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BLOOD FLOW THROUGH A CURVED ARTERY
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Blood flow in a curved artery is described as the motion of a viscous fluid through
a curved thin-walled elastic tube. Under the hypothesis of small curvature, an
asymptotic analysis is carried out to solve the governing unsteady 3D equations.
The model results an extension of the Womersley’s theory for the straight elastic
tube. A numerical solution is found for the first order approximation and com-
putational results are finally presented, demonstrating the role of curvature in the
wave propagation and in the development of a secondary flow.

1. Introduction

The unsteady flow of a viscous fluid in curved conduits is relevant for several
applications, particularly in vascular fluid dynamics. Most of the arteries
are moderately curved and blood flow through them is affected by centrifu-
gal forces which tend to set up secondary flows, recirculating fluid vortices
and cause a non symmetric distribution of the pressure and of the wall shear
stress'2. However, little attention has been given to address the effect of
the curvature on all the components of the flow velocity and on the pres-
sure field. Another relevant aspect of the curvature is the influence on wall
shear stresses in relation to atherosclerotic diseases and the examination of
time varying flow rates®.

The steady flow in a toroidal rigid tube has been the object of a thorough
investigation by Dean*. Most of the literature on flows in curved tubes refer
to such a basic work and concern various extensions to the unsteady case,
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but all are confined to rigid wall conduits®%7. On the other hand, when
considering physiological applications, wall compliance and its interaction
with the fluid constitute essential aspects that cannot be disregarded. The
classical works of Womersley® shed light on the flow through an elastic
straight tube and opened a series of following studies on the characteris-
tics of the wave propagation in arteries?:10:11:12:13.14 " The present work
extends the theory of Womersley, recasting the flow in a curved tube as a
small correction of that in a straight one. The formulation is based on the
principles of fluid and solid mechanics and, under general and realistic as-
sumptions, a formal complete procedure is described to get the final form of
the fluid-wall interaction model equations. In a wave propagation context,
the dependence of the model on four independent parameters is outlined:
the pressure amplitude, the pulse frequency, the elasticity modulus and the
curvature ratio. In particular, through a number of numerical experiments,
the role of the latter is highlighted, and the character of the secondary flow
addressed!.

2. Fluid-structure interaction

The motion of blood in a bended vessel is modelled by the flow of a vis-
cous fluid in a curved elastic tube, with the geometry of a torus. This is
assumed to have a planar axis, a circular cross section of radius a and a
constant radius of curvature R. An incompressible newtonian fluid of vis-
cosity p and density p is flowing within. The dynamics induced by the wall
deformability modifies the fluid domain and its boundary conditions, and
conversely, the flow field, through the stress exerted on the wall, induces
the wall deformation (fluid-structure interaction). Let us first model both
the fluid and the solid continuum systems with the mechanical conservation
laws.
The fluid motion is given by the Navier-Stokes equation:

0
p<a—:+v-Vv> =—-Vp+ pAv (1)

with v the velocity and p the transmural pressure. The fluid incompressi-
bility reads as:

dive =0 (2)

To model the vessel wall motion, we shall assume this is made of a thin
shell of a small thickness h < a and the theory of membranes is used to
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Figure 1. Cross section of the tube (inner wall at the left, outer wall at the right) and
toroidal coordinates (r,,0).

approximate it. For an elastic solid subject to external forces, the balance

equation is!'®:

divS =p-n—2uD -n — psi (3)

where S is the membrane stress tensor, D is the deformation gradient,
u the wall displacement and p; the wall density. Owing to the small wall
deformations, the membrane stress tensor S is expressed as a linear function
of the strain tensor E:

hB(egp + oeyy) 2hG egy,
S = (4)
2hG €9y hB(EW/, + 0699)

E
where E is the modulus of elasticity, o is Poisson’s ratio, B = 12 and
-0
E
G = ———— the shear modulus!®.
2(1+0)

Matching between fluid and wall velocities is imposed as interface fluid-
wall condition:

v=1u (5)

Because of the geometry of the problem, it is convenient to express the
fluid and wall equation in a toroidal coordinate system (r,6,1)) (see fig. 1).
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We denote by v = (u,v,w) the radial (r), the tangential (¢) and the axial
(0) components of the fluid velocity, and by u = (1, &, () the correspondent
components of the wall displacement.

