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A CHAIN OBSERVER FOR NONLINEAR SYSTEMS WITH
MULTIPLE TIME-VARYING MEASUREMENT DELAYS*

FILIPPO CACACE', ALFREDO GERMANIf, AND COSTANZO MANES$

Abstract. This paper presents a method for designing state observers with exponential error
decay for nonlinear systems whose output measurements are affected by known time-varying delays.
A modular approach is followed, where subobservers are connected in cascade to achieve a desired
exponential convergence rate (chain observer). When the delay is small, a single-step observer is
sufficient to carry out the goal. Two or more subobservers are needed in the the presence of large
delays. The observer employs delay-dependent time-varying gains to achieve the desired exponential
error decay. The proposed approach allows to deal with vector output measurements, where each
output component can be affected by a different delay. Relationships among the error decay rate, the
bound on the measurement delays, the observer gains, and the Lipschitz constants of the system are
presented. The method is illustrated on the synchronization problem of continuous-time hyperchaotic
systems with buffered measurements.
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1. Introduction. The state estimation of dynamical systems based on delayed
output measurement is an important problem in many engineering applications, for
example, when the system is controlled or monitored by a remote device through
a communication channel, or when the measurement process intrinsically causes a
nonnegligible time delay, as in biochemical reactors. For this reason the issue of state
reconstruction in the presence of time delays in the system equations and/or in the
measurement process is receiving increasing attention.

State observers and observability conditions for both linear and nonlinear systems
with time delays in the state equations have been studied by many authors (see, e.g.,
[20, 21, 24, 11, 29, 32] and the references therein). This paper considers nonlinear
systems without delays in the state equations but with delayed measurements. The
design of state observers that predict the current state by processing delayed output
measurements is central for the design of state feedback controllers. In the case of
stable linear systems, the control problem is solved by the Smith predictor [25]. An
extension of the Smith approach to closed-loop control of nonlinear systems with
delayed input was presented in [18, 22], where, as in the case of linear systems, the
state prediction is obtained by an open-loop algorithm, so that the accuracy of the
predicted state is not guaranteed for unstable systems.
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The idea of achieving the convergence of the state estimate by using a cascade of
two observers (elementary chain observer) was first proposed in [10], while the idea
of using more than two observers in the chain to deal with large measurement delays
has been proposed in [12]. In [10] it has been shown that a chain of two observers
is sufficient for asymptotic state reconstruction as long as the measurement delay is
below a given threshold, which depends on the Lispchitz constants of the system.
When the time delay exceeds such a threshold, more links must be added to the chain
[12]. Each observer in the chain is in charge of predicting the system state for a suitable
fraction of the total delay. The structure of the basic observer in the chain is the one
proposed in [5, 6] for undelayed measurements. A similar approach has been used
in [16], where some restrictions of the chain observer in [12] have been overcome. In
[3] another predictor for nonlinear systems with delayed output, based on a cascade
of observers, has been proposed. Sufficient conditions for the convergence of this
predictor have been derived using linear matriz inequalities. This predictor has been
extended in [1] to triangular systems. Other recent proposals include the nonlinear
observer of [21], for systems that are linearizable by additive output injection, and
the constant gain observer design method proposed in [27]. In [26] the case of time-
varying measurements delay has been investigated, although restricted to linear time
invariant systems. In particular the stability properties of a chain observer have been
investigated, under the assumption that the delay is known and piecewise constant.

Recently, the framework of high-gain observers has been used to design observers
for nonlinear systems with time-varying measurement delay. In [4] a Razumikhin
approach has been used to prove the asymptotic convergence to zero of the estimation
error of a high-gain observer derived from [5, 6]. In [28] an observer derived from the
one in [9] has been proposed, and a Liapunov—Krasovskii approach is used to derive the
convergence result in the presence of time-varying delay. The exponential convergence
to zero of the estimation error of this observer has been proved in [2].

This work contains two main contributions. The first is the proposal of a single-
step observer for nonlinear systems with time-varying measurement delays that ex-
tends the one in [4] in two directions: it allows one to deal with vector measurements
(multi-input-multi-output systems) and achieves prescribed exponential error decay,
provided that the maximum delay is below a suitable bound. This result is obtained
by use of time-varying delay-dependent gains in the observer. The delays are assumed
uniformly bounded but not necessarily continuous functions of time. Moreover, each
component of the vector output can have its own delay.

The second contribution is the proposal of a chain observer with uniform struc-
ture, which allows one to deal with the case in which the prescribed exponential
convergence cannot be achieved by a single-step observer (i.e., the maximum mea-
surement delay is too large). To the best of our knowledge, this is the first proposal
of a chain observer for the time-varying delay case. Relationships among the expo-
nential error decay rate, the bound on the measurement delays, the observer gains,
and the Lipschitz constants of the system are investigated. In order to have a simpler
and shorter exposition, only global convergence results are derived in this paper, for
which we need to assume rather strong global Lipschitz and observability properties
on the systems under investigation. However, local convergence results can be derived
as well under weaker local Lipschitz and observability assumptions.

The paper is organized as follows. In section 2 the class of systems under investi-
gation and the state observation problem are formulated. The single-step observer is
presented in section 3, together with the convergence results. In section 4 the chain
observer is described and the convergence analysis is provided. Some guidelines for
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tuning the observer parameters are given in section 5, and in section 6 the approach
is illustrated on the state estimation problem of a hyperchaotic system (hyperchaos
synchronization) with buffered measurements. Conclusions follow. In order to get a
smoother presentation, some auxiliary results are reported as appendices.
Notation. Given ¢ objects H;, for i = 1:¢ (functions, vectors, matrices,...),
throughout this paper the symbol diag! ,{H;} denotes the block-diagonal matrix,
whose diagonal blocks are the objects H;. In the same way, if all the H; have the
same number of columns (rows) the symbol col! ,{H;} (row; ,{H;}) denotes the
block-column (row) matrix made with the H;. N denotes the set of natural numbers
(strictly positive integers). The norm of a multi-index § = {s;}{ € N%is |5| = >7_ ;.
For a given p € N, 1,, € R? is the column vector of ones in R?, while I, is the identity
matrix in RP*P. £8P C RP*P s the set of n x n symmetric positive definite (SPD)
real matrices. Ry and R_ are the sets of strictly positive and strictly negative real
numbers, respectively. Given A € Ry and n € N, the symbol CX denotes the space
of continuous functions that map the interval [—A, 0] into R™, endowed with the sup
norm. The meaning of the norm symbol || - || depends on the context: if ¢ € CR,

1/2 . .
then [¢(t)]| = (7 (¢)o(t)) /2 and [9ll = sup a0 (7). For a given continuous
function z : R — R"™, the symbol x; denotes its restriction to the interval [t — A, ¢],
ie., xy € CX with x(7) = 2(t — 7) € R™.

2. Preliminaries. We consider the problem of state observation for nonlinear
systems with delayed vector output, in the case where each output component is
measured with its own time delay. The measurement delays, possibly time-varying,
are assumed to be known in real time, and are bounded by a known constant A. The
systems considered here have the form

(1) i(t) = F(x(t),u(t)), t>—A,
(2) yi(t) = hi(z(t — 6:(t))), i=1:q, t >0,
(3) z(—A) =z € R",

where z(t) € R™ is the system state, u(t) € R? is a known input, §(t) € R? is the
measured output, and d;(t) € [0, A] is the time-varying measurement delay of the ith
output. The function F': R™ x RP +— R"™ is affine in the input, i.e.,

P

(1) Fla,u) = f(z) + Gle)u = f(2) + 3 gul@)ur,

k=1

where f(z) and gi(x) are C° vector fields. h;(z), i = 1: ¢, are C* functions.
Let §(t) € RY denote the vector collecting all the delayed measurements ;,(t), i.e.,
g(t) = coll_; {7i(t)}, and let y(t) = col’_, {hs(x(t))} denote the vector of undelayed
measurements. The delays 6;(t) are collected in 6(t) = {0;(¢)};_;. The component
y;(t) will be available for processing at a time ¢; such that ¢, = t 4 6;(¢}).

