees do not have zero-dynamics, and therefore the exact
linearization approach can be always pursued. Unfortunately, this is not the case for nonlinear
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delay systems. Also, when the relative degree is equal to the dimension n of the system variable x,
exact linearization of the input—output map does not imply exact linearization of the system.

The control law that linearizes the input—output map with delay-cancellation is described in
the following proposition, whose simple proof can be found in References [5, 6, 10].

Proposition 2.8

Assume that the nonlinear delay system (1), (2) has type-II relative degree n in an open set Q,,.
Moreover, assume that the initial state xo € C([—A, 0]; R") and the initial choice of the input u in
the time interval [0, (n — 1)A) are such to guarantee the existence and uniqueness of a continuous
solution x(#) on [0, (n — 1)A) and that Xy ,((n — 1)A) € Q,. Then, defining a new input function
v(?), the feedback control law

_ 0(0) = LpH(Xon(0) = T(Xo,n(0)U1n1(2)

u(t , t=(n— 1A 19
“ 70X (1) o b 4

is such that the input—output map becomes
W) =), 1=(n—1A (20)

provided that, with the chosen v(¢), Xy ,(¢) is unique continuous and remains in Q,.

The output derivatives up to order n— 1 can be written by defining the following map
o :R" - R™

L%H (xo0)

LEH(Z o))
z= . =O(Z0n-1) (21

Ly 'H(Z 1)

After substitution of Zox with Xox(?) in (21), that is giving to y; the value x(¢ — iA), the map @
gives a vector z(¢) that collects the output derivatives up to order n — 1:

(1)
(1) = : = O(Xou-1(2), t=(n— DA (22)
D)
After feedback (19) the input—output dynamics can be put in the form
2(t) = A 2(1) + Bl u(1)
(1) =Chz(1), 1=(n— 1A (23)

where (45 ,B%,,C5)) is a Brunowsky triplet, as defined in (4). Applying a linear feedback law of

n1>“nl>
the form

u(t) = — k'z(¢)
= — k' O(Xo,-1(2) (24)
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916 A. GERMANI, C. MANES AND P. PEPE

the output dynamics is governed by the autonomous linear system

(1) = (45, — BY k)z(0)

WO =CEi(), 12— DA (25)

If k assigns all the eigenvalues of matrix Af,1 — Bf,lkT in the open left-half complex plane (i.e. k is
Hurwitz) the output is exponentially stabilized, i.e. there exist positive p, f such that

2Ol <ye "DV — DA, 12— DA (26)

The feedback law that achieves exponential output stabilization, after linearization and delay
cancellation of the input—output map (as long as X ,(¢) € Q,), is obtained replacing the variable
v in (19) with expression (24), obtaining

—kz(t) — LpH(Xo,(1) — T(Xou(0)Urn-1(2)
70(Xoa(0)) ’

This equation describes the dynamics of the control variable u(¢) for 1= (n — 1)A in closed loop.
If type-11I relative degree is assumed, as in [9], it is P(Z0,,) #0 and I'(Z,,) = 0 and it is evident
that if z(¢) and x(¢) asymptotically go to zero, then u(¢) also goes to zero asymptotically. This is
the reason why in Reference [10] the issue of the boundedness of the control variable is not
addressed. If the less-restrictive assumption of type-II relative degree is made, Equation (27) is a
continuous-time algebraic delay equation, where the value of the control variable u at time ¢
depends on n — 1 previous values of the same variable and on old and present values of the state.
Equation (27) can be put in the form

u(t) = 1> — DA 27)

1 n—1
u(t) = ————k'z2(0) — po(Xon(0) — XonOu(t — jA), =0 — DA 28
(0 7o Clon) = (1) = po(Xo.(1)) ; Pi(Xoa()ult — jA) ( ) (28)
where p;: Q, - R, j=0,1,...,n— 1 are defined by
LyH(Z0.0)
Xop) =L
Po(ZLon) oo
y‘(%On)
(Xop) =L j=1,....n—1 (29)
PO = @y

Note that the vector of output derivatives behaves as an input for the input dynamics. For this
reason, throughout the paper, the dynamics described by Equation (28) will be also denoted as
the output-driven input dynamics.

In the following, it is shown that the internal dynamics of the system variable x(¢) is governed
by the map z = ®(%,,—) defined in (21). In Reference [14] this map is called observability map
of system (1) and (2), because suitable assumptions on this map allow the construction of an
observer for nonlinear time delay systems. The observability map can be seen as a square map
from y, to z, in which the sub-vector ' ,,_; € R""=D is considered as a vector of parameters. To
stress this point of view, in the following the map ® will be rewritten as follows:

z = ®(p, X'1n-1) (30)
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For systems with type-II and type-III relative degree in a set Q,, it is

det <6(D(XO: ‘2/‘1,}’!71)
0%

The proof can be found in Reference [10] (Lemma 1). This implies that the map @ is locally
invertible with respect to the first component y, (local partial invertibility).

From here on we suppose that the following assumption holds for the observability map @
(Global partial invertibility):

) 5&0 v3{0,7171 EQn (31)

(H1) System (1), (2) has uniform type-II relative degree equal to n (the dimension of the
system variable x) and there exists the inverse @' of function (30) w.r.t. the first
component y, for all ze R" and 2, € R*D e

2o=9"'@x1,1) VzeR", 2, R (32)

In paper [14] assumption H; is a necessary condition for the construction of an asymptotic
observer for a delay system.