3. Wave solution

The steady flow in a curved rigid tube has been analyzed by Dean who
found an analytical solution*. He used a perturbation approach based on
the curvature parameter £ = %, which is supposed to be small, such that
the solution up to the first order is x = xo + X1 , being Xqo the steady
state solution in a straight rigid tube (Hagen-Poiseuille flow), and ¥ is
the correction due to the curvature®. It is well known that the vascular
flow can be decomposed in a steady dominant part and, due to the wall
compliance, in a small oscillatory component over it?. As a consequence, it
is reasonable to look for a solution made up of a wave (unsteady component)
superimposed on the previous steady solution, namely:

X = X)) + X (r, )k (6)

where w is the circular frequency, k¥ the wave number (consequently ¢ =

w . .. . .
Re—(k) is the wave speed) and z = R a curvilinear axial coordinate.

To simplify the mathematical problem, let us assume the unsteady so-
lution is small enough such that the the response of the system can be
linearized, with respect to the wave amplitudes, over the steady state solu-
tion. By means of some additional hypothesis on the wave characteristics, a
further simplification concerning the relative magnitudes of some diffusive
terms is made'®. The final equations are:

Continuity equation:
ou u 10v usiny v COS Y R ow
=t =+ -+ 4+ —— + — =
or r rdyY R+rsingy R+rsing  R4rsing 0z
Flow equations:

P\ ot R+rsiny )~ or or2 " ror r20¢?2 R+ rsiny Or
cos ou u 2 Ov vRcos vy _ 2Rsiny  Ow

r(R+rsing) 0y 12 120y  p(R+rsing)?  (R+rsing)? 02

u sin? Y 2vusingcosy
(R+rsiny)?2 (R4 rsin 1/))2>

(7)

(8)

2y denotes the global solution of the fluid-structure interaction problem.
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P\ &t R+rsineg ) r oy H\or2 T 7 or r2 o2 - r2 9y
uR cos singy  Jv cos Ov v 2Rcosy Ow
r(R+rsiny)? R+rsingdr  r(R+rsing) 0y  r>  (R4rsing)? 0z

2
vcos.w ‘ (9)
(R + rsin)?
ow_ R (0w 1w 10w sny ou,

Par = R+ rsingy 0z or2 " rdr  r20o¢Y?  R+rsingy Or

cos ¢ ow w (10)
r(R+rsiney) 0y (R + rsinq)?

Wall equations:

n+a—i sin¢(nsin¢+§cosd)+R%>

3’y du 9
Pthoe = [p B 2“EL_G ThBl e R+ asing)?
sin ¥ 27)+g +§cos1j)+R%
—ohB 0y 9 (11)
7 a(R + asin )
an | 0% d¢
e 10u v v oy Y2 o)
PihE = —H [;@ T 5L_a ThB e s | R s )
. - i
nsin¢+§cos¢+R% —551n1/)+51n¢—n+R <
_ 0z 1 ohB oY 00z
(R + asin)? a(R + asin )
0° 2
P (; RQa—g—Rcosz/)%
+hG 20¥ 0z 50z (12)
a(R + asin) (R + asin))?
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h& _ R Ou  wsiny ow n
Pt = 7H R+asiny 0z R4asing  0Or],._,
2 0 d?
Rsin¢@+Rcos¢%+R28—g Ra—n-l-R6 ;
hB 0z 0z 0z + ohB 2 1/) z
(R + asin)? a(R + asin )
¢ . ¢ o€ )
o i&4_}2a¢az+Csm1,/)+cos1lJ@+Rcos¢£—§cos ) (19)
a2 Oy? a(R + asin) (R + asin )2
Interface conditions:
n =u o¢ =v o¢ = (14)
at r=a at r=a at r=a