Remark 1. We assume that the measurement delays §;(t) are known in real time,
which means that the information available for processing at time ¢, with ¢ > 0, is the
pair (7(t),5(t)) € R? x [0, A]?, whose components (;(t),d;(t)) satisfy the identities
(2), for i = 1:¢q. The issue of robustness with respect to uncertainties in the delay
is not investigated in this paper and deserves further research work. Notice that the
assumption that the delay is known is realistic in many applications. A common case
is that of networked control systems [13], when the measurements are buffered and
then sent over a reliable network that introduces a variable delay. In this case, the
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delay is typically computed by comparing the time at which the packet is delivered
with the time-stamp included in the packet at the sender side.

Although in principle it is possible to estimate x(t — §) by exploiting the outputs
yi(t) of (1)—(2) in an ordinary observer, and then to use such an estimate for estimating
z(t) by integrating the system equation (1) in the interval [t — 0, ], this approach is
not used in the literature mainly for two reasons: the implementation of predictors
containing integral terms (distributed predictors) may be computationally prohibitive
for real-time applications, and the open-loop structure of the integral predictor makes
it sensitive to uncertainties and modeling errors. In addition, it is not trivial to
estimate x(t — §) when the delay § is not constant.

Thus, the integral predictor approach, although conceptually simple, may not
be suited for many applications. As a consequence, predictors with state-observer
structure, i.e., written in the form of measurements driven differential equations (or
delay-differential equations), are generally preferred.

Throughout the paper, given a vector w(t) = col!_;{w;(t)} and a set of delays
5(t) = {0;(t)}{, the vector function ws(t) is defined as

(5) ws(t) = col{wn(t — 6i(1)}.

Thus, we have 3(t) = ys(t). Let L’Ji/\(z) denote the kth Lie derivative of the scalar
function A(z) along a vector field f(x), defined as (see [15])

k—1
_ de A
dzr

(6) LiA(x) = Nz), LiA(2) f(@), k>0,

and let LgA(z) denote the row vector [Lg A --- Ly A]. Following [6], we build the
observability map using the Lie derivatives 0, 1, ..., s;_1 of each output function
hi(x). For a given multi-index 5§ = {s;}1, let the vector functions ®;*(z) € R* and
Yis, (t) € R% be defined as follows:

M e = LA @) = [hile) Lyhi(e) . Ly ()],
(®) Vie, () = ol 0 0) =[mit) o) oV ]
(ygk) (t) denotes the kth derivative of the ith undelayed output), and let

(9) @5(r) = col {8 (1)}, Yi(t) = col {¥i., (1)}

Note that ®(z) are maps from R™ to R® and do not depend on time. As discussed
in [6, 7], if u(t) = 0, then Y;,,(¢t) = @] (z(t)) and Y5(t) = ®5(z(¢)). If, for some
3, such that |s] = n, the square map z = ®;(x) is invertible, then the knowledge of
Y:(t) theoretically allows instantaneous exact reconstruction of the state x(t). This
property justifies the following definition (see [6]).

DEFINITION 1. For a given multi-index § such that |5| = n, the map ®5(x) defined
in (9) is said to be an observability map in a set Q C R", for system (4)—(2), if it is
a diffeomorphism in Q. A system that admits an observability map ®z(x) in Q is said
to be drift-observable in . A system is said to be uniformly Lipschitz drift-observable
in Q if it is drift-observable in Q and the maps ®5 and ®;' are uniformly Lipschitz
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(in Q and ®5(Q), respectively). If Q = R™ the system is said to be globally uniformly
Lipschitz drift-observable (GULDO).

The observability property described in Definition 1 only depends on the drift
component of (4) (i.e., f(x)). For this reason the term drift-observability (i.e., observ-
ability for null input) has been coined in [6].

Note that the components s; of a multiindex 5 that satisfy the assumptions of
Definition 1 coincide with the observability indices defined in [19].

If a system is drift-observable in €2, then the Jacobian

(10) Qste) = 5 — gy {20

is nonsingular Vz € Q, and the inverse map 2 = ®;'(2) exists in all ®5(0Q).
DEFINITION 2 (see [6, 7]). The observation relative degree of the ith output hi(x)
of system (1)—(2) in a set Q@ C R™ is a natural number r; such that

(11) Ve eQ: LgLihi(z)=0, k=0:r; -2,
(12) JweQ: LaLy 'hi(z) #0.

If Q= R"”, the ith output is said to have uniform observation relative degree ;.

Note that Definition 2 of the observation relative degree (taken from [6]) is not
related to the measurement delay. (The functions in (11) and (12) are maps from R™
to RP.) Moreover, if s; < r;, i = 1:¢, we still have Y3(t) = ®5(x(t)), as in the case
of absence of input, and the drift-observability property implies the observability for
any input (see [6] for further details).

Now, consider the map ®;'(z) defined in (7), and assume that s; < r;. Let
(As,, Bs,, Cs,) denote a Brunowsky triple of size s; (see Appendix A.1). Then

B P ) = 0 (0 + o) = A () + B L),

(14) Where Li(z,u) = Ly hi(z) + La Ly~ hi(z)u.

(13)

(Note that if s; < 7, then Lo L% hy(x ) 0.) Let z(t) = ®;"(x(t)). Taking into
account (13) and the identity h,;(x) = C,, @ (), we get

(15) Zl(t) = Asizi(t) + Bsizi(x(t)7u(t))a
(16) gi(t) = Cs,zi(t = 6i(1)),
(17) zi(r) = 7' (7).

Note that, since s; < 1y, if follows that z;(t) = Y; s, (t). If the system (1)—(2) is globally
drift-observable and ®;(z) is a global observability map, with s; < r;, ¢ = 1: ¢,
then z = ®z(z) defines a change of coordinates. In the new coordinates z(t) =
coll_, {zi(t)}, the undelayed vector measurement is y(f) = Csz(t), and the system

equations are

(18) 5(t) = <> Bep(=(t), u(t)), 1> A
(19) Gilt) = Cozilt— 8i(t)), i=1:q, >0,
(20) z(ﬂ)z@( )
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where A; € R"*", B; € R"*P, C5 € R1*™ are
q q q
(21) As; = diag{A,,}, Bs=diag{Bs,}, Cs=diag{Cy,},
i=1 i=1 i=1
and the function p(z(t),u(t)) € R? is defined as
q
(22) p(z7u) :C_O} {pl(zau)}a where pz(z7u) :LZ((I);l(Z))u)a

with L;(-,-) defined in (14). The representation (18)~(19) of system (1)~(2) will be
useful in the proof of the observer convergence.

3. Single-step exponential observer. This section presents a single-step ob-
server for system (1)—(2) and the relevant convergence analysis. The hypotheses
needed are the following:

Hy, The system (1)-(2) is GULDO, i.e., there exists a multi-index 5 = {s;}?
such that the map z = ®;(z) defined in (9) and its inverse x = ®; " (z) are
uniformly Lipschitz in R"™.

Ho The function p(z,u) defined in (22) is globally uniformly Lipschitz with re-
spect to z, with the Lipschitz coefficient v, depending on ||u|l, i.e.,

(23) Ip(21,w) = p(z2, w)|| < w(l[ull)llz1 — 2zl V21,20 € R™,

Hsz The components s; of the multi-index § in H; are such that s; < r;, i =1:q.
(r; is the uniform observation relative degree of each of the output functions
hi(z) in (1)=(2).)

Note that the hypothesis s could be equivalently given in terms of uniformly Lip-
schitz assumption on Ez(z, u), because by definition p;(z,u) = L (@gl(z), u), where
®*(2) is uniformly Lipschitz by hypothesis #;.

