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Mass transport and diffusion processes of a substance dissolved in the blood are

studied. A linearization procedure over the steady state solution is carried out

and an asymptotic analysis is used to study the influence of a small curvature

with respect to the straight tube. Numerical results show the characteristics of

the long wave propagation and the role played by the curvature on the solute

distribution.
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1. Introduction

Mass transfer and diffusion phenomena inside the arterial lumen and

through the vascular wall are of great importance for physiological func-

tions, such as oxygenation, nourishment of tissues and metabolic drainage

processes. Some mathematical models coupling 3D flow and solute dynamics

have been developed in recent years [1–4]. They are defined in a finite arterial

segment of arbitrary shape, where an inflow solute distribution is provided

[1, 2]. Some of them consider also absorption and exchange through the vas-

cular tissues [3]. All these models provide the local concentration pattern

and are useful to understand the relationship between the local flow pattern,

the nourishing of arterial tissues and possible pathologies derived when such

a process is altered [4].
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It is known that geometrical effects, such as curvature, will strongly affect

the flow pattern and consequently the concentration of gases and substances

dissolved in the blood [5]. It is worth to investigate how, and to what extent,

the geometry and the haemodynamic factors are responsible for anomalous

accumulation and altered absorption of substances on the arterial wall, lead-

ing to atherosclerotic lesions and degenerative processes [6].

In the present paper, a perturbation approach is used to model the mass

transport and diffusion process inside a straight or moderately curved artery,

similarly to the work in [7]. It is described by the advection-diffusion equation

and a Robin interface condition is imposed at the boundary to model a solute

exchange through the wall, with the flow field given. For most substances such

a process is convection dominated, due to a low diffusion coefficient [5]. Being

interested in propagative phenomena, we consider the solute dynamics inside

the vascular tissue negligible, and the so called free-wall model is used [4].

Induced by the periodicity of respiratory, hormonal and feeding acts, the

concentration of a substance in blood is subject both to an oscillation in time

and to a spatial variation along the vessel, sustained by the fluid motion [5, 6].

For example, the pulsatile insulin release in the blood stream is induced by

the oscillation in glycolysis and generates a wave of period 5–10 min. [8].

In general, the wave period is strongly dependent on the substance consi-

dered. As a consequence, for any substance, we look for the propagation

characteristics, in relation with the medium diffusivity and wall permeability

properties. The aim of this study is to characterize the solute propagation

in the blood flow and to provide the local distribution of concentration that

can be affected by geometrical factors, such as the curvature.

The layout of this paper is as follows: in Sec. 2 the mathematical problem

is stated in its general formulation as a convection-diffusion equation and its

coupling with fluid dynamics is shown. For simplicity, the diffusivity and the

wall permeability coefficients are assumed constants. Hence, a linearization

procedure over a steady state solution is accomplished and a splitting of the

concentration variable from the fluid dynamical field is achieved. A wave type

solution in a torus is sought for the unsteady component (Sec. 3) and a per-

turbation method is used to separate the dominant component in a straight

tube from the part due to a possible small curvature (Sec. 4). Finally, in Sec. 5

some numerical experiments show the characteristics of the wave propagation

in a straight and in a bended artery and the influence of geometrical factors

on the solute distribution.
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2. The Advection-diffusion Problem

The motion of blood in a vessel is modelled by the flow of a newtonian

viscous fluid in an elastic tube. Different substances are dissolved in blood,

transported through the stream and possibly exchanged through the arterial

wall [5, 6]. For simplicity, the presence of one solute only is considered and

let us denote by c its concentration. Because of both diffusive and convective

phenomena, c satisfies the following advection-diffusion equation [1]:

∂c

∂t
+ v · ∇c− µ∆c = 0 (2.1)

with v the fluid velocity, µ > 0 a diffusivity coefficient. A possible exchange

of solute through the wall is expressed by:

(µ∇c) · n + σc = σcext (2.2)

where σ ≥ 0 is the wall permeability and cext is a concentration external

to the vessel (if the wall is impermeable, σ = 0). In the following, we will

be interested in the concentration dynamics in the lumen only. Therefore

the present model does not account for any possible external variations of

concentration, and cext is considered constant. Strictly speaking, µ and σ do

depend on the flow field and on the temperature [1, 2] but, for simplicity, let

us assume them as constant. Due to the small value of µ, for most substances

the problem is highly convection dominated in large arteries.

In principle, fluid and solute dynamics are coupled processes and influence

reciprocally. However in this model the solute is regarded as a passive scalar:

it is simply advected by the blood flow in the lumen, any feedback effect on

the fluid viscosity and density being neglected. As a consequence, we split the

flow from the solute dynamics: the fluid velocity v is computed beforehand,

and Eqs. (2.1)–(2.2) are subsequently solved.