4. Asymptotic analysis

A perturbation method is used to study the influence of a moderate curva-
ture with respect to the straight case. First of all, the governing equations

“o<y<1). As
a
the curvature parameter € = 2 is assumed to be small (« 1), the tilded

are written in terms of a normalized radial variable y =

quantities ¥ (amplitudes) in Eqs. (6) are expanded as a power series of €

over an axisymmetric solution xo(y). By omitting the sign at the right
hand side, we have:

X, ¥) = xo() +exa(, ¥) + *x2(y, ¥) + .. (15)

The series Eq. (15) is substituted in the fluid and wall governing equations,
and terms of the same power of &, up to the first order, are equated.

In the asymptotic expansion Eq. (15), xo corresponds to the axisymme-
tric solution in a straight elastic tube (Womersley solution)®. By equating
the 1st order terms in the governing Eqgs. and separating the variables as
follows:

up = U1 (y) sin v1 = 01 (y) cosyp wy = w1 (y)singy

p1 = p1(y)siny Ny =N singy & =& costp (1 = (isingy (16)
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the problem reduces to a system of linear ordinary differential equations
(by omitting the sign):

duy = wuq v
+

— + — — — —ikawy = —(tkaywo + ug) (17)
dy 'y
d2u1 1 duq < 2 . 2) 201 a dp1 (duo
—s | 5t U+ - = + 2tka wo —|—2—w0
dy* y dy y? y?  opody dy
(18)
2 _
dop | ldn (l+a) L _am (“_OHMWOH%M)
dy y dy y Y ny y v
(19)
Pw 1dw ( 1 ) 2) ika?® <dw0 ika’y )
+-——F |zt Juy+—pr=—| 5 — Po 20
dy2 y dy y? I dy 1 (20)

pra‘w . a duy .
( 5 ) m — &1 — itkao(y Bh [apl m ] . ano + ika(l — o)Go

(21)
k2a’G  pra’w? . G ap dvy
_(1+ 5 B )£1+n1—zka<§+a>§1—B—h[u1+d—y—v1]y:1
: G
—no — tka <1 + E) Co (22)

G 2 2 ptaw . . G au dw1
(B + k%a ¢1 — tkaom + ika B & = dy wo -

—ika(o — 1)mo — <% + 2k2a2> ¢o (23)

Because of the continuity of the physical variables in y = 0, the following
boundary conditions are imposed in the origin:

u1(0) = v1(0) ui(0) =01 (0) =0 p1(0) =wi(0) =0 (24
and the fluid-wall matching velocity conditions are set at the wall (cfr. Eq.
(14)):

iwm = uq (1) iwé = v1(1) iwl = wi (1) (25)

The fluid-structure interaction first order problem is similar to the zero-
th order problem, but lack of geometrical symmetry makes the search of
analytical solutions hard. Therefore the non homogeneous system is solved



November 29, 2004 12:35 Proceedings Trim Size: 9in x 6in simaws

numerically. The flow Eqs. (17)—(20) are discretized in [0,1] by upwind
finite differences!”. Coupled with the flow equations, the wall motion Eqs.
(21)—(23) are solved together with the boundary conditions (24) in y = 0
and with the interface conditions (25) in y = 1. A numerical strategy is
devised to stabilize the ill-conditioned algebraic problem.

5. Numerical results and discussion

Once the Oth order solution is obtained analytically and 1st order solution
is computed, the full solution is then reassembled as:

X = X + X @) = ¢ 4 |¢] cos (wt — Re(k) z + ¢)exp(In(k) z)  (26)

with ¢ = arg(x) (see Eq. (6)). It follows that all the variables have an
oscillatory evolution in time, superimposed over the steady state solution,
with amplitude |x| and a phase lead or a phase lag ¢. Both amplitude and
phase are independent of time, while the amplitude has a damping factor
given by exp(Im(k)z).