The proposed observer for the system (1)—(2) is the following delay system:

1

(21) H0) = F(a(0).u(0) + (Qs(a) " Kel(®), 120,
(1) = ¢(1), T € [-A, 0],

where

(25) Ki(t) = ding {e Ok} with ki €R™, n € Ry,

(26) v(t) = col {m(6)} = col {g(t) — hi it — 6:(1))) }.

The matrix Q5(Z) is the Jacobian of ®5(#), defined in (10). The gain vectors k; and
the constant n are the only design parameters for the observer. In particular, n in (25)
is a desired exponential decay rate for the observation error. The function ¢ € C} is
used for the observer initialization.

DEFINITION 3 (global n-exponential convergence). For a given n € Ry a system
of the type (24)—(26) is said to be a global n-exponential observer for system (1)—(2)
if, for any given ¢ € CX and initial state x(—A) € R™, there exists ¢ € Ry such that

(27) lz(t) —2@)|| < ce™™ Vvt >0.
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The observer equations (24) can be written in the z-coordinates by defining 2;(t) =
@5 (2(t)) and 2(t) = col’l, {2(t)} = ®s(x(t)). Differentiating and using (13)—(14)
we get
(28) 2(t) = As2(t) + Bsp(2(t), u(t)) + Ks(t)v(t), t>0,
A1) =®s(0(7),  TEe[-A, 0]
Let Z;(t) = z;(t) — 2;(t) be the components of the observation error in z-coordinates.
Using (16), the i¢th block of v(t) in (26) can be written as

(29) vi(t) = gi(t) — Cs, 2i(t — 6i(t)) = Cs, Zi(t — 6i(2))-
The error Z(t) = colf_, {Z;(t)} is also Z(t) = z(t) — 2(t) = ®s(x(t)) — Ps(2(1)).
Subtracting equations (18) and (28) and defining
(30) ﬁ(z(t),u(t), 2) = p(z(t), u(t)) —p(z(t) — Z,u(t)),
where p(-,-) is defined in (22), we obtain the following differential equation for Z:
(31) 2(t) = AsZ(t) + Bsp(=(t), u(t), (1)) — Ks(t)CsZ5(t), >0,
(1) = 2(7) — q)g(qS(T)), T € [-A, 0],
where Z5(t) = z5(t) — 25(t) = coll_,{Z;(t — 6;(¢))}. By the Lipschitz assumption Hs

(32) 1B(2(t), u(t), 2) Il < v (lu®)) 12l

Remark 2. Under assumption Hp, the inequality (27) that defines the global
n-exponential convergence in Definition 3 is equivalent to

(33) lim ¢ |Z(1)]| =0 ¥ € C, Vu(—A) € R™.

Before giving the main convergence theorem, we need the following lemma. (The
proof is in Appendix A.2.)

LEMMA 4. For a given multi-index § = {s;}{ such that |5| = n, consider the q
Brunowsky triples (As,, Bs,,Cs,), i = 1:q. Then, for any given a > 0 and b > 0,
there exist q vectors k; € R® and q matrices P; € Eiixsi such that the following q
inequalities hold for i =1:q:

q
(34) (Ao, = kiCs))" Py + Pi(As, — kiCs,)) +a P, + b1, Y (BLPB,,) <0.

i=1
Moreover, given q vectors v; € R*, 1 = 1:q, with distinct and negative components,
the pairs (Ei(p),pi(p)) are defined, for i = 1:q, as follows:
(35)
Fi(p) = = diag{p" WV~ (w)oi™), - Pilp) = diag{p™"}VT (u)V (vs) diag{p™" 10>,

(si)

where V(v;) is the Vandermonde matriz associated to v;, and v; " is the vector of
componentwise s;th powers of v; (see definitions (100) in Appendiz A.1), are solution

pairs (ki(p), Pi(p)) of (34) if
. o> m {1 {2211V

2wi

where w; = —max,_ {(vi)n} (i.e., w; is the smallest component of —v;).
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Now the main convergence theorem can be given.

THEOREM 5. Consider the system (1)—(2), with 6;(t) € [0,A], i = 1:q, under
assumptions H1, Hz, Hs, and assume that ||u(t)|| < @ ¥t > —A, for some @ > 0.

Then, for any assigned n > 0, there exist g gain vectors k; € R%, 1 =1:q, and a
positive A such that if A < A, then (24)~(26) is a global n-exponential observer for
system (1)—(2).

In particular, the q gains k; can be chosen to satisfy, together with q matrices P;,
the inequalities (34), with a = 2n + « + 1, where o« > 0 is arbitrarily chosen, and
b= ’yg(ﬁ). With this choice, the n-exponential convergence is ensured if A < A, with

q
where 8= (k] Pki)|P7 M| (140 + (k:)7).

=1

— «
37 A=
(87) 2+ 5
((ki)1, i = 1:q, are the first components of the vectors k;, i.e., (ki)1 = Cs,ki.)

Proof. Note first that the uniformly Lipschitz assumptions in H; and Ho guar-

antee the existence of solutions in [0, 00) of both the system and the observer. By
assumption, the observer gains k; are chosen such to satisfy the ¢ inequalities

q
(38) (A51 7kZCSl)TPZ+R(ASl *kiCSi)+(277+a+1)Pi+VZ(ﬁ) ISi Z(BQPZB&) <0,

i=1

where the matrices P; are symmetric and positive definite. In order to get more
compact formulas, let us define the matrices

(39) Asi = Asi + n[s“ lei = Asi - klcsz + 77[‘51
(ie., A; = A, — k;Cy,) so that inequalities (38) can be rewritten as

q
(40) AlPi+ P A+ P+, () I, Y (BLPB;,) < —aP;.

i=1

As discussed in Remark 2, the assumption H; allows us to prove the exponential
convergence by showing that (33) holds. By defining the variables

a
(41) alt) = M), elt) = col{ei(t)} = "300),
the condition (33) becomes lim;_, ||€(t)| = 0.

Let Ko = diag?_, {k;}, so that Ks(t) = Kodiag? ,{e~%("}. Then, the feedback
term in (31) is

(42) Ks(1)Cs75(1) = KoCs col{fe ™™ Ozt — 5,(1))).

By definitions (41) we have e %1z, (t — §;(t)) = e "e;(t — §;(t)), so that (42) can
be written as

(43) K5 (1)Cs73(1) = KoCs col{e st — 8i(1))} = e KoCs e511),

where €5(t) = col!_;{e;(t — ;(¢))}. The computation of the time derivative of €(t)
gives

(44) é(t) = me(t) + e™Z(t).
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Replacing Z(t) in (44) with (31), and using (43) we get the system

(45) é(t) = (As + nlp)e(t) + ngo(t, 6) — KoCse3(t), t>0,
e(1) = " Z(1) = 2(1) — (1), T € [-A,0],

where (t, €) = e"p(=(t), u(t), e~ "e) = O pi(=(t), u(t), e o)},

where p(-, -, -) has been defined in (30). From (32), under the assumption ||u(t)|| < @,
it follows that

(46) let e)ll < e™yp(@)lle™"ell = Tpllell vt > A, Ve eR™,

where 7, = 7,(@). Now, to prove the theorem it is sufficient to prove the global
asymptotic stability of the solution € = 0 of the system (45), because this ensures the
limit (33), which in turn implies n-exponential convergence of the observer.