The state dynamics of the system variable x(¢) for 1>(n — 1)A is governed by the following
continuous-time algebraic delay equation forced by the vector z(z) of output derivatives:

x(1) = O (2(0), X151 (1)) (33)

z(t) acts as an input in Equation (33), and therefore such dynamics will be denoted throughout
this paper as the output-driven state dynamics. The stability of this dynamics has been studied in
[6, 15], where sufficient conditions on the map ® that ensure convergence of x(¢) to zero when the
output together with its n — 1 derivatives, is driven to zero by the control law (27), are provided.
The output dynamics (25), the state dynamics (33) and the input dynamics (28) of the closed
loop system, form a triangular system of differential-algebraic equations, well defined for
t=(n—1A:

(1) = (An, — Bo k")z(1) (34a)
(1) = O (2(t), X1,0-1(0)) (34b)
T
u(t) = — % Ko@) — P Ko ) Ui (1) (34¢)
where
pT(%O,n) = [pnfl(%‘o,n) R 4| (3{0,71)] (35)

The output dynamics (34a) is autonomous and can be made stable by a suitable choice of the
gain vector k. Obviously, the stability of the state dynamics and of the input dynamics is a
necessary condition for the overall stability of the controlled delay system.

Now consider an (open-loop) input function u(¢), ¢ € [0, (n — 1)A], to bring z(¢) to zero at time
t=(m— 1A, and then apply the feedback law (27), that keeps z(f) =0 for t=(n— 1)A.
Equations (33) and (28) become, for t>=(n — 1)A,

x(t) = ®1(0,X1,-1(¢) (36a)
u(t) = — po(Xon(®) — p' Xon())Up—1,1(2) (36b)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:909-937



918 A. GERMANI, C. MANES AND P. PEPE

Equation (36) is a continuous-time algebraic delay equation that describes the system zero-
dynamics, i.e. the internal state and input dynamics when the output is identically zero. Note
that the dynamics of x(¢), given by (36a), is only a part of the zero-dynamics and is completely
characterized by the partial inverse map ®~', and in the following will be denoted the state zero-
dynamics. We will refer to Equation (36b) as the input zero-dynamics, and we will say that the
system zero-dynamics is composed of the state and input zero-dynamics. Here is a simple
example of delay system with full uniform Type-II relative degree with unstable zero-dynamics.

Example

Consider the following nonlinear delay systems:

X1(8) = x2(t) + ox2(t — A)
%) = (1 + x7(D))ul?)

w(t) =x1(2) (37)

where 0 € R is a parameter. Instead to test the conditions given in Definitions 1-4 for
r=1,2,..., the relative degree can be computed by repeatedly differentiated the output with
respect to time. The output and its first derivative are

y(@) = x1(1)
V(1) = x2(8) + ox2(t — A) (38)

Since they do not depend on the input u(¢), the relative degree must be greater than 1.
The second-order derivative is

J(t) = (1 + x7@O)u(®) + o(1 + x3(t — A)u(t — A) (39)

and depends on both u(¢) and u(¢ — A). Since the coefficient of u(¢) is never zero, the system has
uniform type-II relative degree » = 2. Equation (38) is the map ®(X(¢)) defined in (22) that
gives the output derivatives. The coefficient yy(%2) defined in (9) is (1 + X%,l)' The output
stabilizing control law (27) is

x1(2) 1
s (40)
X2(t) — 2x5(t — A) (I+x ([))
This control law, with k such that 45, — Bg kT is stable, is such to drive y(¢) and j(?)
exponentially to zero. Equations (36) of the zero-dynamics are the following:
x1(1) =0

u(t) = <—a(1 +x7(t — A)u(t — A) — kT[

x(f) = —ox3(t — A)

1+x3(t—A)
14+ x3(2)

Considering that x;(z) = 0, the third equation becomes u(f) = —ou(t — A). It follows that the
zero-dynamics for system (37) is stable for |o| <1 and unstable for |g| > 1. In the latter case, the
closed-loop system is unstable.

This example shows that it is not sufficient to have relative degree equal to the dimension of
the system vector x to stabilize a nonlinear delay system by means of exponential output

u(t) = —o ut —A) t=A (41)
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stabilization, after exact input—output linearization with delay cancellation. In general there
exists a zero-dynamics that may be unstable. In the case of systems with type-III relative degree
the input u(¢) is a continuous function of only X (), and is not a function of the past values
u(t — iA), so that the stability of the state zero-dynamics trivially implies the stability of the zero-
dynamics.

3. THE CASE OF LINEAR DELAY SYSTEMS

This section shows the application of the exact input-output linearization with delay
cancellation to the case of linear delay systems. Obviously, in the linear case the interest of
the approach is in the delay cancellation. Moreover, this section presents some results on the
stability of the zero-dynamics that will be needed later in the paper to prove more general results
for nonlinear systems.