Problem (2.1)–(2.2) is usually defined in an arterial segment with proxi-

mal and distal boundary conditions assigned, together with an initial condi-

tion. By standard arguments for parabolic problems, it can be proved that,

under appropriate regularity assumptions on the coefficients and on the ve-

locity field, the above boundary value problem is mathematically well posed

[4, 9]. However, since a special case will be studied here, the definition of

proximal/distal boundary conditions will be again addressed in Sec. 3.

Let us decompose the variables v and c as sum of a steady state part

(denoted by a bar) and an unsteady component (denoted by a circumflex
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accent):

v = v̄ + v̂, c = c̄+ ĉ (2.3)

and let us assume the unsteady parts v̂ and ĉ (and ∇v̂ and ∇ĉ as well) are

small enough with respect to the steady ones such that the nonlinear term

v · ∇c in Eqs. (2.1) can be linearized as:

(v̄ + v̂) · (∇c̄+ ∇ĉ) ≈ v̄ · ∇c̄+ v̄ · ∇ĉ+ v̂ · ∇c̄ (2.4)

neglecting the higher order terms. In other words, small fluctuations of velo-

city and concentration are superimposed to a steady solution.

It is easy to verify that:

c̄ =

{

cext if σ 6= 0,

const if σ = 0
(2.5)

satisfies the following boundary value problem:

v̄ · ∇c̄− µ∆c̄ = 0

µ∇c̄ · n + σc̄ = σcext at the wall (2.6)

where c̄ equals the constant value as in Eq. (2.5) at any boundary other than

the wall. This corresponds to the fact that, for a time interval long enough,

the solute pervades the whole tube and, in the limit, it reaches a uniform

concentration.

3. Wave Solution

By Eqs. (2.4) and (2.6), the unsteady solution satisfies the following equa-

tion:
∂ĉ

∂t
+ v̄ · ∇ĉ+ v̂ · ∇c̄− µ∆ĉ = 0 (3.1)

with a homogeneous boundary condition at the wall:

µ∇ĉ · n + σĉ = 0. (3.2)

Because of Eq. (2.5), the homogeneous boundary value problem (3.1)–

(3.2) depends only on the steady fluid velocity v̄ and is independent of the

unsteady flow field v̂. This proves that the small wall deformation, which is

demonstrated of much importance in vascular dynamics [7], is irrelevant in

the solute motion.
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We are going now to define a precise domain and a specific form for the

solution of the problem (3.1)–(3.2). Let us consider a long tube of circular

cross section of radius a, having the shape of a torus with small curvature

1/R.

For the following analysis, it is convenient to work out the equations

in a toroidal coordinate system (r, θ, ψ). The axial coordinate z = Rθ is

introduced to avoid degeneracy when R→ ∞ (straight tube).

The problem is now rewritten in nondimensional form by the following

substitutions:

r →
r

a
, z →

z

a
, t→

V t

a
, v →

v

V
where V is a characteristic velocity. Without loss of generality, the concen-

tration is considered dimensionless.

Denoting by:

Pe =
aV

µ
(Péclet number), Sh =

aσ

µ
(Sherwood number)

two characteristic numbers, the governing Eqs. (3.1)–(3.2) become:

∂ĉ

∂t
+ v̄ · ∇ĉ−

1

Pe
∇2ĉ = 0,

∇ĉ · n + Sh ĉ = 0. (3.3)

The physiological and metabolic functions of living beings are typically

periodic and an intermittent release of substances (i.e. oxygen, hormones,

nutrients, waste products) in the blood is carried out by several organs and

glands. For example, respiratory and digestive acts have a period ranging,

according to the species, from seconds to hours. It is realistic to assume that,

for each substance, there exists a pulsatile source of solute concentration

that, advected by the fluid, propagates downstream. As the blood flow is

essentially unidirectional, the unsteady component ĉ is sought in the form of

an harmonic longitudinal travelling wave:

ĉ = c̃(r, ψ)ei(ωt−kz) (3.4)

with ω a nondimensional circular frequency (ω → ωa/V ) and k the nondi-

mensional wave number (k → ka). Consequently, the nondimensional wave

speed is ω/Re(k) and the nondimensional wavelength is 1/Re(k). Because of

the explicit dependence on z and t in the waveform Eq. (3.4), neither prox-

imal and distal boundary conditions, nor an initial condition are required.
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For the following analysis, it is worth to express the amplitude of the wave

(3.4) in terms of a mass per unit length defined by:

Q :=

1
∫

0

c̃(r)rdr (3.5)

Concentration wave (3.4) has no direct relation with the pressure wave

generated by the heart beat and transmitted by the fluid through the vessel

distensibility. In physiological cases, ω is generally very low (ω ≪ 1).