Let €(t) = €;(t) — e;(t — d;(t)) and €(t) = coll_,{€&(t)}, so that

(47) €(t) = e(t) — (1)

Then, adding to and subtracting from (45) the term KoCs €(t) we get
(48) é(t) = (As +nl, — KoCs)e(t) + Bso(t, €) + KoCsé(t),
so that (45) can be rewritten as

(49) é(t)

e(7)

Ae(t) + Bsp(t, €) + KoCsé(t), t >0,
e z(7), T €[-A,0]

with A = A; — KoCs +nl,, = diag;-]:l{fli}. For t > A, each ¢;(t) € R* satisfies the
integral equation

(50)
0

—9;(t)

0
- / (s, + 010 )e0i(0) = KiCiseri(0 = 61t +0)) + Buou(t + 0,0(0)) ) o
—0;(t)

with € (0) = e(t + 0), €:.:(0) = €;(t + 0), and ;(t,€) = e p;(2(t), u(t), e~ "e).
Substitution into (49), taking into account that k;Cs, Bs, ¢i(t, €) = 0, provides the
following functional differential equation for €(¢) that holds for ¢ > A:

(51)
0
/ Asl 6,5,1(9) — lesl Gt,l(e — 01 (t + 9))d9
_ —01(t)
&) = Ae(t) + Bsg(t, (b)) + KoCs » ,

0
/ A, e1,4(0) — koCl,e1,4(0 — 64(t + 0))d6
10

where A,, = A, + ..
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In order to prove the asymptotic stability of e = 0, we consider the auxiliary
time-delay system, defined for ¢t > A,

(52)
0
/ Ay 61(0) — k1Cs, €01(0 — 61t + 0))db

. _ —01(t)
£(t) = AS() + Beglt,€0) + KoCs | - ,
[ Aal0) — bCo a0 — 8y fa+ O

—0q(1)

5(9) - 1/}(9)7 RS [7A7 A]a

where ¢(-) € C([-A,A],R") is the initial condition. Clearly, the dynamics of (52)

include the dynamics of (51) when £(0) = €(0), 6 € [-A, A]. (Note that £(t) is not

required to obey a differential equation of the type (51) in the interval [0,A].) As

a consequence, asymptotic stability of (52) implies the asymptotic stability of (51).

Let us rewrite (52) as

(53) &i(t) = Ai&(t) + By,oi(t, (1)) + kiCs, i (&), t> A, i=1:q,

0
59w = [ Al0) kOO0 )0

Now we can apply the Razumikhin method (see, e.g., [17]) to prove the asymptotic
stability of system (53)—(54). Consider the Liapunov—Razumikhin function candidate

q

(55) VE) =Y Vi(€) with Vi) = €7 P&,

i=1
where the ¢ matrices P;, symmetric and positive definite, satisfy (40). The computa-
tion of the derivative of V(£(t)) gives

q

(56) V(&) = ZfiT(t) (ATP, + P A;) &(t)

i=1
+Z2€ t)PikiC, i (&) + 267 (t) P By, i (t, (1))

In light of Razumikhin theorem it is sufficient to show that if the inequality V(£(0)) <
kV(£(t)) holds VO € [—2A,0], for some £ > 1, then V(&)) < —a,V(£(t)), for some
o, > 0.

Let us compute upper bounds for each term in the right-hand side of (56). Con-
sider the rightmost term, which contains both &;(t) and £(¢). By applying the in-
equality 227 Pb| < 2T Pz + b7 Pb and the Lipschitz condition (46) we have

(57) 1267 PiBs,pi| < & Pi&i + Bi, PiBs,|oil* < & Pi&i + 7, (B, PiBs, )€ €.

Substitution in (56) gives

(58) V(&) sZ& () (AT P+ PA; + P) &i(t) (Z )(B;, P, By ))5 (DE()
+ 26l () PikiCo, i (&)

i=1
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Taking into account that £7¢ = >°7 | €T'¢; and thanks to (40) we get

q

(59) V(&) <> & ()(ATP + PA; + P+ 7, (@) I i(BTPB )) &(t)

=1 i=1

+

-

26T () Pk Ci, i (&)

i=1

() P&i(t) + 225 1) PikiCi, i (&) -

_MQ

@,
Il
-

From this

(60) V(&) < —av(€) + > 26 (0) PikiCa,pi (&)

i=1
Consider now the terms in the summation in (60). Using (54) we have

0
(61) 2«5?1%kicsiuig/ 1267 (1) Pk, C, A .4(6)| O
—8;(t)

0
757;(15)

Using again [227 Pb| < 27 Px + bT Pb, we have for the first integrand

(62)

1267 () PikiCy, As £4(0)] < € () Pia(t) + (K" Pika) | C, (A, + L)1 1€ 0) .

Noting that [|Cs, (As, + nls,)||1? < [|Cs, (A, 12 + n?]|Cs,)||? = 1 + 7%, due to the
Brunowsky structure of the pair (4s,,Cs,), and that for any P > 0 it is [|2]|? <
| P~Y|2zT Pz, the following bound holds for the first integrand:

(63)
1267 (#) PikiCs, As, 0,0(0)] < &5 (1) Pi&i(t) + (k" Piky) (1 +0?) || P15, (0) Pigl(0)
<Vi(&() + (B Piks) (L + )| P Vi(6e,i(0)).

Thus, under the Razumikhin hypothesis V(&(6)) < kV(£(t)) at time ¢, £ > 1, which
obviously implies V;(&:,:(0)) < kV(£)), for i = 1:q, we get the following bound for the
first integral of (61):

0
(64) / 1267 (1) P.kiC, A 61.1(6)| 6

< 6i(t) (Vi(&(®) + w1+ n°) (k] Pik:) | PTHIV(E())) -

Similarly, for the second integrand of (61) we have

(65) 12¢] (6) Piki Cs, ki Cs, 0,5 (0 — 05t + 0))|
< & (OPE) + (K] Piki) || Cs, kil 2 Cs,€,6(0 — 0t + 0)) |12
< Vil&(®)) + (k] Pika) k21 1B Vi(6e,i (0 = it +6))),
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where k;1 = Cs,k; is the first element of the vector k;. Under the Razumikhin
condition we have the following bound for the integral:

0
(66) / |2¢] (t) Pik;Cy, ki Cs, &0.:(0 — 6;(t + 0))]d0
—0;(t)

< 8i(t) (Vi(&(t) + mkiy (K Piks) | PV (E(D)) -

Putting together (64) and (66), and taking into account the bound 6;(t) < A, from
(61) the following inequality is obtained, which holds in all times ¢ > A, where the
Razumikhin condition holds:

(67)
267 (1) PikiCo, i (§0) < A (2Vi(&Gi(1) + 5 (L+ 0 + k2 1) (K] Pika) 1PV (E(2)) -

The substitution of the bound (67) into (60), after simple manipulations, gives
(68) V(EW) < (mat+AE+rB)V(EWD),

where 8 =37 | (1+n? + kZ,) (k] P;k;)||P;"|| has been defined in (37).

Recall that if at time ¢ the Razumikhin condition is verified for some x > 1 (i.e.,
V(&(0)) < —rV(&(t)), for 6 € [—2A,0]), then the inequality (68) holds true. It
remains to show that if A < A = a/(2 + ) (see (37)), then there exists ka > 1
and oy, > 0 such that in all ¢ > A where the Razumikhin condition is verified, the
inequality V(§ (t)) < = V(£(t)) holds. To this aim, consider the function

(2 -k

(69) m(k) = m7

which is such that 7(1) = A and 7(2) = 0. Being 7(x) monotonically decreasing in
the interval [1, 2], it follows that for any given A € (0, A) there exists xka € (1,2) such
that m(ka) = A. The pair (A, k) is such that (2 + kaf)A = (2 — ka)a, and its
substitution into (68) gives

(70)  V(EW®) < (—a+ 2= ra) @) V(D) = (1= ra)aV(E®H) = —an V(£()),

where a,, = (ka — 1)a > 0 (recall that ka € (1,2)). This proves that A given in
(37) is such that for any A < A there exists ko > 1 that satisfies the conditions
of the Razumikhin theorem for the equilibrium & = 0 of system (52). As previously
discussed, this implies €(¢) — 0, and this in turn implies the n-exponential convergence
to zero of the observation error, in both z- and z-coordinates. a

The following theorem provides a more explicit criterion for the choice of the
observer gains k; and for the associated bound A on the maximum delay.

