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Abstract

A mathematical model for the mass transport and diffusion process in arteries is
presented. Blood flow is described by the unsteady Navier-Stokes equation, and
solute dynamics by an advection-diffusion equation. A linearization procedure
over the steady state solution is carried out and an asymptotic analysis is used
to study the influence of a small curvature with respect to the straight tube. Some
numerical experiments in cases of physiological interest are presented: the results
show the characteristics of the long wave propagation and the role played by the
geometry on the solute distribution.
Keywords: solute dynamics, arterial transport, curved tubes, advection-diffusion
equation, numerical methods.

1 Introduction

Mass transport and diffusion phenomena inside the arterial lumen and through the
vascular wall are of great importance for physiological functions, such as oxygena-
tion, nourishment of tissues and metabolic processes. Some mathematical models
coupling 3D flow and solute dynamics have been developed in recent years [1–4].
They are defined in a finite arterial segment of arbitrary shape, where an inflow
solute distribution is provided [1, 2]. Some of them consider also absorption and
exchange through the vascular tissues [3]. All these models provide the local con-
centration pattern and are useful to understand the relationship between the local
flow pattern, the nourishment of arterial tissues and possible pathologies derived
when such a process is altered [4].

On the other hand, fluid dynamical factors such as flow separation, recircula-
tion and wall shear stress are correlated to the atherosclerotic lesions. It is known
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that these phenomena tend to occur in regions of branching or in bending sites,
where flow axisymmetry is lost. In particular geometrical effects, such as curva-
ture, strongly affect the flow pattern and consequently the concentration of gases
and substances dissolved in the blood [5]. Moreover, mass transfer phenomena are
intrinsically coupled with the hemodynamics which influences the wall permeabil-
ity and fluid diffusivity.

In a recent work, the oscillating flow through an elastic thin-walled curved artery
has been investigated, using an asymptotic analysis based on the assumption of a
small curvature parameter [6]. In the present paper, a similar approach is used
to model the mass transport and diffusion process inside a straight or moderately
curved artery. This is described by the advection-diffusion equation and a Robin-
like interface condition is imposed at the boundary to match internal and external
fluxes, and with the flow field preassigned. For most substances such a process is
convection dominated, due to a low diffusion coefficient [5]. Being interested in
propagative phenomena, the solute dynamics inside the vascular tissue is deemed
a negligible phenomena and the so called free-wall model is used [4]. Induced by
the periodicity of respiratory, hormonal and feeding acts, the concentration of a
substance in blood is subject both to an oscillation in time and to a spatial varia-
tion along the vessel, sustained by the fluid motion [5]. The wave period is strongly
dependent of the substance considered. As a consequence, for any substance, we
look for the propagation characteristics, in relation with the medium diffusivity
and wall permeability properties. The aim of this study is to characterize the solute
propagation in the blood flow and to provide the local distribution of concentration
that can be affected by geometrical factors, such as the curvature. Some numerical
simulations show the dispersion curve and predict an asymmetric profile for con-
centration. This can be useful to reveal relationship between local flow patterns
and process of altered absorption or anomalous accumulation of substances on the
arterial wall.

2 Formulation of the problem

The motion of blood in a vessel is modelled by the flow of a newtonian viscous
fluid in a cylindrical tube. Different substances are dissolved in blood, transported
through the stream and possibly exchanged through the arterial wall [5]. For sim-
plicity, the presence of one solute only is considered and let us denote by c its
concentration. Because of both diffusive and convective phenomena, c satisfies the
following advection-diffusion equation [1, 7, 8]:

∂c

∂t
+ v · ∇c−∇ · (µ∇c) = 0 (1)

with v the fluid velocity, µ > 0 a diffusivity coefficient. A possible exchange of
solute through the wall is expressed by:

(µ∇c) · n + σc = σcext (2)
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where σ ≥ 0 is the wall permeability and cext is an external constant concentration
(if the wall is impermeable, σ = 0). Strictly speaking, µ and σ do depend on the
flow field and on the temperature [1, 2] but, for simplicity, let us assume them as
constants. Any possible solute chemical reacting effect is also neglected.

Due to the small value of µ, for most substances the problem is convection dom-
inated. For µ → 0 the problem changes nature and tends to be purely hyperbolic.
Note that the problem (1)-(2) is homogeneous when cext = 0 or when σ = 0 and
admits ∞1 solutions.

