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nr.itA. TATONEDISAT, Fa
olt�a di IngegneriaUniversity of L'Aquila67040 Montelu
o di Roio (AQ), ItalyE-mail: tatone�ing.univaq.itBlood 
ow in a 
urved artery is des
ribed as the motion of a vis
ous 
uid througha 
urved thin-walled elasti
 tube. Under the hypothesis of small 
urvature, anasymptoti
 analysis is 
arried out to solve the governing unsteady 3D equations.The model results an extension of the Womersley's theory for the straight elasti
tube. A numeri
al solution is found for the �rst order approximation and 
om-putational results are �nally presented, demonstrating the role of 
urvature in thewave propagation and in the development of a se
ondary 
ow.1. Introdu
tionThe unsteady 
ow of a vis
ous 
uid in 
urved 
onduits is relevant for severalappli
ations, parti
ularly in vas
ular 
uid dynami
s. Most of the arteriesare moderately 
urved and blood 
ow through them is a�e
ted by 
entrifu-gal for
es whi
h tend to set up se
ondary 
ows, re
ir
ulating 
uid vorti
esand 
ause a non symmetri
 distribution of the pressure and of the wall shearstress1;2. However, little attention has been given to address the e�e
t ofthe 
urvature on all the 
omponents of the 
ow velo
ity and on the pres-sure �eld. Another relevant aspe
t of the 
urvature is the in
uen
e on wallshear stresses in relation to atheros
leroti
 diseases and the examination oftime varying 
ow rates3.The steady 
ow in a toroidal rigid tube has been the obje
t of a thoroughinvestigation by Dean4. Most of the literature on 
ows in 
urved tubes referto su
h a basi
 work and 
on
ern various extensions to the unsteady 
ase,1
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2but all are 
on�ned to rigid wall 
onduits5;6;7. On the other hand, when
onsidering physiologi
al appli
ations, wall 
omplian
e and its intera
tionwith the 
uid 
onstitute essential aspe
ts that 
annot be disregarded. The
lassi
al works of Womersley8 shed light on the 
ow through an elasti
straight tube and opened a series of following studies on the 
hara
teris-ti
s of the wave propagation in arteries9;10;11;12;13;14. The present workextends the theory of Womersley, re
asting the 
ow in a 
urved tube as asmall 
orre
tion of that in a straight one. The formulation is based on theprin
iples of 
uid and solid me
hani
s and, under general and realisti
 as-sumptions, a formal 
omplete pro
edure is des
ribed to get the �nal form ofthe 
uid-wall intera
tion model equations. In a wave propagation 
ontext,the dependen
e of the model on four independent parameters is outlined:the pressure amplitude, the pulse frequen
y, the elasti
ity modulus and the
urvature ratio. In parti
ular, through a number of numeri
al experiments,the role of the latter is highlighted, and the 
hara
ter of the se
ondary 
owaddressed15.2. Fluid-stru
ture intera
tionThe motion of blood in a bended vessel is modelled by the 
ow of a vis-
ous 
uid in a 
urved elasti
 tube, with the geometry of a torus. This isassumed to have a planar axis, a 
ir
ular 
ross se
tion of radius a and a
onstant radius of 
urvature R. An in
ompressible newtonian 
uid of vis-
osity � and density � is 
owing within. The dynami
s indu
ed by the walldeformability modi�es the 
uid domain and its boundary 
onditions, and
onversely, the 
ow �eld, through the stress exerted on the wall, indu
esthe wall deformation (
uid-stru
ture intera
tion). Let us �rst model boththe 
uid and the solid 
ontinuum systems with the me
hani
al 
onservationlaws.The 
uid motion is given by the Navier-Stokes equation:���v�t + v � rv� = �rp+ ��v (1)with v the velo
ity and p the transmural pressure. The 