THEOREM 6. Consider system (1)—(2) under the same assumptions as Theorem 5.
Let v; € R%, i = 1:q, be q vectors with distinct and negative components, and let

w; = —max;_ {(v;)n}. Consider the family of observer gains k;(p), with p € Ry,
defined as
(71) Fi(p) = — diag{p"}V " (i)™, i=1:q.

h=1

Then, given a desired exponential decay rate n > 0, and given an arbitrary o > 0,
the system (24)—(26) is a global n-exponential observer for system (1)—(2) for any p
satisfying
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m+a+1+32@)n||V-1(v)|?
(72) p > max {Lmqalx{ N+ vg(u)n V= (i)l 7
1= wi

provided that A € [0, A), where

o2V ) 21+ 0?4+ p2(1T 0,)2).

5:706 ’LUZ = y 2si
(73) T A0 th B(p) ;p

Proof. When p satisfies (36), the gains k;(p) in (71) together with the SPD ma-
trices P;(p) defined in (35) are solution pairs of the inequalities (34). Since p > 1,

we have H(ﬁl(p))_lH < |[V=Y(:)]|2. Moreover, kT (p)Pi(p)ki(p) = [[0*]|2p?*:, and

(ki(p)), = p(1Lwv;). Using these in (37), the formula (73) for A is easily
obtained. O

Remark 3. The global convergence results of Theorems 5 and 6 have been ob-
tained under the global Lipschitz and observability assumptions H; and Hs. However,
weaker local results can be obtained if local Lipschitz and observability assumptions
are adopted instead. For those systems that admit compact invariant subsets of the
state space, the assumptions #; and H, need to be satisfied only in such sets. The
convergence of the observer (24)—(26) in such invariant sets can be proved following
the same lines of the proof of Corollary 1 in [5].

4. Chain observer. It may happen that the maximum measurement delay A
in system (1)—(2) is too large for a single-step observer of the type (24)—(26) (e.g.,
for any n > 0 the observer gains k; that achieve 7-exponential convergence may not
satisfy the condition A < A of Theorem 5, with A given by (37)). In this case we can
resort to a chain observer, in which, roughly speaking, the delay A is split into smaller
subdelays in order to satisfy the convergence conditions. For a precise description of
the operations of a chain observer the following definition is useful.

DEFINITION 7. Given a delay A > 0 and an integer m > 1, an m-partition of A
s a strictly increasing sequence & = {Uj}}n:m such that g = 0 and o, = A, so that
A=370",6), where 6 = 0j — 7j1.

As a general statement, given an integer m > 1 and an m-partition & of the
maximum delay A, a chain observer is a set of (m or m+ 1) interconnected observers,
each one devoted to the observation of the state at time ¢t — 0;. Previous proposals
of chain observers (e.g., [12, 16, 2]) considered only the case of a single constant mea-
surement delay, i.e., 0;(t) = A, and used a uniform m-partition of A. In this paper
we extend this framework to multiple and time-dependent delays, using a nonneces-
sarily uniform m-partition. In the proposed approach, we consider a cascade of m
observers, numbered with j = 1:m, where the output of the jth observer, denoted
Z;(t), is aimed at estimating x(t — o;—1). The output of the first observer, & (t), is
devoted to the observation of the current state z(t) (i.e., 2(t — 0p)) and is the output
of the chain observer. As we will see below, the jth observer is driven by the available
measurement pairs {;(t), 5i(t)}‘i or by the output Z;41(t) of the previous observer of
the chain, depending on whether 6;(t) < o; or 6;(t) > o;.

Given the system (1)—(2), where z(¢) is defined for ¢ > —A, and given 7, an
m-partition of A, let us define the delayed variables z;(t) = x(t — 0;_1), defined for
t > —A+o0;_1, which obey the m equations ;(t) = F(z;(t),u(t—0;-1)), j = 1:m. In
order to achieve a correct overall behavior, each observer in the chain must be driven
by a suitable transformation of the measurement pairs {gi(t),éi(t)}‘j, as described
below. The proposed chain of m observers is as follows:
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-1

(T4) () = F (@50, u(t — 051)) + (Qs(@5(1) " Ky(t) col{uat)}, 20,

.i‘j(T)Z(b(T—O'j_l), TG[—&J‘,O], (O'jZO’j—O’j_l), j:l:m,

q
(75) K;(t) = diag{e™™ iKY, K €RY >0,
(76) vii(t) = G5.6(t) — hi (25 (¢ — 05.4(t))),

where the transformed measurements (gjyi(t), 5j71-(t)) are defined, for i:¢, as

(77)
¥ii(t) =vyi(t —oj-1), 0,:(t) =0 if 0;(¢t) € [0,05-1), J=2:m,
yj.i(t), = 5i(t), 6,i(t) = 6i(t) —oj—1 if 6;(t) € [0j-1,05], j=1m,
F5,i(t) = hi(Z41(2)), 0;:(t) =a; i 6,(t) € o), 4], j=1:m—1.

Note that when 6;(t) € [0,0,-1), the measured output g;(t) is further delayed:
7i(t*) is used in the place of ;(t), with an additional delay o;_1 — §(¢*), where
t* =t +6(t*) — o_1. Overall, we have 7, ;(t) = y;(t — 0j_1), so that the jth observer
behaves as a delayless observer (d;,;(t) = 0) aimed at estimating x;(t) = z(t — o,_1).
When §;(t) € [0j-1,0;] the measurement is not modified, but from the viewpoint of
the jth observer the delay is 0; ;(t) = d;(t) —o;—1. When §;(t) € (0;, A], the measured
output is replaced by h;(Z;41(t)), that is, the estimate of y;(t — 0;) coming from the
(4 + 1)th observer of the chain. In this case the delay with respect to z(t — o,_1) is
d,.i(t) = &;. Using definitions (77) the modified measurements g, ;(t) and the output
error terms v;;(t) = §;.:(t) — hi (2;(t — 0;,4(¢))) in (74) are as follows:

(78)
5i(t) € [o,aj_l)} _ {yj,i(t) =it —0j1),

)
J=2:m = z/j,i(t):yi(tfojq)*hi(i"j(t)),
5i(t) e [aj_l,aj]} N {gj,i(t) =yt — (),  0;4(t) = 6i(t) — oj—1,
j=1:m = vi(t) =yt — 6:i(t)) — ha(2;(t — 0;.4(1))),

5i(t) € (0, 4] N Fji(t) = hi(Z41(t)), 5j,i(t) =0 —0j-1=0j,
j=1:m~—1 = VJ,(t hi (254 j
Figure 1 shows the chain configuration in the case of a scalar measurement, ¢ = 1 and
y = h(xz(t—95(¢t))). The chain has four observers, and the case illustrates the situation
when o9 > §(t) > 01. Here the current output is used for the observer Zs(t), whereas
the previous observers #3(t), £4(t) use past measurements. The first observer, &1(t),
that provides the estimate of x(t) uses the estimated output provided by Zo(t).

Remark 4. The new delays d;,;(t) are defined in (77) in such a way that d;,(¢) €
[0,5;], where 6; = 0j — 0;-1 < A, and §;(t) = Y71, 6;:(t) Vt > 0 (delay decom-
position). Note that in order to artificially introduce the delay o;_1 — 6;(¢) in the
measurement g;(t), when 6;(t) € [0,0,-1), the delays d;(¢) must be continuous func-
tions of ¢t > 0.

Now, consider, as in section 3, the change of coordinates z; = ®5(x;), and let
Gi(t) = @ (x;(t)), so that z;(t) = col’ {¢;i(t)} (z;(t) € R™). The dynamics of
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input
ult—o,) u(t—0,) u(t—o,) u(t)
v \i v A
Observer Observer Observer Observer
4 3 2 1
&,(t)>x(1=0;) %(1)»x(t-0,) %,(t)»x(t—0,) %,(1)2x(2)
[ V2 N N V2 B R EX00)
y(t—0,) y(t=o0,) y(t)=y(t-9,)
measurements k(1)=%,(1)

Fic. 1. Configuration of a chain of four observers, scalar measurement, when o2 > §(t) > o1.

zj(t) = @s(z;(t)) is 2;(t) = Asz;(t) + Bsp(z;(t),u(t — 0j-1)), t > —A + 0,1, while
the dynamics of 2;(t) = ®5(&;(t)) is

(19) &) = Ak (0) + Bep(5(0) ult — 0j-1) + K (1) col{ia®)},  ¢20,

Zi(r) = ¢§(¢(T - Uj—1)), T € [—3;,0].