4. Asymptotic Analysis

All arteries are affected by a small or moderate degree of curvature. A per-

turbation method is used to study the influence of a small curvature with

respect to the straight case. As the curvature parameter ε = a/R is assumed

to be small (≪ 1), the amplitude in Eq. (3.4) is expanded as a power series

of ε over an axisymmetric solution c0(r):

c̃(r, ψ) = c0(r) + εc1(r, ψ) + ε2c2(r, ψ) + . . . (4.1)

The fluid steady velocity v̄ undergoes a similar expansion over v̄0:

v̄(r, ψ) = v̄0(r) + εv̄1(r, ψ) + ε2v̄2(r, ψ) + . . . (4.2)

with v̄0 is the Poiseuille velocity and v̄1 is the first order velocity for a mod-

erately curved tube [11]. Therefore one has:

v̄·∇c̃ = (v̄0+εv̄1)·(∇c0+ε∇c1) = v̄0·∇c0+ε(v̄1·∇c0+v̄0·∇c1)+ε
2 . . . (4.3)

Expression (3.4) and expansions (4.1)–(4.3) are substituted in Eqs. (3.3), and

terms of the same power of ε, up to the first order, are equated.

0-th order solution

The amplitude of concentration in a straight tube is governed by the

following linear equation:

iωc0 + v̄0 · ∇c0 −
1

Pe
∇2c0 = 0. (4.4)



Solute Wave in a Curved Vessel 421

Letting ωP = ωPe (scaled frequency) and kP = kPe (scaled wavenumber),

Eq. (4.4) is rewritten in scalar notations as:

d2c0
dr2

+
1

r

dc0
dr

+ i (k
P
w̄0 − ω

P
) c0 = 0 (4.5)

where all terms containing k2 have been neglected, since large wavelengths

are considered in the present application, and

w̄0(r) = 1 − r2

is the Poiseuille axial velocity profile, nondimensionalized by scaling with V .

The boundary conditions associated with the Eq. (4.5) are:

dc0
dr

= 0 at r = 0 (symmetry condition), (4.6)

dc0
dr

+ Sh c0 = 0 at r = 1. (4.7)

For a given frequency ωP , the Sturm-Liouville eigenvalue problem (4.5)–

(4.7) is solved to obtain the wave number kP which corresponds to an ad-

missible c-wave solution in a straight tube.

Through a variable transformation, we obtain the general integral of

Eq. (4.5) written in terms of two constants A and B:

c0(r) = exp

(

−
G

2
r2
)[

AL

(

H −
1

2
, Gr2

)

+BU

(

1

2
−H, 1, Gr2

)]

r (4.8)

with L the Laguerre function and U the Tricomi confluent hypergeometric

function with complex argument [10] and with:

G = (ikP )
1

2 , H =
(ikP )

1

2

4

(

1 −
ωP

kP

)

.

A boundedness condition at r = 0 implies B = 0, and through the bound-

ary condition (4.7), we obtain the frequency equation:
(

√

kP + i
3

2 Sh
)

L

(

H −
1

2
, G

)

+ 2
√

kPLg

(

H −
3

2
, 1, G

)

= 0 (4.9)

where Lg is the generalized Laguerre function. It gives the set of wavenumbers

kP correspondent to a given frequency ωP . Finally, replacing in Eq. (4.8), one

has:

c0(r) = A exp

(

−
(ikP )

1

2

2
r2

)

L

(

(ikP )
1

2

4

(

1 −
ωP

kP

)

−
1

2
, (ikP )

1

2 r2

)

r.

(4.10)

The constant A is determined by using Eq. (3.5).
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1st order solution

The correction due to a small curvature is described by the first order

linear problem:

iωc1 + v̄0 · ∇c1 −
1

Pe
∇2c1 = −v̄1 · ∇c0.

By letting:

c1(r, ψ) = č1(r) sinψ, č1 → c1 (4.11)

we obtain the non homogeneous problem:

∂2c1
∂r2

+
1

r

∂c1
∂r

−
c1
r2

+ i (kP w̄0 − ωP ) c1

= ikP (rw̄0 − wd) c0 + (Peud − 1)
dc0
dr

(4.12)

with the boundary conditions:

c1 = 0 at r = 0, (4.13)

dc1
dr

+ Sh c1 = 0 at r = 1. (4.14)

where ud and wd are respectively the nondimensional radial and the axial

component of the steady flow in a curved tube [11]. Due to the antisymmetry

of the first order solution c1 (see Eq. (4.11)), the overall mass flux conservation

of c0 + εc1 in the half-section (r, ψ) ∈ [0, 1] × [−π/2, π/2] is guaranteed.