uid in
ompressi-bility reads as: div v = 0 (2)To model the vessel wall motion, we shall assume this is made of a thinshell of a small thi
kness h � a and the theory of membranes is used to
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Figure 1. Cross se
tion of the tube (inner wall at the left, outer wall at the right) andtoroidal 
oordinates (r;  ; �).approximate it. For an elasti
 solid subje
t to external for
es, the balan
eequation is16: divS = p � n� 2�D � n� �t�u (3)where S is the membrane stress tensor, D is the deformation gradient,u the wall displa
ement and �t the wall density. Owing to the small walldeformations, the membrane stress tensor S is expressed as a linear fun
tionof the strain tensor E:S = 0�hB(��� + ��  ) 2hG �� 2hG �� hB(�  + ����)1A (4)where E is the modulus of elasti
ity, � is Poisson's ratio, B = E1� �2 andG = E2(1 + �) the shear modulus16.Mat
hing between 
uid and wall velo
ities is imposed as interfa
e 
uid-wall 
ondition: v = _u (5)Be
ause of the geometry of the problem, it is 
onvenient to express the
uid and wall equation in a toroidal 
oordinate system (r; �;  ) (see �g. 1).
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4We denote by v = (u; v; w) the radial (r), the tangential ( ) and the axial(�) 
omponents of the 
uid velo
ity, and by u = (�; �; �) the 
orrespondent
omponents of the wall displa
ement.3. Wave solutionThe steady 
ow in a 
urved rigid tube has been analyzed by Dean whofound an analyti
al solution4. He used a perturbation approa
h based onthe 
urvature parameter " = aR , whi
h is supposed to be small, su
h thatthe solution up to the �rst order is �� = ��0 + "��1 , being ��0 the steadystate solution in a straight rigid tube (Hagen-Poiseuille 
ow), and ��1 isthe 
orre
tion due to the 
urvaturea. It is well known that the vas
ular
ow 
an be de
omposed in a steady dominant part and, due to the wall
omplian
e, in a small os
illatory 
omponent over it3. As a 
onsequen
e, itis reasonable to look for a solution made up of a wave (unsteady 
omponent)superimposed on the previous steady solution, namely:� = ��(r;  ) + ~�(r;  )ei(!t�kz) (6)where ! is the 
ir
ular frequen
y, k the wave number (
onsequently 
 =!Re(k) is the wave speed) and z = R� a 
urvilinear axial 
oordinate.To simplify the mathemati
al problem, let us assume the unsteady so-lution is small enough su
h that the the response of the system 
an belinearized, with respe
t to the wave amplitudes, over the steady state solu-tion. By means of some additional hypothesis on the wave 
hara
teristi
s, afurther simpli�
ation 
on
erning the relative magnitudes of some di�usiveterms is made13. The �nal equations are:Continuity equation:�u�r + ur + 1r �v� + u sin R+ r sin + v 
os R + r sin + RR + r sin �w�z = 0 (7)Flow equations:���u�t � 2 �ww sin R+ r sin � = ��p�r + ���2u�r2 + 1r �u�r + 1r2 �2u� 2 + sin R+ r sin �u�r+
os r (R+ r sin ) �u� � ur2 � 2r2 �v� � vR 
os r (R+ r sin )2 � 2R sin (R+ r sin )2 �w�z �u sin2  (R+ r sin )2 � 2v sin 
os (R+ r sin )2� (8)a� denotes the global solution of the 
uid-stru
ture intera
tion problem.
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5���v�t � 2 �ww 
os R+ r sin � = �1r �p� + ���2v�r2 + 1r �v�r + 1r2 �2v� 2 + 2r2 �u� +uR 
os r (R+ r sin )2 + sin R+ r sin �v�r + 
os r (R+ r sin ) �v� � vr2 � 2R 
os (R+ r sin )2 �w�z �v 
os2  (R+ r sin )2� (9)��w�t = � RR+ r sin �p�z + ���2w�r2 + 1r �w�r + 1r2 �2w� 2 + sin R+ r sin �w�r +
os r (R+ r sin ) �w� � w(R+ r sin )2� (10)Wall equations:�th�2��t2 = �p� 2��u�r �r=a � hB 2664� + ��� a2 + sin �� sin + � 
os +R���z�(R+ a sin )2 3775��hB 2664 sin �2� + ��� �+ � 
os +R���za(R+ a sin ) 3775 (11)