In the z-coordinates, the modified outputs 7, ;(t) defined in (77) can be written as

s a(t) = {CSiCM(t —0;4(t)) if 6:(2) € [0, 0],

(80) CsiéjJrl,i(t) lf 51(0 S (O’j,A].

Remark 5. The measurement transformations (77) can be considerably simplified
if known lower and upper bounds Ay and Ay exist for the measurement delays, i.e., if
0i(t) € [AL,Ay] Vt > 0, i = 1:q. In this case, if an m-partition & is chosen such that
Om-1 = Ay and 0, = Ay, then the modified measurement pairs {7;(t), 5]-,1-(15)};11

defined in (77) are as follows:
(81) Gj.i(t) = hi(&j14(1), 6;4(t) =65,  j=1lim—1,

Ym,i(t) = 9i(1), Om,i(t) = 0i(t) — om—1.
Note that in this case the delays §;(¢) do not need to be continuous. In the particular
case of constant delays §;(t) = A, i = 1:q, then the second of (81) is replaced by
(82) gm,i(t) = gi(t)ﬂ 5m,i (t) = Om-

4.1. Convergence analysis. Before giving the main convergence result for the
chain observer (74), a preliminary lemma is needed. (The proof is in Appendix A.3.)
LemMA 8. Consider a delay system of the type
(83)  £()=b(t,&) +pult), =0,  with &(r)=¢(r), Te[-A0]
where & 1is the system state, with initial value ¢ € CX. p(t) € R™ is an input function,
and b: Ry x CR — R™ is such that, for some v, > 0,

(84) 1b(t, p1) — b(t, p2)|| < Wwllp1 — P2l V1,02 € CA, VE>0.
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Assume that, for a given 11 > 0, the solution & = 0 is globally 7-exponentially stable:
(85) pt) =0vt>0 = V&eCR, F3e>0: [|E@)| < e ™e vt > 0.

Then, given arbitrary i > 0 and n € (0,17), we have

86) [u® <e™aVt=0 = V& €ECR, Ie>0: €] < e e VE=0.

THEOREM 9. Consider system (1)—=(2) with §; : Ry — [0, A] continuous func-
tions, i = 1:q. Let conditions Hi, Ha, Hs be satisfied, and assume that ||u(t)|| < u
Vt > —A for some u > 0. For a given integer m > 1, consider an m-partition
g of A. Letn > 0 be a given desired error decay rate. Consider a strictly in-
creasing sequence of m positive numbers {n;}§" with no = n. Consider m-q pairs
(Kj4, Pji) € R¥ x X575 for (i,7) € (1:q) x (L:m), that satisfy m-q inequalities of
the type (34), with a = 2n; + a + 1, with arbitrary o > 0. For j = 1:m let

q
with B; =Y (K[ P )| Pt (1407 + (K;0)7).

i=1

87 A= 2fﬁj

Then, if 6; < A;, for j = 1:m, the system (74)~(76) is a global n-exponential chain
observer for system (1)—(2).

Proof. Consider the error equation of the jth observer in z-coordinates. Exploiting
the variables ¢ ;(t) and 2, ;(t), and using (80), the forcing terms v; ;(¢) of the observer,
defined as v;,;(t) = 7;,i(t) — hi(&;(t — 0;,4(t))), can be rewritten as

Coi (Gt =054 () = 25.4(t — 6;.4(1)))  if &:(t) € [0,05],

88)  vialt)= {c (3j414(t) = 25.4(t — 55)) if 5:(t) € (05, Al

Let us define the error components Z; ;(t) = (;;(t) — 2j,:(t). Notice that, by definition,
Cit1,i(t) = (j.i(t — G;4), so that in (88) we have
(89)  Zjrra(t) — 2t — 75) = Zj41,i(t) — 254(t — 6;5) — G414 (t) + Gjalt — ;)
= Zj,i(t = 0;5) = Zj+14(1),

and from this, recalling that d;;(t) = ¢; when §;(t) € (o, Al

S_”.it75.it f(szt s Vgl
000wty = { Sl 0@y T € o)

Csizj,i(t - 5j71(t)) - Csizj+1,i(t) if 51(0 € (O’j, A]
Thus, we can write in short
(91) vji(t) = Cs, 2t — 85,4(t)) — Co,x; (0:(1) Zj+1,4(2),  0alt) € [0, A],
where x; : [0, A] — {0,1} is the characteristic function of the interval (o;, A] (i.e.,
X;(0) =01if § € [0,05), x;(8) =11if § € (0,A]). Using (91) we can rewrite (79) as
(92)
Zj(t) = AsZ;(t) + Bsp; (2(t), u(t), 2(1)) + K; (1) CsZ; 5, (1) — K5 () Csy (t,0(t)), ¢ >0,
)



1878 F. CACACE, A. GERMANI, AND C. MANES

Note that for 7 = m this equation coincides with the single-step observer equation
of Theorem 5, so that, under the given conditions for &,, (i.e., &, < A,, given in
(87)) and for the gains K, ; (i.e., satisfying (34)), we have that the mth observer of
the chain is a global 7,,-exponential observer for x,,(t) = x(t — 0,,—-1), because by
construction d,, ;(t) € [0,6,,]. Thus, for any ¢ € CX there exists ¢, > 0 such that
2] < e t¢pn. Recalling that by assumption 7, > nm,—1, we have also

(93) [2m ()] < ™M 2tep,
Note that equations (92), for j = 1:m, are of the form
(94) ,éj (t) = bj (t, 'gj,t) =+ ,LLj (t, §j+1(t)), t Z 0, 2j70 c ng,

where the term y;(t,;41(t)) = —K;(t)Csn;(t,5(t)) can be regarded as an external
input to the jth observer. Thus, (92) is a system of the type (83) of Lemma 8. If
Zj+1(t) =0, the given assumptions on &; and K ; ensure, thanks to Theorem 5, that
the equilibria Z;; = 0 are 7;-exponentially stable. Thus, thanks to Lemma 8, the
following implication holds true for any j =1:m — 1:

(95)  ||1Zj1 ()| < e lejpq, forsome ¢ >0 = Jej: ||| < et

Thus, by finite induction, we have that inequality (93) implies that ||Z1(¢)|| < e~"%¢;.
Being ng = 1, the n-exponential observation error decay is proved. O

Now we can give the main theorem that ensures the existence of a global
n-exponential chain observer for any value of the maximum measurement delay A.

THEOREM 10. Under the same assumptions of Theorem 9 on system (1)—(2), for
any given desired error decay rate n > 0, and for any given mazimum delay A, there
exist m € N, a m-partition & of A and gains K;; € R%, (i,7) € (1:q) x (1:m), such
that (74)—(76) is a global n-exponential chain observer for system (1)—(2).