Note that the Péclet number appears at the right hand side of Eq. (4.12)

as coefficient of ud. The solution turns out to be strongly dependent on it,

because it magnifies the role of secondary flow. Such effect exists as long as

a transverse flow—induced by the curvature—is present, and grows with Pe.

5. Numerical Results and Discussion

The frequency Eq. (4.9) is solved numerically with a Newton type method

by searching the complex roots kP corresponding to a given ωP . Because of

the large wavelength, only the smallest root is selected. Results show that

both wavelength and attenuation reduce with increasing ωP and the effect of

wall permeability is present only for small frequencies.

The curve connecting the pairs (ωP , ωP /Re(kP )) for ωP ∈ [10−3, 105] at

varying Sh is shown in Fig. 1 (dispersion curve). It turns out that the wave
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Figure 1. Dispersion curves for three different mass transfer coefficients Sh. The

wave speed tends to the same asymptotic value for relatively high frequencies and

exhibits a variation with Sh only at very low frequencies. In a range of typical

frequencies (10 ≤ ωP ≤ 100) the speed undergoes a sudden raise.

speed tends to the value 1 (independent of Sh), for relatively large values of

the frequency. On the other hand, at very small frequencies the wave speed

is rapidly decreasing tending to a finite limit as ωP → 0. Such limit is 1/2 for

Sh = 0 and increases with Sh. A critical frequency separates two regimes for

each value of Sh: a layer where the velocity undergoes a sudden raise from

a larger range where the velocity stays almost constant (Fig. 1).

The exact solution c0 of the Eqs. (4.5)–(4.7) is given by Eq. (4.10). The

boundary value problem (4.12)–(4.14) is then solved numerically with a col-

location method using a cubic spline approximating function [12].

Once the analytical 0-th order solution is evaluated and the 1-st or-

der problem solved numerically, the full wave solution is reassembled (see

Eqs. (2.3), (3.4) and (4.1)) as:

c = c̄+ c̃ei(ωt−kz) = c̄+ (c0 + εc1 sinψ)ei(ωt−kz).

The physical problem depends on a number of parameters, each of them may

vary in a quite wide range, and there is a variety of different limiting cases. In
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the present work we will focus the attention on the influence of the solution

c on the diffusivity—parametrized by Pe and on the wall permeability—

parametrized by Sh. These two parameters are varied in a convenient interval

to describe a number of substances dissolved in blood and different medium

properties. Other parameters are fixed as:

a = 0.5 cm, V = 24 cm s−1, Q = 0.01.

Concentration amplitudes c0 for three typical values of ωP are shown

in Fig. 2. Approximately flat concentration profiles at low ωP , are replaced

by more oscillating fronts, with a possible undershooting, at higher ωP . At

relatively higher ωP , the concentration flux occurs in the core of the vessel

and is independent of Sh. The influence of curvature is small at low Pe, but

becomes relevant at higher Pe, with a more pronounced oscillating profile

(Fig. 3). At the high Péclet numbers under consideration (≈ 105), a noticeable

difference with respect to a straight tube appears even for a curvature ratio

small as ε = 10−4. The first order solution c1 is of few orders of magnitude

higher than c0, and their ratio grows with Pe. A significant result is the
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Figure 2. Concentration profiles along the horizontal half-diameter (ψ = π/2)

of the cross section z = 0 at t = 0, for three values of ωP . Differences with Sh are

shown less pronounced and a core flux is evident at higher ωP .
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Figure 3. Concentration profiles along the horizontal diameter (ψ = ±π/2) of

the cross section z = 0 at t = 0 for Pe = 10
5. Plots highlight the combined effects

of the wall permeability Sh (left-right) and of the wave frequency ωP (top-bottom)

in the case of a straight tube (continuous line) and of a slightly curved tube with

ε = 10
−4 (dashed line). For such value of Pe, the solution is extremely sensitive

to the curvature and, at low frequencies, even to Sh.

skewness of the c profiles: the maximum peak of concentration flux is shifted

towards the outer bend and increases in magnitude. Consequently a wall flux

reduction at the inner wall of the curvature is reported. This is in correlation

with clinical observations of atherosclerotic lesions at the inner wall of arterial

bends. The effect of the wall permeability on the concentration waveform is

shown to be frequency dependent.
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