�th�2��t2 = �� �1r �u� � vr + �v�r �r=a + hB 2664 ��� + �2�� 2a2 + 
os 0BB� � + ��� a(R+ a sin )�� sin + � 
os +R���z(R+ a sin )2 1CA375+ �hB 2664�� sin + sin ��� +R �2�� �za(R+ a sin ) 3775+hG2664 R �2��z� a(R+ a sin ) + R2 �2��z2 �R 
os ���z(R+ a sin )2 3775 (12)
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6 �th�2��t2 = �� � RR+ a sin �u�z � w sin R+ a sin + �w�r �r=a+hB 2664R sin ���z +R 
os ���z +R2 �2��z2(R+ a sin )2 3775+ �hB 2664R���z +R �2�� �za(R+ a sin ) 3775+hG2664 1a2 �2�� 2 + R �2�� �z + � sin + 
os ��� a(R+ a sin ) + R 
os ���z � � 
os2  (R+ a sin )2 3775 (13)Interfa
e 
onditions:���t = u����r=a ���t = v����r=a ���t = w����r=a (14)4. Asymptoti
 analysisA perturbation method is used to study the in
uen
e of a moderate 
urva-ture with respe
t to the straight 
ase. First of all, the governing equationsare written in terms of a normalized radial variable y = ra (0 � y � 1). Asthe 
urvature parameter " = aR is assumed to be small (� 1), the tildedquantities ~� (amplitudes) in Eqs. (6) are expanded as a power series of "over an axisymmetri
 solution �0(y). By omitting the ~ sign at the righthand side, we have:~�(y;  ) = �0(y) + "�1(y;  ) + "2�2(y;  ) + ::: (15)The series Eq. (15) is substituted in the 
uid and wall governing equations,and terms of the same power of ", up to the �rst order, are equated.In the asymptoti
 expansion Eq. (15), �0 
orresponds to the axisymme-tri
 solution in a straight elasti
 tube (Womersley solution)8. By equatingthe 1st order terms in the governing Eqs. and separating the variables asfollows: u1 = û1(y) sin v1 = v̂1(y) 
os w1 = ŵ1(y) sin p1 = p̂1(y) sin �1 = �̂1 sin �1 = �̂1 
os �1 = �̂1 sin (16)
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7the problem redu
es to a system of linear ordinary di�erential equations(by omitting the ^ sign):du1dy + u1y � v1y � ikaw1 = �(ikayw0 + u0) (17)d2u1dy2 + 1y du1dy �� 2y2 + i�2�u1 + 2v1y2 � a� dp1dy = ��du0dy + 2ikaw0 + 2a �w0� w0�(18)d2v1dy2 + 1y dv1dy �� 2y2 + i�2� v1 + 2u1y2 � ap1�y = ��u0y + 2ikaw0 + 2a �w0� w0�(19)d2w1dy2 + 1y dw1dy �� 1y2 + i�2�w1 + ika2� p1 = ��dw0dy � ika2y� p0� (20)�1� �ta2!2B � �1 � �1 � ika��1 = aBh �ap1 � 2�du1dy �y=1 � 2��0 + ika(1� �)�0(21)��1 + k2a2GB � �ta2!2B � �1 + �1 � ika�GB + �� �1 = a�Bh �u1 + dv1dy � v1�y=1��0 � ika�1 + GB� �0 (22)��GB + k2a2 � �ta2!2B � �1 � ika��1 + ika�GB + �� �1 = a�Bh �dw1dy � w0�y=1�ika(� � 1)�0 ��GB + 2k2a2� �0 (23)Be
ause of the 
ontinuity of the physi
al variables in y = 0, the followingboundary 
onditions are imposed in the origin:u1(0) = v1(0) u01(0) = v01(0) = 0 p1(0) = w1(0) = 0 (24)and the 
uid-wall mat
hing velo
ity 
onditions are set at the wall (
fr. Eq.(14)): i!�1 = u1(1) i!�1 = v1(1) i!�1 = w1(1) (25)The 
uid-stru
ture intera
tion �rst order problem is similar to the zero-th order problem, but la
k of geometri
al symmetry makes the sear
h ofanalyti
al solutions hard. Therefore the non homogeneous system is solved
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8numeri
ally. The 
ow Eqs. (17){(20) are dis
retized in [0; 1℄ by upwind�nite di�eren
es17. Coupled with the 
ow equations, the wall motion Eqs.(21){(23) are solved together with the boundary 
onditions (24) in y = 0and with the interfa
e 
onditions (25) in y = 1. A numeri
al strategy isdevised to stabilize the ill-
onditioned algebrai
 problem.5. Numeri
al results and dis
ussionOn
e the 0th order solution is obtained analyti
ally and 1st order solutionis 
omputed, the full solution is then reassembled as:� = ��+ ~�ei(!t�kz) = ��+ j~�j 
os �!t� Re(k) z + ��exp(Im(k) z) (26)with � = arg(~�) (see Eq. (6)). It follows that all the variables have anos
illatory evolution in time, superimposed over the steady state solution,with amplitude j~�j and a phase lead or a phase lag �. Both amplitude andphase are independent of time, while the amplitude has a damping fa
torgiven by exp(Im(k)z).The physi
al problem depends on a large number of parameters, ea
h ofthem may vary in a quite wide range, and there is an enormous variety ofdi�erent limiting 
ases. In the present work we will fo
us the attention onthe in
uen
e of 
urvature { parametrized by " { and letting all the others�xed.In the simulations, we take the following numeri
al parameters, referredto the vas
ular 
ow in a medium sized arterial segment:! = 2� s�1 a = 0:5 
m h = 0:05 
m E = 107 dyne=
m2� = 0:04g 
m�1 s�1 � = �t = 1 g=
m3 � = 0:5A = 26000 dyne=
m2 d�p0dz = 7 dyne=
m3The mesh size has been taken as �y = 0:02 
m.A 
ross se
tion of a 
urved tube with the inner wall at the left side is
onsidered (Fig. 1). Eq. (26) is used to plot the 
ow pattern, the pressuredistribution and wall deformations for a given time (t = 0) and a �xed axial
oordinate (z = 0).The e�e
t of the 
urvature is examined by letting " vary as " =0; 0:05; 0:1, and the 
orrespondent amplitudes of the unsteady solution�0 + "�̂1 are depi
ted in Fig. 2. Note that in a 
urved tube the solu-tion be
omes asymmetri
 and the degree of skewness in
reases with ". Thestru
ture and the evolution of the se
ondary 
ow is shown in Fig. 3. For
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Figure 2. Amplitude of the unsteady solution �0 + "�̂1 for " = 0 (
ontinuous line)," = 0:05 (dashed line) and " = 0:1 (dotted line) along [�1; 1℄.the values of the parameters 
onsidered, a single vortex appears at mosttimes, but a se
ond vortex deta
hes from the wall and develops at the endof ea
h half-
y
le in the opposite dire
tion. The strength of the se
ondarymotion is measured through the index � = maxr; p(Re~u)2 + (Re~v)2 (maxi-mum modulus of the 
ross se
tion velo
ity). Axial velo
ity peak is shiftedalternately inwardly and outwardly, and a reversal 
ow takes pla
e at someinstants.The amplitudes of the two 
omponents of the wall shear stress are ob-tained from the 
ow �eld as:~� = ~�0 + "~�1 = "~�1 = �"a �û1 + dv̂1dy � v̂1�y=1 
os (27)~�z = ~�0z + "~�1z = �a �d ~w0dy + "�dŵ1dy � ŵ0� sin �y=1 (28)From Eq. (27) it follows that the 
ir
umferential stress ~� is present onlyin a 
urved tube and varies over a zero mean. On the other hand, the axial