Proof. The proof is achieved by showing how to choose m € N, an m-partition
g, a sequence {n; }", and gains K ;, together with SPD matrices P; ;, such to satisfy
the assumptions of Theorem 9. Choose arbitrary ' > n and a > 0, and consider a
set of solution pairs (k;, P;) € R% x Zj}’“"’ for the ¢ inequalities (34), for i = 1:¢,
with a =20+ a+ 1. Set K ; = k;, P;; = P;, for j = 1:m. Let A’ and B’ be given
by (37) with 7 replaced by 1’ in the summation. Choose an arbitrary d,, < A let
m = [A/dy], and let 0; = LA, j = 1:m. Note that if m = 1 the assumptions
of Theorem 5 are satisfied, so we get a single-step global n-exponential observer.
Thus, we consider the general case m > 1. Note that with the chosen & we have
o; = % <dy < El, 7 = 1:m. Now choose an arbitrary strictly increasing sequence
{n;}g" such that no = n and 7, = 1. Being n; < 1/, it can be easily seen that the
chosen (K ;, Pj ;) are solution pairs of the m-q inequalities (34) with a = 2n; + o + 1.
Let A; be computed as in (87). Being 1; < 7/, we have 8; < 8/ and A; > A and,
as a consequence, o; < Ej, so that all the assumptions of Theorem 9 are satisfied.
This proves that with the given gains K ; and m-partition &, the system (74)—(76) is
a global 7-exponential chain observer for (1)—(2). 0

5. Guidelines for the tuning of a chain observer. Given a nonlinear system
of the type (1)-(2) and a multi-index 5 = {s;}{, with |s| = n, that defines an invertible
observability map z = ®5(x), and given a maximum measurement delay A, the chain
observer of order m defined in (74) is characterized by the time-varying gains K (¢),
defined in (75), and by a delay partition & = {o;}* (see Definition 7). When choosing
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the time-dependent gains K (¢) of the jth observer of the chain, the design parameters
are the constant gains K;; € R% for (j,i) € {1:m} x {1:¢}, and a set of m positive
reals 7 = {n;}7", a total of m(n + 1) parameters. In practical applications the use of
the convergence conditions of Theorem 9 or of Theorem 10 may be inconvenient for
two main reasons: the Lipschitz constant v, in the inequalities is difficult to compute,
and the convergence conditions are likely to be too conservative and restrictive. Thus,
a trial and error tuning procedure, based on computer simulations, is preferred.

In order to simplify the process of tuning the observer gains, these can be chosen
with the structure suggested in Theorem 6 for the single-step observer, K ; = l?:i(pj),
where k;(-) is defined as in (71), by choosing once for all the m vectors v; € R*, and
only tuning the scalar parameter p; € Ry. In this way, each observer of the chain
is characterized by the pair of scalar parameters (p;,7;), and the chain observer of
order m is characterized by the two sets of parameters p = {p;}7* and 7 = {n;}{*, a
total of 2m parameters.

A tuning procedure can roughly proceed as follows. The preliminary step consists
in choosing the ¢ vectors v; € R, i = 1:q. (These are the eigenvalues of the matrix
Ap — ki(1)Cp,.) Then, chain observers of increasing orders are tuned to achieve a
satisfactory observer error convergence in the presence of increasing measurement
delays, until the given maximum delay A is reached. The set of parameters p and 7
and the delay partitions & tuned for a chain observer of a given order m can be used
as a starting point for the tuning of the observer of order m + 1. The next section
provides an exemplification of this tuning procedure.

6. Example: Hyperchaos synchronization with buffered measurements.
As an example, the chain observer is applied to a problem of hyperchaos synchroniza-
tion when the measurements are stored in data packets before to be sent to the
processing unit (buffered measurements). Hyperchaotic systems find application in
the field of secure communications [30, 23]. In [8, 14] the following hyperchaotic
modification of the classical (chaotic) Lorenz system has been proposed:

( 2(t) *Il(t))v

1(t) + 22(t) — z1(t)as(t) — 2alt),
(t)x2(t) — ya3(t),

2(t)xs(t),

where for a = 10, 8 = 28, v = 8/3, and § = 0.1 exhibits a hyperchaotic behavior.
The following measurements on system (96) are assumed available:

_ o hl Z'(t — 51(t)) hl(l‘) xy,
(97) y(t) = [hQEZ‘(t 52(15));} , where { o(2) = 7 + 23,

8-

1(t

(
(t
(
(

(96) t

.Z‘4t

) =«
) =Bz
) =1
) =0z

We assume that the measurements are taken over regular time intervals of the type
[(k—=1)T., kT.) for k= 0,1,..., and are supplied to the processing unit at a high rate
during the time interval [kT., kT, + T,), where T, < T.. The first packet, available
to the observer at time ¢ = 0, is made of the measurements over the interval [—T¢, 0]
(thus, the maximum delay A is 7). The resulting delay functions are as follows:

T, — Lxto(t — kT.) if t € [kTe, kT, + To),

k=0,1,....
t — kT, ift € kT, + Ty, (k+ 1)T.),

(98)  4i(t) = {
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A () —
S ——

Fic. 2. Decomposition of the buffer delay function §;(t) for m = 2. (a) Plot of t — §;(t).
(b) Plot of 6;(t), 61,i(t), d2,:(t) (nonuniform 2-partition & = {o1,02}: A =01+ 62).

Figure 2 graphically represents the delay in the process of buffering and transmitting
measured data. In Figure 2(a) we see that, within a period T, the delivery data rate
is high for a short duration T,, and is 0 for a duration T, = T. — T, Figure 2(b)
shows the delay function §;(t) and its decomposition 01 ;(t) + d2;(t) associated to a
2-partition.

For simplicity, in the following the same delay has been assumed for both mea-
surements (97) (i.e., 01(t) = d2(t) = 0(¢)). For the observer construction we consider
the multi-index § = {2,2}. The computation of the observability map z = ®3(x) gives

h,l (Z‘) X
oy L) | afzs — 21)
(99) ®s(z) = ho (:C) o To + X3 ’
Lho(x) Bxr1 4+ 22 — 123 — T4 + T 122 — Y23

which is invertible in all R*.

Note that the Lorenz system (96) and the observability map (99) are locally
Lipschitz but not uniformly Lipschitz in all R". However, it is known that there
exists an invariant compact set for the system trajectories, and in this set the Lipschitz
assumptions H; and Ho are satisfied (see Remark 3).

Chain observers for m = 1, 2, 3 have been designed for system (96)—(97) for differ-
ent values of the maximum delay A (recall that A = T¢.). In the buffered measurement
model we consider the time T, negligible with respect to T,. The guidelines given in
section 5 have been followed for tuning of the observers. The choice K;; = k;(p;),
i = 1,2, where k;(-) is defined as in (71), and v; = vy = [~1.00 —1.05]7, has been done.
We tuned the single-step observer first (m = 1), and with (p1,m) = (18,36) we had
convergence for any A < 0.140. Then we considered a chain observer with m = 2,
where we set (p2,7m2) = (18,36) and then tuned the two parameters (p1,71) only,
achieving satisfactory convergence with (p1,n1) = (16,16) and A = 0.240. The chain
observer with m = 3 was designed by setting (p3,n3) = (18,36), (p2,12) = (16, 16)
and then tuning the parameters (p1,71). The results are summarized in Table 1 and
clearly show that larger measurement delays can be handled increasing the order m
of the chain observer.

The true variable z4(t) and the observed one 2 4(t) (the fourth component of
the output #;(¢) of the first observer in a chain with m = 3) are plotted in Figure 3,
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TABLE 1
Parameters used in the chain observers and maximum delays achieved.

1881

|| [ =i [ w7 ] n=3
max A 0.140 0.240 0.340
m-partition || & ={0,0.140} | & = {0,0.05,0.240} & = {0,0.05,0.120,0.340}
(pj, 77]') (18,36)1 (16,16)1 (18,36)2 (13,12)1 (16,16)2 (18,36)3
60 102 : : :
50 r % 100 Ly 4
x
40 | | |
% s § 1070 d
X 20t o
-6 L
10 T § 10
i Pl
ol | E 1078}
i 3
-10 i 1 L 10*10 L L L
0 2 4 6 10 0 5 10 15
time time

20

Fia. 3. True and observed variable x4 using the chain observer with m = 3 and output buffering
interval Te = 0.3 (left), and the logarithm of the observation error (right).

T T T
y(t) undelayed output

91,1 (0) ——

T T T
y(t) undelayed output

95,1 (8) ——

T T T
y(t) undelayed output

V3,1 (8) —

Fia. 4.