Consider a linear delay system of the form

%(t) = Aox(t) + A1x(t — A) + But)

W(t) = Cx(1) (42)

with matrices 4o, 4, € R, B e R™!, C € R"". The computation of the Lie derivatives defined
in (9) gives
LH(Zo;) =Y ClAo, A1y, 43)
=0
where

(Ao, A"V = 0,5, if i<0 or j<O
(Ao, AN =1,

(Ao, ADIT = (Ao, 4D 1y + (Ao, 4114, (44)
From definition (3) it follows that
i<j= (Ao, 4"/ =0
(Ao, A = 4, (Ao, AN = 4] (45)
All definitions (Type-I, IT or III) of relative degree r require that
C(Ao, A/ 1B=0, i,j=0,1,....,r—2 (46)

In the case r = n, the output derivatives up to order n — 1 can be written as

YO0 =" Cldo. ) xjae), i=0,1,....n—1 (47)
j=0

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:909-937



920 A. GERMANI, C. MANES AND P. PEPE

while the nth order derivative is

n

n—1
YO0 =" Clo, AN a0 + 3 Cldo, A" hujp(0) + CAy Bu(o) (48)
i=1

Jj=0 J

In the case of linear systems having type-1I relative degree n it is CAf~'B#0, and the control law
(19) becomes

_v- S Cldo, A)™ lxjp — S0 Cdo, AV 1Bujs

! CAL "B “49)
Defining
Clo, 4" 1B
szw, j:l,,n—l (50)
C(do, 4™
qA:Ta ]:05"-3’1 (51)
! CA'B
the control law (49) is written as
U(t) n n—1
u) == ot > g = sun) (52)
Ay B I j=1

In the case of linear systems the relative degree (of any type) is always uniform, and the
transformation of the I/O map in a chain of » integrators, i.e. y")(f) = v(¢), is global.
The map @ defined in (21) is as follows:

n—1
z=) O (53)
=0
where the n X n matrix Qy is the observability matrix of the pair (4, C), i.e.
C
CAy
Qo = . (54)
cAr!
and the n x n matrices Q;, j = 1,2,...,n — 1, can be computed using (43), and are given by
10ty =0 fori=1,...,j

o (55)
{0}y = Cdo, AN M fori=j+1,....n

where {Q;};.) denotes the ith row of matrix Q;.
Exponential convergence of the output y(¢) to zero is obtained with the feedback law (52) with
v given by (24), so that the control law (28), defined for > (n — 1)A, becomes
kz(1)

f) = — — ¢ "X, o) —sTU, 1.1t 56
u(?) CAr1B q Xuo(t) — s 1,1(2) (56)
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where

" =g @1 - (57

ST = [S,,,] Sp—2 o S]] (58)

with ¢; and s; defined in (51) and (50), respectively. With this control law, the vector of output
derivatives z(¢) exponentially goes to zero, i.e. satisfies (26) for suitable positive y and . The
partial invertibility property of the map @ with respect to the y, (assumption H;) is equivalent to
the observability of the pair (4y, C). The inverse map @' defined in (32) is

n—1
w=0"2-> 0,0 (59)
Jj=1
and the state dynamics (33) is
n—1
xX(t) =052 = Y 0y Qpxlt — jA) (60)
Jj=1

For our purposes it is convenient to define a co-ordinate transformation w(z) = Qyx(¢), so that
the state dynamics can be rewritten as

n—1
w(t) = 2() = Y 0,0, 'w(t — jA) (61)
J=1

The continuous-time algebraic delay equations (56) and (61), that describe the input and state
dynamics can be written as discrete-time equations on suitable Banach spaces. Let 4 = L, x
([-A, 0], R) and define

iik) e B, ik)(t) =ulkA + 1), T € [-A, 0]
7(k) e B", F(Kk)(t) =x(kA + 1), Te[-A,0]
(k) e B", w(k)(t) =wkA + 1), ©e[-A,0]

Z(k)y e #", zZ(k)(r) =z(kA + 1), T €[—A,0] (62)
Then, Equation (56) can be put in the form

KT2(k + n)

ii(k + n) = B

n n—1
= > Qe Wk +n—j)—= Y sk +n—j), k=0 (63
Jj=0 j=1
and defining zZ(k) € #" by z(k)(t) = z(kA + 1), T € [-A, 0], (61) can be written as

n—1
Wk +n) == 00" Wk+n—j)+2k+n), k=0 (64)
Jj=1
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When Z(k + n) = 0, Yk >0, equations (63) and (64) describe the system zero-dynamics, while (64)
describes the state zero-dynamics. Defining the extended vectors

ik + 1) (k)
Uk) = : eB" ', Wk = : e Brthxn (65)
ik +n—1) Wk + n)

(note that U(k)(t) = Stack, 1 1(u(kA + 1)) and W(k)(t) = Stack,o(w(kA + t))) from (63) the
following equations can be written:

Ulk+1) =42 | U(k) — BY | (3" W(k) + s" U(k)) + Do¥o(k)
(k) = C;,, Uk), k=0 (66)

where ¥(k) = Z(k +n), (45_, |,BE_ |,CE | ) is a Brunowsky triplet, as defined in (4), s™ has
been defined in (58), and

= [QnQal qnleal CIOQSI]

1
Dy= — —B8 kT 67
0 CAG"B n—1,1 (67)

In a similar way, from (64) the following equations can be written:

Wk +1)= W (k) — SW(k)+ BY,, ,vi(k)

n+l n n+1 n

W(k) = Wk), k>-1 (68)

n+1 n

where ¥ (k) = Z(k +n+ 1), (45, . BY | ,.C5 | ) is a Brunowsky triplet and
Z=0nn Oucn Gu1Qy' Q205" o Q10p] (69)

(note that the first two blocks of matrix X are zero because w(k + n + 1) is not a function of Ww(k)
and Ww(k + 1)).