November 29, 2004 12:35 Pro
eedings Trim Size: 9in x 6in simaws
10

−1 0 1

t = 0.105

Σ= 7.705

−1 0 1

t = 0.23

Σ= 9.255

−1 0 1

t = 0.355

Σ= 6.894

−1 0 1

t = 0.48

Σ= 2.227

−1 0 1

t = 0.605

Σ= 4.769

−1 0 1

t = 0.73

Σ= 5.154

−1 0 1

t = 0.855

Σ= 2.794

−1 0 1

t = 0.98

Σ= 4.559

Figure 3. Streamlines and se
ondary 
ow (above) and 
ontour equispa
ed lines for axialvelo
ity (below - 
ontinuous lines indi
ate positive levels, dashed lines negative levels,bold line zero levels) at eight times in a period at z = 0. The plot refers to the steadystate solution summed up to unsteady solution ��+ ~�ei(!t�kz), with " = 0:1. A doublevortex develops at the end of ea
h half-
y
le in 
orresponden
e of a small �.
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Figure 4. Amplitude at t = 0; z = 0 of the axial (~�z) and hoop (~� ) wall shear stressesas fun
tions of ". The plots refer to the maximum values with respe
t to  .wall shear stress ~�z varies over the 
orrespondent value for the straight tube~�0z and its extrema are attained at  = ��2 (Eq. (28)). Both of them varylinearly with ", are opposite in sign, and the magnitude of the ~� is smallerthan ~�z (Fig. 4).Similarly to all the 
ow variables, the wall displa
ements are trigono-metri
 fun
tions of  (see Eq.(16)): as 
onsequen
e j~�j and j~� j are maximumat  = ��2 , while j~�j rea
hes its peaks at  = 0 and  = �), varying overtheir 0-th order mean. For a E . 106, the axial displa
ement amplitudebe
omes ex
essively large and this model is not 
onsistent with the theoryof linear elasti
ity and hen
e no longer representative.For additional results and a more extensive dis
ussion, see Ref. 15.A
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