In principle, fluid and solute dynamics are coupled processes and influence
reciprocally. However in this model the solute is regarded as a passive scalar: it
is simply advected by the blood flow in the lumen, neglecting any feedback effect
on the fluid viscosity and density. As consequence, we split the flow problem from
the mass transport: the fluid velocity v is computed beforehand, and the problem
(1)–(2) is subsequently solved.

Let us decompose the variables v and c as sum of a steady state part (denoted
with a bar) and an unsteady component (indicated with a circumflex accent):

v = v̄ + v̂ c = c̄+ ĉ (3)

and let us assume the unsteady parts v̂ and ĉ (and also ∇v̂ and ∇ĉ) are small
enough with respect to the steady ones such that the nonlinear term v · ∇c in eqns.
(1) can be linearized as:

(v̄ + v̂) · (∇c̄+ ∇ĉ) ≈ v̄ · ∇c̄+ v̄ · ∇ĉ+ v̂ · ∇c̄ (4)

neglecting the higher order terms.
The steady state solution satisfies the following boundary value problem:

v̄ · ∇c̄− µ∇2c̄ = 0

µ∇c̄ · n + σc̄ = σcext at the wall (5)

and admits the solution:

c̄ = cext if σ �= 0 (6)

and

c̄ = const. if σ = 0 (7)

This corresponds to the fact that, for a time long enough, the solute pervades
the whole tube and, at infinite time, reaches a uniform concentration. Because no
further hypothesis has been made, the steady solution results independent either of
the domain geometry and of the velocity field.
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Figure 1: Cross section of the tube (inner wall at the left, outer wall at the right)
and toroidal coordinates (r, ψ, θ).

3 Unsteady solution

By eqns. (4) and (5), the unsteady solution satisfies the following equation:

∂ĉ

∂t
+ v̄ · ∇ĉ+ v̂ · ∇c̄− µ∇2ĉ = 0 (8)

with an homogeneous boundary condition at the wall:

µ∇ĉ · n + σĉ = 0 (9)

Because of eqns. (6)-(7), the homogeneous boundary value problem (8)-(9)
depends only from the steady fluid velocity v̄ and is independent of the unsteady
flow field v̂ and of the steady concentration part c̄ . A normalization criterion
should be devised to select one solution of B.V.P. (8)-(9).

Let us now fix a precise shape to solve the problem (8)-(9). Let us consider a
tube with the form of a long cylinder which may have a small degree of curvature,
with the shape of a torus. This has a planar axis, a circular cross section of radius
a and constant radius of curvature R. The small deformation of the walls which
is demonstrated of much importance in vascular dynamics [6], is irrelevant in the
solute motion. For the following analysis, it is convenient to work out the equations
in a toroidal coordinate system (r, θ, ψ) (fig. 1). The axial coordinate z = Rθ is
introduced to avoid degeneracy when R → ∞ (straight tube).

The problem is now rewritten in nondimensional form by the following substi-
tutions:

x → x

a
t→ V t

a
v → v

V

where x denotes the spatial coordinates and V is a characteristic velocity.
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Without loss of generality, the concentration is considered dimensionless. By
indicating by:

Pe =
aV

µ
(Péclet number); Sh =

aσ

µ
(Sherwood number) (10)

two characteristic numbers, the governing eqns. (8)–(9) become:

∂ĉ

∂t
+ v̄ · ∇ĉ− 1

Pe
∇2ĉ = 0

∇ĉ · n + Sh ĉ = 0 (11)

The physiological and metabolic functions of living beings are typically periodic
and an intermittent release of substances (i.e. oxygen, hormones, nutrients, waste
products) in the blood is secured by several organs and glands. Digestive and respi-
ratory acts are also based over a periodical time scale and, according to the species,
period can range from seconds to hours. It is realistic to assume that, for each sub-
stance, there exists a pulsatile source of solute concentration which, advected by
the fluid, propagates downstream. Being the blood flow essentially unidirectional,
the unsteady component ĉ has the form of an harmonic longitudinal travelling
wave:

ĉ = c̃(r, ψ)ei(ωt−kz) (12)

with ω a nondimensional circular frequency
(
ω → ωa

V

)
and k the nondimensional

wave number (k → ka). In physiological cases, ω is generally very low (ω � 1).