From (68) and (66) the state and input dynamics for the linear delay systems (42) in closed
loop, admits the following state-space representation (for £>=0):

An+1 BB+1 z 011y (n—1 On+1ynscn Bfﬂ,n
Eh+1) = ”B o L |+ (k)
—Bn71,1‘1 A —Bs 0 On—1)xn
Ww(k) Cliin Ousnyxinon
[N ] = ¢(k) (70)
(k) O1x(r41)n Gy
where
W (k) Vo(k)
é(k) _ [ N c %)(n+l)n+n71’ N(k) [ c an (71)
U(k) vi(k)
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System (70) forced by %(k) = 0, k>0, describes the zero-dynamics of the delay system (42) on
the Banach space """+~ A representation of the state zero-dynamics is

Wk+1) = (An+l Y n+1 DWWk, k=0 (72)

The first result is as follows:

Lemma 3.9
Consider the triangular transition matrix of system (70). The eigenvalues of the matxix

A8 | — B | |s" are a subset of the eigenvalues of matrix 45, —B5 | .
Proof
The (n + 1)n x (n + 1)n matrix An—H N n+1 .2 can be put in a block-triangular form as follows:
A8 1,
AB T = " (73)
n+1,n n+l n =
O(nfl)nXZn Afl;fl,n - Bgfl nz
where
0n><n Onxn(n—2)
0, = (74)
In On><n(n—2)
(0nxn(n—2) vanishes for n = 2) and
=[0,10," 020y - 010;] (75)
so that 2n eigenvalues are the eigenvalues of Ag,n (all zero), and the remaining n(n — 1)
eigenvalues are those of 4% | — BB | 3. The proof that the n — 1 eigenvalues of the matrix
A% —BE  sTarea subset of the n(n — 1) eigenvalues of the stable matrix 45 ,, — BY | X is
obtained by showing that there exists a matrix M € R”~D"*¢=D guch that
(An In n ]nE)M M(An 1,1 Bf—l,lsT) (76)
Note first that the last column of matrix Oy is as follows:
1
-1
oy =B— 77
{QO }(.,n) CA,(,),_lB ( )

This happens because the assumption of relative degree equal to n implies that the triplet
(C, Ay, B) has relative degree n, that is

Q0B = (CAl"'B)d,, where d, = |~ | e R" (78)

and {Q;! }eny» Dy definition, is the unique vector such that QO{Q0 ey = dn. Recalling
definition (55) of matrices Q; appearing in matrix T (see (75)) it is trivially verified that
{Q]}(l’.){Qo Yoy =0, i=1,...,j. Moreover, being the. delay relative degree equal to n,
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fori=j+1,...,n— 1, we have

_ 1 C(Ao, A1)
1
101 ity Yem = 10} inB CAT 1B = CAr 1B =0 (79)
At last, for i = n, we have
. 1 C(do,A)" B
1
{Qj}(n,:){QO }(:,n) {Qj}(n An IB CAg,lB =S (80)

where the reals s;, defined in (50), are the components of vector sT. Thus, the last columns of the
products Q;0; !, for j=1,...,n— 1 are

1
(0,00 e = 040, Yy = OB A roTay = s;dy (81)
so that the matrix 47 | — B an has the structure
[ 0n><n In e 0n><n T
0n><n 0n><n Onxn
Af 1.n 73571,112: (82)
Onxn 0n><n e 171
__[* Snfldn] _[* Sandn] e _[* Sldn]_

where the asterisks denote inessential n x (n — 1) matrices. On the other hand, the structure of
matrix A5 || —BE | \s"is

0 1 0 7
0 0 0
Affl,l - Bgfl,lsT = : : : : (83)
0 0 1
L —Sn—1 —Sp—2 . —S81
From these it is easily verified that matrix
dn 0n><1 e 0n><1
0n><l dn e 0n><l
M = c R(nfl)nx(nfl) (84)
0n><1 0n><1 e dn

satisfies identity (76), and the lemma is proved. []
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Theorem 3.10

Consider the linear delay system (42) and its state zero-dynamics, defined by (60) with
z(t) = 0, and the zero-dynamics, defined by both (60) and (56) with z(¢r) = 0. The following
statements are true:

(i) the state zero-dynamics is exponentially stable if and only if all eigenvalues of matrix
A%, — BY | X defined in (73) are inside the open unit circle;
(i1) if the state zero-dynamics is exponentially stable then also the zero-dynamics is

exponentially stable.

Proof

The first assertion is proved by considering that, as previously discussed, the state zero-dynamics
of system (42) can be represented by the discrete time equation (72) on the Banach space 4"+ 1".
Then, the eigenvalues of 45 ,, — BY | ¥ inside the open unit circle of the complex plane
provide a necessary and sufficient condition for exponential stability. The second assertion is
proved by considering the zero-dynamics represented by (70) on 2"+V"=1 By the assumption

of exponential stability of the state zero-dynamics it follows that all eigenvalues of

A8, — B | X are inside the open unit circle, and by Lemma 3.9 it follows that also all
eigenvalues of matrix A% | | — B5 | s are inside the open unit circle. As a consequence also the

transition matrix of (70), thanks to its triangular structure, has all eigenvalues in the open unit
circle. This implies exponential stability of the zero-dynamics of system (42). []

Theorem 3.11
If the linear delay system (42) has on exponentially stable state zero-dynamics, then the output
stabilizing feedback law (56) is such that both x(¢) and u(z) exponentially go to zero.