1.2

1.5 1.8

time

True undelayed output yi(t) of system (96)—(97) and transformed outputs §i,1(t),

92,1(t), 3,1(t) for the chain observer of order m = 3 under buffered measurements with T, = 0.3.

together with the logarithm of the absolute observation error in the case T, = 0.300.
The delay partition used in this simulation is & = {0, 0.5,0.12,0.3}, and the observer
gain parameters are p = {16, 18, 20}, 7 = {20, 21, 22}. The initial conditions
are z(0) = [4.0, 2.4, 24.6, 27.2]T for the system and Z(7) = [4.0, 2.0, 25.0, 28.0]7T,
7 € [-A, 0] for the observer. In the log-plot of the error the exponential decay of the
observation error is evident. In Figure 4 the true undelayed output y;(t) is plotted,
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together with the transformed outputs ;1(t), 7 = 1,2,3. Recall that g; 1(t) is the
input to the ith observer in the chain. Note that g3 1(¢) coincides with the measured
output 71 (t) = y1(t — 6(¢)) when 8(t) € [o2,T¢], while for 6(¢) € [0,02) ¥3,1(t) is the
artificially delayed output y1(t — o2). 91,1(t), the input to the first observer, coincides
with §1(¢t) when 0(t) € [0,01]. When () € (01,T¢c] 91,1(t) is the estimate of the
output y; at time t — o1 provided by the second observer, i.e., gm(t) =hy (:ﬁg (t))

7. Conclusions. An approach for the chain-observer design in the case of non-
linear systems with vector output and time-varying measurement delays has been
presented in this paper. When the maximum delay is sufficiently small, then a single-
step observer can achieve a prescribed exponential observation error decay. A cascade
of observers is needed to deal with larger delays. With respect to previous proposals of
cascades of observers we have introduced a more flexible design that allows nonuniform
delay intervals for each observer in the chain. Although no continuity assumption for
the time-varying delay is needed for the implementation of the single-step observer,
the continuity is required for the chain-observer implementation. The case of buffered
measurements has been considered as an example. Future research will be aimed at
investigating alternative chain structures that do not need the continuity hypothesis
on the delay function.

Appendix. A.

A.1. Some facts on the Vandermonde matrix. Let (4,, B,,C,) denote a
Brunowsky triple of order p, defined as [4,];; = 1if i = j—1 and [4,];; = 0
elsewhere, [B,], = 1 and [Bp); = 0 for ¢ < p, and [C}]1 = 1 and [C}]; = 0 for ¢ > 1.
Let 1, € R? denote a vector of ones of dimension p. For a given v € C?, let vy,...,v,
denote its components, and let v(*) denote the componentwise kth power of v and let
V(v) denote the Vandermonde matrix associated to v, defined as

k p—1

V] V] R |
(100) oW =11, Ve)=[rD ... v 1,]=1] :
U;f v;”l ey 1

It is known that V(v) is nonsingular if and only if the components of v are all distinct
and nonzero. Let

(101) Alv) = dlglg{vl} and  k(v) = =V (v) @,

It is easily seen that A(v)V (v) = V(v)4, +v®)C,, and therefore

(102) V(v)(Ap - k:(v)Cp) = A@)V(v) and V(v) (Ap - k:(v)Cp)V_l(v) = A(v),
which means that k(v) assigns the eigenvalues v, . .., v, to the matrix A, —k(v)C,. It

follows that for any given p € R, we have V(pv) (A, — k(p,v)Cp)V 1 (pv) = A(pv) =
pA(v). Tt is not difficult to see that

) V(pv) = V() difalg{p*j b
(103) k(pv) = diag{p’ }k(v), .
j=1 V7 (po) = diag{p}V " (v)p ™"
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LemMMA 11. For any pair a > 0 and b > 0, there always exists a solution pair
(k, P) € R? x X077 to the inequality

(104) (Ap —kCp)" P+ P(A, — kCp) +aP+bl,, (B} PB,) <0.

Moreover, for any given v € RP, with distinct and negative components, the pairs

(k(p), P(p)) defined as

(105) k(p) = k(pv), P(p) =V (p0)V(pv)

are solution pairs if

-1 2
(106) p>max{1,a+bp||v ()l },

2w

where w = —maxt_, (v;).
Proof. Note first that, by assumption, v has all distinct components, and therefore
V(pwv) is nonsingular, and therefore P(p) € £8P, From (102) we have

— - - T_
(107) P(p)(Ap = k(p)Cy) = (4 — k(p)Cy) " P(p) = VT (pv)Alpv)V (pv).
Thus, inequality (104) becomes
(108) 2V (pv)A(pv)V(pv) +a VT (pv)V(pv) + b I (By VT (pv)V(pv)By) < 0.
Note that V(pv)B, = 1, so that BL VT (pv)V(pv)B, = 1]1,, = p. Premultiplying
by (V(p v))_T and postmultiplying by V~1(pv) the inequality (108), we get
(109) 2A(pv)+al,+bp (V(pv))_TV_l(pv) <0.

Since A(pv) < —pw Iy, and V=TV~ < |[V71|21, and, for p > 1, since ||V (pv)||* <
[V=1(v)]|?, we have

(110) 2A(p0) +aly+bpV-T(p0)V " (pv) < —2pwl, +aly+bp |V @)L,
Thus, the inequality (109) holds for any p > 1 such that
(111) —2pw+a+bp |V w)|? <0.

It is clear that condition (106) implies (111), and this in turn implies (109), and the
lemma is proved. a

A.2. Proof of Lemma 4. - _
Proof. Note first that the matrices k;(p) and P;(p) defined in (35) can be written

as
(112) ki(p) = k(pvi),  Pilp) = VT (pvi)V(pvi), i=1:q,

where k(-) is defined in (101). Thus, with the choice (35) we have V' (pv;)Bs, = 1, and
(BLPi(p)Bs,) = 111, = s;. Being |5| = Y], = n by assumption, the summation

in (34) is n. Thus, the ¢ inequalities (34) can be rewritten as

T —

(113) (Asl - El(p)cﬁ) Pl(p) +p%(p)("451 - ‘I;:i(p)csz) + a’pt(p) +bn[51 <0.

The condition (36) on p is easily obtained following the steps of Lemma 11 for each
of the ¢ inequalities (113). O
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A.3. Proof of Lemma 8.

Proof. For the given n € (0,17), let €(t) = €"*¢(t), and let 7 = 7 — 7. From this
definition, €, is the state of a delay system whose trivial solution ¢; = 0 is globally
7-exponentially stable. In order to derive the system equations for €;, let us consider
the operator L, : R x CX ~ CR, defined as L, (t,$)(t) = e "+ Te(7), 7 € [-A,0].
Thus, by definition, & = L,(t,e;). The computation of the time-derivative of e(t)
gives é(t) = ne(t) + e?tb(t, &) + €?tu(t), and from this we get the system

é(t) = by(t, ) + e p(t), t>0,

(114) )
eo(T) = e (1), T € [-A,0],
where by (t, ;) = ne(t) + €' g(t, Ly(t, €)), and is such that

1By (£, 61) = by(t d2) | < mlldr — ll + € [b(t, Li(é1)) — b(t, Ly(¢2))
<nllér — dall + " )| Ly(d1) — Ly(¢2)]|

thanks to assumption (84). Since ||L,(t, ¢1) — || Ly (¢, ¢2)|| < e MR || py — ¢ol|, the
following holds true:

(115)

(116)  [Iby(t, 61) = by(t, d2)l| < (1 + Wwe™) |61 — @2l Vor,¢2 €CK, Wt 2 0.

It follows that system (114) satisfies the assumptions of Theorem 3.2 in [31] and
therefore is input-state-stable i.e.,

(117) le"u@®)|| <pVvt>0 = Veo €CR, Je>0: |e(t)] <c VE>0.

From this, being || u(t)| < ||e"u(t)]|, the thesis (86) easily follows. 0O
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