4 Perturbation solution

All arteries are affected by a small or moderate degree of curvature. A perturbation
method is used to study the influence of a small curvature with respect to the

straight case. As the curvature parameter ε =
a

R
is assumed to be small (� 1),

the amplitude in eqn. (12) is expanded as a power series of ε over an axisymmetric
solution c0(r). By omitting the ∼ sign at the right hand side, we have:

c̃(r, ψ) = c0(r) + εc1(r, ψ) + ε2c2(r, ψ) + ... (13)

The fluid steady velocity v̄ undergoes a similar expansion over v̄0 (the Poiseuille
velocity) yielding:

v̄·∇c̃ = (v̄0+εv̄1)·(∇c0+ε∇c1) = v̄0 ·∇c0+ε(v̄1 ·∇c0+v̄0 ·∇c1)+ε2.... (14)

Expression (12) and expansions (13)-(14) are substituted in eqn. (11), and terms
of the same power of ε, up to the first order, are equated.
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4.1 0-th order solution

The amplitude of concentration in a straight tube is governed by the following
linear equation:

iωc0 + v̄0 · ∇c0 − 1
Pe

∇2c0 = 0 (15)

Letting ω
P

= ωPe (scaled frequency) and k
P

= kPe (scaled wavenumber),
eqn.(15) is rewritten in scalar notations as:

d2c0
dr2

+
1
r

dc0
dr

+ i (k
P
w̄0 − ω

P
) c0 = 0 (16)

where all terms containing k2 have been neglected, since large wavelengths are
considered in the present application, and

w̄0(r) = 1 − r2

is the Poiseuille axial velocity profile, nondimensionalized by scaling with V .
The boundary conditions associated to the eqn. (16) are:

dc0
dr

∣∣∣∣
r=0

= 0
dc0
dr

+ Sh c0

∣∣∣∣
r=1

= 0 (17)

For a given frequency ω
P

, the Sturm-Liouville eigenvalue problem (16)–(17) is
solved to obtain the wave number k

P
which corresponds to an admissible c-wave

solution in a straight tube. A normalization is assigned as an integral condition to
specify a mass flux Q: ∫ 1

0

c0(r) rdr = Q (18)

4.2 1st order solution

The correction due to a small curvature is described by the first order linear prob-
lem:

iωc1 + v̄0 · ∇c1 − 1
Pe

∇2c1 = −v̄1 · ∇c0

By letting:

c1(r, ψ) = č1(r) sinψ č1 → c1 (19)

we obtain the non-homogeneous problem:

∂2c1
∂r2

+
1
r

∂c1
∂r

− c1
r2

+ i (kP w̄0 − ωP ) c1
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= ikP (rw̄0 − wd) c0 + (Pe ud − 1)
dc0
dr

(20)

with the boundary conditions:

c1

∣∣∣
r=0

= 0
dc1
dr

+ Sh c1

∣∣∣∣
r=1

= 0 (21)

where ud and wd are respectively the nondimensional radial and the axial compo-
nent of the steady flow in a curved tube [9]. Note that the Péclet number appears
at the right hand side of eqn. (20) as coefficient of ud. The solution turns out to
be strongly dependent on it, because it magnifies the role of secondary flow. Such
effect exists as long as a transverse flow, induced by the curvature, is present, and
grows with Pe.

Note that, due to the antisymmetry of the first order solution c1 (see eqn. (19)),
the overall mass flux conservation of c0 + εc1 in the half-section (r, ψ) ∈ [0, 1] ×
[−π/2, π/2] is guaranteed.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

ω
P

ω
P

R
e(

k P)

Sh 0

Sh 1

Sh 100

Figure 2: Dispersion curves for three Sherwood numbers. The wave speed tends to
the same asymptotic value for relatively high frequencies and exhibits a
variation with Sh only at low frequencies. In a range of typical frequency
(10 ≤ ωP ≤ 100), the speed undergoes a sudden raising.

© 2005 WIT Press WIT Transactions on Biomedicine and Health, Vol 8,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Modelling in Medicine and Biology VI  325



5 Numerical method and parameters

Firstly, we solved the Sturm-Liouville eigenvalue problem (16)-(17) in correspon-
dence of a frequency ω

P
. This has been made numerically with a collocation

method using a cubic spline approximating function [10]. The second-order dif-
ferential problem is firstly reformulated as a system of two first-order ODE’s. By
means of an iterative procedure, the mesh is adapted in order to control the size of
the residue and an initial guess is given by a quadratic polynomial satisfying the
boundary conditions.