Proof

By Theorem 3.10, the exponential stability assumption of the state zero-dynamics implies the
exponential stability of the zero-dynamics. This means that all eigenvalues of the transition
matrix in the representation (70) are inside the open unit circle. Standard results on linear
discrete time systems on Banach spaces allow to state that if the input #(k) is such that

IFRN<pt, k=0 (85)
for some p >0 and / € (0, 1) then there exist x>0 and 1 € [/, 1) such that
€N <pCp + WO, k=0 (86)

Recall that #(k)" = [ZT(k + n) 27(k 4+ n + 1)] and that the control law (56) achieves exponential
decay of z(¢), so that inequality (85) holds for some p >0 and 4 € (0, 1).
Moreover, from definitions (62), (65) and (71)

IR, Il - @Iy 1T - @)
@kl < IT®I<IIEE, 87

so that from (86) exponential convergence to zero of both x(¢) and u(¢) easily follows. [J
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4. MAIN RESULTS FOR NONLINEAR DELAY SYSTEMS

As in the case of linear delay systems, the state and input dynamics of nonlinear delay systems in
closed-loop with the feedback law (27) admit a representation with a discrete time system on a
Banach space. Recall that the assumptions (3) imply that the state x(r) = 0, T € [—A, 0], is an
equilibrium point for system (1) and (2). Let

Ao :af(Xoﬁ{l) 4, :5f(X0,X1) B = ¢(0,0)
%0 gp)=0.0) 1 Ngpa=00)
oh
C = (Xo) (88)
6}(0 %0=0

so that the linear system (42) can be seen as the linear approximation of system (1) and (2)
around the origin.
Recalling definitions (9) and considering that f(0,0) = 0 and /(0) = 0,
LLH(0)=0, i=0,1,...

It follows that the map z = ®(%,_;) defined in (21) is such that ®(0) =0, and its linear
approximation around % ,—; = 0 provides the linear map defined in (53), with matrices Q; built
up using Jacobian (88). In particular

LoH (g Y ;
el G TD| ey 0,1, a1 (89)
) Zo;=0
and from this
a(D(XO’ ey Xl) _ QO (90)
0% X0,=0

where Qy is the observability matrix of the pair (4o, C), defined in (54), non-singular if a type-11

relative degree n is assumed around the origin. Moreover, note that

LyH(Z o)
Vo(-%’o,n)

The functions pj(Z,) for j=1,...,n — 1, in the control law (28), when computed at Z, = 0
give back p;(0) = s;, the coeflicients defined in (50). The input dynamics can be written as

70(0) = CAZ'B, and py(0) = =0

Zon=0

u(t) = p(z(6), Xou (1) — (s + ' Ko@) U 1.1(2) o1
where
KTz
Wz, Xon) = — o @on) Po(Zon)
P (Zon) =P Zou) —s" 92)

so that pT(0) = 0. The linear approximation of Equation (91) around the solution z(f) = 0,
x(t) =0, u(t) =0, gives back Equation (56).
The state dynamics (33) can be written in the co-ordinates w(f) = Qyx(¢) as

w(t) = W(z(0), wa(®), . . ., wu-1a(?)) 93)
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where
Yo ..,01) =0 (2,0, 01,..., 0 . 1) %94)

The linear approximation of (93) around the solution z(¢) = 0, x(¢) = 0 gives Equation (61). It
follows that all the results presented in the previous section devoted to linear delay systems can
be applied to the stability analysis of the linear approximation of the state and input equations
of nonlinear delay systems with the output stabilizing control law (27).

In the following it will be shown that some assumptions on the global stability of the state
zero-dynamics imply a kind of global internal stability of the controlled nonlinear delay system.
The proof of this result is obtained using the linear stability analysis presented in the previous
section applied to the linear approximation of the state zero-dynamics. It should not be a
surprise that a local analysis helps in the proof of a global stability property: a stronger global
stability assumption has been made on the state zero-dynamics.

A first useful lemma is the following.

Lemma 4.12

Consider a nonlinear delay system (1)—(2) with uniform type-II relative degree and globally
partially invertible observability map (assumption H;). Assume that the equilibrium x(z) = 0 of
the state zero-dynamics (36a) is exponentially stable. Then, the linear approximation of the
zero-dynamics (36) around x(¢) = 0, u(f) = 0 is exponentially stable.

Proof

From the previous discussion, Equation (70), with ¥(k) = 0 is a representation of the linear
approximation of the zero-dynamics (36) around x(¢) = 0, u(z) = 0. Moreover, the assumption
of exponential stability of the nonlinear state zero-dynamics implies exponential stability of the
linear approximation of the state zero-dynamics. From the assertion (ii) of Theorem 3.10 the
linear approximation of the zero-dynamics is exponentially stable. []

Differently from the case of linear systems, it is not obvious if the exponential stability of the
nonlinear state zero-dynamics (36a) implies that if z(¢) asymptotically goes to zero, then also x(z)
asymptotically goes to zero. As a consequence, this kind of input-state stability for the output-
driven state dynamics (33) is a property that must be explicitly assumed, together with the
exponential stability of the state zero-dynamics.