The physical problem depends on a large number of parameters, each of
them may vary in a quite wide range, and there is an enormous variety of
different limiting cases. In the present work we will focus the attention on
the influence of curvature — parametrized by € — and letting all the others
fixed.

In the simulations, we take the following numerical parameters, referred
to the vascular flow in a medium sized arterial segment:

w=2ms"" a=0.5cm h =0.05¢cm E = 10" dyne/cm?

! p=p;=1g/em? o=20.5

s
A = 26000 dyne/cm? % = Tdyne/cm?
z

The mesh size has been taken as Ay = 0.02 cm.

A cross section of a curved tube with the inner wall at the left side is
considered (Fig. 1). Eq. (26) is used to plot the flow pattern, the pressure
distribution and wall deformations for a given time (¢ = 0) and a fixed axial
coordinate (z = 0).

The effect of the curvature is examined by letting € vary as ¢ =
0,0.05,0.1, and the correspondent amplitudes of the unsteady solution
Xo + €x1 are depicted in Fig. 2. Note that in a curved tube the solu-
tion becomes asymmetric and the degree of skewness increases with . The
structure and the evolution of the secondary flow is shown in Fig. 3. For

pw=0.04gcm s
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Amplitude of the unsteady solution xg + ex1 for ¢ = 0 (continuous line),
¢ = 0.05 (dashed line) and £ = 0.1 (dotted line) along [—1,1].

the values of the parameters considered, a single vortex appears at most

times, but a second vortex detaches from the wall and develops at the end

of each half-cycle in the opposite direction. The strength of the secondary

motion is measured through the index ¥ = mz:bx (Ret)? + (Re?)? (maxi-
T

mum modulus of the cross section velocity). Axial velocity peak is shifted
alternately inwardly and outwardly, and a reversal flow takes place at some

instants.

The amplitudes of the two components of the wall shear stress are ob-
tained from the flow field as:

Ty =Ty + €7,

z

n o

+5~Z1

di
=57~'1})=’u—8[121+ﬂ—v1} cos ¢
a dy y=1
_ K [@ (@ _ wo) Sin@/f}
a | dy dy y=1

(27)

(28)

From Eq. (27) it follows that the circumferential stress 7, is present only
in a curved tube and varies over a zero mean. On the other hand, the axial
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Figure 3. Streamlines and secondary flow (above) and contour equispaced lines for axial
velocity (below - continuous lines indicate positive levels, dashed lines negative levels,
bold line zero levels) at eight times in a period at z = 0. The plot refers to the steady
state solution summed up to unsteady solution ¥ + xe!(@t=%2) with ¢ = 0.1. A double
vortex develops at the end of each half-cycle in correspondence of a small .
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Figure 4. Amplitude at ¢t = 0,z = 0 of the axial (7.) and hoop (7) wall shear stresses
as functions of €. The plots refer to the maximum values with respect to .

wall shear stress 7, varies over the correspondent value for the straight tube
70 and its extrema are attained at ¢ = +% (Eq. (28)). Both of them vary
linearly with €, are opposite in sign, and the magnitude of the 7, is smaller
than 7, (Fig. 4).

Similarly to all the flow variables, the wall displacements are trigono-
metric functions of ¢ (see Eq.(16)): as consequence |7j| and |¢| are maximum
at 1 = £7, while \5\ reaches its peaks at ¢ = 0 and ¢ = 7), varying over
their O-th order mean. For a E < 10%, the axial displacement amplitude
becomes excessively large and this model is not consistent with the theory
of linear elasticity and hence no longer representative.

For additional results and a more extensive discussion, see Ref. 15.
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