The method is fourth order accuracy and the algorithm is implemented through
the routine bvp4c of MATLAB. Since it uses a closed integration formula, a sim-
ple recipe to avoid the singularity at 0 has been devised. The solution has been
normalized using eqn. (18).
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Figure 3: Concentration profiles c0 along the horizontal half-diameter (ψ = π/2)
of the cross section z = 0 at t = 0, for three values of ω

P
. A core flux is

evident at higher frequencies.

Since we are interested to compute the solution for a set of frequencies, and
being the problem sensitive to the initial guess, a chain of continuation steps along
the path (ω

P
, c0(·, ωP

)) is initiated from (0, c0(·, 0)). At each step, the solution
just obtained for ω

P
is used as initial guess for solving the same problem with a

subsequent close value ω
P

+ ∆ω
P

(continuation process).
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Thus, we construct a set of pairs

(
ω

P
,

ω
P

Re(k
P
)

)
for ω

P
∈ [10−3, 105], express-

ing the admissible solutions (dispersion curve, see fig. 2). It turns out that the wave
speed tends to the asymptotic value 1 (independently of Sh), for relatively large
values of the scaled frequency. On the other hand, at very small frequencies the
wave speed is rapidly decreasing tending to a finite limit as ω

P
→ 0. Such limit is

1/2 for Sh = 0, and increase with Sh (fig. 2). A critical frequency separates two
regimes for each value of Sh: a layer where the velocity undergoes a sudden raise
from a larger range where the velocity stays almost constant.

The full wave solution is reassembled (see eqns. (3), (12) and (13)) as:

c = c̄+ c̃ei(ωt−kz) = c̄+ (c0 + εc1 sinψ)ei(ωt−kz)
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Figure 4: Concentration profiles along the horizontal diameter (ψ = ±π/2) of the
cross section z = 0 at t = 0 for Pe = 105. Plots highlight the combined
effects of the wall permeability Sh (left-right) and of the wave frequency
ω

P
(top-bottom) in the case of a straight tube (continuous line) and of

a slightly curved tube with ε = 10−4 (dashed line). For such value of
Pe, the solution is extremely sensitive to the curvature and, only at low
frequency, even to Sh .

An harmonic form of the previous expression is:

c = c̄+
[
Re(c̃) cos

(
ωt− Re(k) z

) − Im(c̃) sin
(
ωt− Re(k) z

)]
eIm(k) z
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or equivalently:

c = c̄+ |c̃| cos
(
ωt− Re(k) z + φ

)
eIm(k) z with φ = arg(c̃)

The physical problem depends on a number of parameters, each of them may
vary in a quite wide range, and there is a variety of different limiting cases. In the
present work we will focus the attention on the influence of the solution c on the
diffusivity – parametrized by Pe – and on the wall permeability – parametrized by
Sh. These two parameters are varied in a convenient interval to describe a number
of substances dissolved in blood and different medium properties.

The other parameters are fixed as:

a = 0.5 cm V = 24 cm s−1 Re = 300 Q = 0.01

6 Discussion and conclusions

Concentration amplitudes c0 for three typical values of ω
P

, with Sh = 100, are
shown in fig. 3. Approximately flat concentration profiles at low ω

P
, are replaced

by more oscillating fronts at higher ωP . At relatively higher ωP , the concentra-
tion flux occurs in the core of the vessel and is independent of Sh. A moderate
dependence of c on the wall permeability Sh exists at low frequencies.

The influence of curvature is small at lowω
P

, but becomes relevant at higherω
P

,
with a more pronounced oscillating profile. A noticeable difference with respect
to a straight tube appears even for a curvature ratio small as ε = 10−4 (fig. 4). The
first order solution c1 is of few orders of magnitude higher than c0, and their ratio
grows with Pe. It is extremely sensitive to the curvature and, at low frequency,
even to Sh.

A significant result is the skewness of the c profiles: the maximum peak of con-
centration flux is shifted towards the outer bend and increases in magnitude. Such
first order correction due to the curvature is expressed as:

Σ(ε) = 2ε
∫ π

2

0

sinψ dψ
∫ 1

0

c1(r)r dr = 2ε
∫ 1

0

c1(r)r dr

The value of Σ is extremely sensitive to the values of Re and Pe.
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