Definition 4.13

The output-driven state dynamics (33) is said to be globally input-state asymptotically
(exponentially) stable if for all z(¢) that asymptotically (exponentially) go to zero and for all
initial states, x(z) asymptotically (exponentially) goes to zero.

Remark 4.14

If the output-driven state dynamics (33) is globally input-state exponentially stable, then the
state zero-dynamics is exponentially stable and the transition matrix of the linear approximation
(68) has all eigenvalues inside the unit circle. On the other hand, if the linear approximation is
exponentially stable, then the state zero-dynamics is locally exponentially stable, and the output-
driven state dynamics (33) is locally input-state exponentially stable.
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As done for the output-driven input dynamics of linear delay systems with control law (56) also
the (output-driven) input dynamics of nonlinear delay systems can be written on the Banach
space "~ exploiting the same definitions given in (62) and (65), but in this case the transition
operator cannot be represented simply by a matrix in R”~D*"~D_Regarding Xo.q(?) as a time-
varying parameter, Equation (41) can be written as a time-varying system on the Banach Space
2"V as follows:

Ok + 1) = (o + SC)NTK) — BE_,  ii(k) (95)
where .7 and (k) are operators from %" to %, defined by
[/ U)(0) = (4,1, = B,y s U R))(D)
(L) TN(R) = T Kok + mA + ONTEIE), < € [A,0] (96)
and the sequence fi(k) € %4 is defined by
[A(O1(x) = uz((k + A + 1), X1, ((k + n)A + 7)),  T€[-A,0], C)

where pT(Z,,) and w(z, Z,) have been defined in (92).
The following theorem is the main result on the internal stability of nonlinear delay systems
controlled with the output-stabilizing law (27).

Theorem 4.15

Consider the control law (27), with £ Hurwitz, applied to a non-linear delay system (1)—(2) with
uniform type-II relative degree and globally partially invertible observability map (assumption
H;). Assume that the state zero-dynamics is globally exponentially stable and that the output-
driven state dynamics is globally input-state asymptotically stable (Definition 4.13). Then, both
the system variable x(¢) and the input variable u(¢) asymptotically go to zero.

Proof

Thanks to the control law (27), with £ Hurwitz, the vector z(¢) exponentially goes to zero. By the
assumption of global input-state asymptotic stability of the output-driven state dynamics, also
x(¢) asymptotically goes to zero. The assumption of global exponential stability of the state zero-
dynamics implies that the linear approximation of the state zero-dynamics on the Banach space
A" is exponentially stable, and therefore that all eigenvalues of matrix 45 1 — Bi L E, are
inside the open unit 01rcle of the complex plane. Thanks to Lemma 3.9, also the eigenvalues of
matrix 42| 1 - BB, ls that govern the linear approximation of the input dynamics (95) on
2", are inside the open unit circle. Now, note that representation (95) is of the same type of
the one described by Equation (Al)) in the appendix. Since z(f),x(f), and therefore Xp,(?),
asymptotically go to zero, recalling that, from (92), p7(0) = 0 and u(0,0) = 0, the sequence
|li(k)|| and || (k)|| are bounded by sequences convergent to zero. Since the matrix A2 e
B | 1sT has all eigenvalues inside the open unit circle, thanks to Lemma A.1, proved in the
appendlx it follows that the sequence ||U(k)|| asymptotically tends to zero. This trivially implies
that u(¢) asymptotically goes to zero, and the proof is complete. []

Remark 4.16
The local exponential stability of the state zero-dynamics, and hence the local input-state
exponential stability of the output-driven state dynamics, can be tested by evaluating the
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B
n—1l,n

eigenvalues of matrix 4 _Bf—l,ni' Global stability properties are much harder to

investigate.
5. AN EXAMPLE

Consider the following delay system of type (1) and (2)

. 0
xdﬂZTiﬁ%—5+vm0—N

(1) = 1Ot — A) + u(t)

W) = x1(0) (98)

where ¢ is a constant parameter. According to definition 2.3 it is not difficult to show that this
system has uniform Type-II relative degree » = n = 2. Here follows the expression of y,(Z02), as
defined in (11),

1
—#0, VY, eR° (99)

%‘ = —
P0(Z0,2) 12,

The substitution %, = Xp2(?) in the previous equation yields
1
Po(Xo2(8) = ————
Po(Xo.2(2)) (22— A)

Following definition (21) the map z = ®(%») can be easily constructed and can be shown to be
globally partially invertible, i.e. yy = ® '(z,2,) exists Vze R* and V&1, € R*. After the
substitutions of 29> with Xo»(#) and of 2’1, with X (¢), the maps @ and (D’l, for the given
example, are as follows:

(100)

x1(1)
=) = D(Xp(1) = (1) (101)
m + oxa(t — A)
x(t) = O (2(0), X15(1)) = l A0 (102)
T (@2(1) — oxa(t — A)(1 + 3t — A))

The control law (27) has the following expression:
u(t) = oa(z(2), x(2), x(t — A), x(t — 2A)) + p(x(@), x(t — A)ul(z — A) (103)
with

o= (1 +x3(t — A) | —kT2(t) — ox1(t — A)xa(t — 2A)

Mxit—4) [ x-A)
(1 + 20— M) (1 T —2a) T 2A)>] (104)
B = —a(l+x}(t—A)) (105)
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The gain vector kT = [k; k»] is such to assign stable eigenvalues to the matrix

0 1
A8, — BE kT = 1
2,1 2.1k lkl kz} (106)
Equation (102), when z(f) = 0, for t>A, defines the state-zero-dynamics of the system, and
together with (103) define the system zero-dynamics (see Equation (36)). According to the
results of Theorem 4.15, the convergence of the system variables (state and input) to zero is
guaranteed if the state-zero-dynamics is globally exponentially stable and if the dynamics given
by (102) is globally input-state asymptotically stable. Thanks to the continuity of the map ® !,
and suitably exploiting the first scalar equation (x|(¢) = z;(¢), for = A), it is not difficult to prove
that the null element of L~ ([—A, A], R?) is a globally exponentially stable equilibrium point of
the state-zero-dynamics if and only if |o| < 1. Under the same condition on ¢ it can be shown that
if z(f) asymptotically converges to zero then also x(¢) asymptotically decays to zero. Thanks to
Theorem 4.15 it follows that if |g| < 1 then the feedback law (103), with stabilizing gain £, is such
to asymptotically drive to zero both the state and the input of system (98). All computer
simulations have shown that all system variables asymptotically go to zero when |ag|< 1.

The results of two numerical simulations are presented below, in which two different values of
the parameter ¢ are used. The delay A used in the simulations is A = 0.1. In both simulations the
initial state for the system has been chosen as

(1) = [ 11], te[~0.1,0] (107)

The gain matrix k' in (103) used is AT = [20 9] (assigns eigenvalues A; = —4 and /1, = —5 to
matrix (106)). The control law (103) is applied starting at time z = 0.1.

Figures 1 and 2 report simulation results when ¢ = 0.5. Figure 1 shows the state evolution of
the controlled system. Note that the first state component, the system output, asymptotically
goes to zero with a typical two modes exponential decay. Also, the second system variable
asymptotically goes to zero, together with the input, depicted in Figure 2.

t

Figure 1. State evolution of the system for ¢ = 0.5.
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Figure 3. State evolution of the system for ¢ = 1.1.

Figures 3 and 4 report simulation results when ¢ = 1.1. In this case some system variables
diverge. Figure 3 shows that the first state component exponentially goes to zero, exactly as in
the previous simulation, while variable x, diverges. This happens because the state-zero-
dynamics is unstable. Also the input variable diverges in this case, as shown in Figure 4.

6. CONCLUDING REMARKS
The technique of exact I/O linearization, originally developed for nonlinear systems without
state delay, has been recently applied to nonlinear delay systems by means of a suitable

extension of the tools of the standard differential geometry [5-10]. Simultaneous I/O
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]

Figure 4. Input evolution of the system for ¢ = 1.1.

linearization and delay cancellation can be obtained for systems that have a relative degree and
have stable zero-dynamics (internal state and input dynamics when the output is forced to be
zero). In this paper we pointed out that, unlike the case of systems without delay, for delay
systems the full relative degree property does not imply the absence of the zero-dynamics. The
stability of the state zero-dynamics in the case of full relative degree delay systems has been
studied for the first time in Reference [6]. In Reference [10] the authors discussed the issue of
stability of what in this paper is called state zero-dynamics (Equation (36a)) in the case of non-
full relative degree, while the issue of stability of the total zero-dynamics (Equations (36a) and
(36b)) was not investigated because the authors considered a class of systems (those with type-Ill
relative degree) that do not have input zero-dynamics. This paper explicitly considers delay
systems with full relative degree and with non-trivial state and input zero-dynamics. The main
result presented here is that a suitable stability assumption on the state zero-dynamics, a
necessary assumption for the applicability of the technique of exact I/O linearization with delay
cancellation, in the case of full relative degree implies the stability of the input zero-dynamics.
This implies the closed-loop stability of the nonlinear delay system, with the output zeroing
controller. Future work will involve the study of the internal state and input dynamics in the
case of not full relative degree.
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APPENDIX A
This appendix reports a convergence result on linear time-varying systems on Banach spaces
that is needed in the proof of Theorem 4.15). Note that the symbols used in this appendix do not

refer to quantities defined in the main body of the paper.
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Consider the Banach space ¥ = L.([—9, 0], R), and a linear time-varying system described by
the equation

Xiy1 = (o + Exp + Bug, k=0 (A1)

where x; € " is the state, uy € &7 is the input sequence, and the operators .«7, & and % are
defined by

[.Q/xk](’[) = Axk(r), AeR™"
[Exi](t) = Ex(D)xi(z),  Ex(r) e R, 1e€[-6,0]
[Bui](x) = Bxi(t), BeR™? (A2)

where x;(t) € R" and u(t) € R?,t € [-0,0]. The time-varying operator &, belongs to """,
The norms |jx;|| and ||uy|| are defined by

el = sup [ 1l, el = sup (o)l (A3)

1e[—5,0] e[—5.0]

where ||x;(7)|| and |jx;(7)|| are the Euclidian norms in R" and R?, respectively.

Lemma A.1
Consider the linear time-varying discrete-time system described by Equation (A1), together with
a positive real xy and two bounded sequences of positive reals {n(k)}, {v(k)}, k>0, such that

n(k)<#j and klimy nk)=0
o)<t and lim o(k) =0 (Ad)

for some positive 7 and v. If the matrix 4 that defines the operator .7 in (A2) has all eigenvalues
inside the open unit circle, then there exists a sequence of positive reals {c(k)} satisfying

Jim (k) =0 (AS)

such that Vx(0), &, u; bounded by Xy, n(k), v(k), respectively, i.e.
Ixoll<Xo, €kl <n(k), [l <v(k) VYk=0 (A6)
the following inequality is satisfied:
Ik(h)ll<c(k) VE=0 (AT)

Proof
When the input sequence {u;} is identically zero in the linear system (Al), the following
inequality holds:

heell < Al + )bl V=20 (A8)
and the free state evolution is characterized by a bounded transition operator:
xp = Ok, j)x;, k=j=0 (A9)
It follows that
OGN < (Al + D' Vk=j=0 (A10)
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The first step to prove the lemma is to show that the assumption on the eigenvalues of matrix 4
implies existence of a positive u and of a 4 € (0, 1) such that

Dk, ll<pit, k=j=0 (Al1)

From the stability of matrix 4 it follows that there exists a pair of symmetric positive definite
matrices P and Q such that

lmin(P)
AT04 — 0 =—-P and <1 Al2)
Q Q }vMax(Q) (

The inequality in (A12) is true because Q=P (note that Q — P = ATQA4>0), and therefore

lMax(Q)>}vmin(P)~

Consider now the positive definite function V'(x;) defined
Vi) = sup x; (1)Oxi(c) (A13)
e[~0,0]
Note that

Amin (D)l P < V(1) < A (D)l (A14)

From the identity
X (D0x1(7) = X (1)AT 04X (7) + x; (D)E} ()04 + EL (1) QE(7))x; (1) (A15)
after substitution of 4047 with O — P, and considering that, for x e R”,

- }vmin(P) T 2 1
;vMax(Q)x Qx, HxH </lmin(Q)

—x"Pr< xTOx (A16)

it follows that

Jin(P) n 2|E@I - NQNIAN 4 IE(I)
;LMax(Q) )Lmin(Q)

Taking the supremum over [—4, 0]

(005 (1)< (1 - )x}(r)ka(r) (A17)

~ /min(P) n 201l NQNAAT + 1€kl

}vMax(Q) ;Lmin(Q)
By assumptions (A4) and (A6) ||| — 0, so that there exists an integer k and p € (0, 1) such that
20kl - NONAAN + 6D . _ Amin(P)

Vir) < (1 ) Vixo) (A1)

@ @ (A1)
It follows that
Vi) <oV(x) Vk=k (A20)
where ¢ € (0, 1) is defined by
and for k> j>k, we have
V() <a* 7V (x)) (A22)
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and from (A14)

;LMax(Q)
;bmin(Q)

with A = \/E< 1. Recalling inequality (A9) and defining
(1 +ﬁ))’5 L (@)
=max{ (———— | ,—=—/—— A24)
8 { ( p 7\ 7min(©) (

el Sud (I k=0 (A25)

el < Al (A23)

it is easy to check that

and from this inequality (A11) is proved for all £>;>0.
When the input is not identically zero, the state evolution is written

k—1
e = Ok, 00x0 + > Dk, j + 1)Bu; (A26)
j=0
and therefore

k—1
el < ¥ lwoll + Y A7 I1BI| - Il (A27)
j=0
Let

k—1

ck) = w0 + Y pa 1Bl ) (A28)
j=0

By construction c(k) is such that (A7) holds. It remains to prove that c(k) asymptotically goes to
zero, i.e., for any ¢ > 0 there exists a k, such that Yk >k, it is c(k) <e. To this aim, rewrite c(k)
settingk —j — 1 =1

k=1
c(k) = pi*xy + Z w||Bllotk — i — 1) (A29)
i=0
and split the summations as follows:

Ve

c(k) =i %0 + > wi||Bllotk — i — 1)

i=0
k—1
+ > wd|IBllotk — i — 1) (A30)
i=v,+1

The first term in expression (A30) tends to zero (recall that A = \/E € (0, 1)), therefore there
exists ki, such that Vk>k,, we have ,u)/‘)'co <¢g/3. As for the third term in (A30), we have

k—1 00 -

. oo Bl
S Wk — i~ 1< S Bl = PR (A31)
i=v,+1 i=v,+1 -2
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Since /4 € (0, 1), it is easy to choose v, such that

@ v <§ (A32)
As for the second term in (A30), defining
w(k) = sup vk—i—1) (A33)
ief0,v,]
we have
z; wA\|Bllik — i — 1)< (v, + D)u||B|w(k) (A34)

Now, by assumption (A4), w(k) goes to zero and therefore there exists k>, such that

> whlBletk—i = D<3 Vk>ka, (A35)
i=0

As a result, denoting k, = max{kj ., k»,} we have that

ck)<e Vk=k, (A36)

and this concludes the proof. []

—_
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