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Abstract

After recalling how to construct the abstract formulation of the Navier-Stokes equa-
tions on a fixed domain it is shown how to generalize them to the case of a moving
domain. The traditional distinction between Eulerian and Lagrangian descriptions,
unsatisfactory in this context, is replaced by the socalled ALE approach. This point
of view, which historically has diverse origins, is cast into the context of a working

principle, suitable also to model fluid wall interaction in a deformable tube.
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1 Introduction

2 Velocity fields

The placement is a function assigning a place to every element p of a body1 B, at a time t

χ : B × R → E (1)

The material velocity is the field
vm : B × R → V (2)

such that

vm(p, t) := lim
τ→0

1

τ

(

χ(p, t + τ) − χ(p, t)
)

= χ̇(p, t) (3)

In a fixed domain D ∈ E the spatial velocity is the field

v : D × R → V (4)

whose value at a place x and at time t is the velocity of the particle p occupying that place
at that time

v
(

χ(p, t), t
)

= vm(p, t) (5)

3 Acceleration fields

The material acceleration is the field

am : B × R → V (6)

such that

am(p, t) := lim
τ→0

1

τ

(

vm(p, t + τ) − vm(p, t)
)

= χ̈(p, t) (7)

1We can think of a body as the fluid in a tank which is going to flow through a pipe and is in so large a

quantity that the flow will last as long as we like. Before the flow starts we put a label on every particle so

we can trace his path, or we can recognize which particle crosses a marked place where a probe detects its

velocity and acceleration.
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The spatial acceleration is the field

a : D × R → V (8)

whose value at a place x and at a time t is the acceleration of the particle p occupying that
place at that time

a
(

χ(p, t), t
)

= am(p, t) (9)

By putting together the above definitions we can express the spatial acceleration field in
terms of the spatial velocity field

a(χ(p, t), t) = am(p, t) (10)

= lim
τ→0

1

τ

(

vm(p, t + τ) − vm(p, t)
)

(11)

= lim
τ→0

1

τ

(

v
(

χ(p, t + τ), t + τ
)

− v(χ(p, t), t)
)

(12)

By using the trick of adding the null expression

− v
(

χ(p, t + τ), t
)

+ v
(

χ(p, t + τ), t
)

(13)

and rearranging the terms between brackets, we get

a
(

χ(p, t), t
)

= am(p, t) (14)

= lim
τ→0

1

τ

(

v
(

χ(p, t + τ), t
)

− v
(

χ(p, t), t
)

)

(15)

+ lim
τ→0

1

τ

(

v
(

χ(p, t + τ), t + τ
)

− v
(

χ(p, t + τ), t
)

)

(16)

= ∇v
(

χ(p, t), t
)

χ̇(p, t) + v′
(

χ(p, t), t
)

(17)

= ∇v
(

χ(p, t), t
)

vm(p, t) + v′
(

χ(p, t), t
)

(18)

= ∇v
(

χ(p, t), t
)

v
(

χ(p, t), t
)

+ v′
(

χ(p, t), t
)

(19)

By replacing χ(p, t) with x, we arrive at

a(x, t) = ∇v(x, t) v(x, t) + v′(x, t) (20)

In short
a = (∇v) v + v′ (21)

Since, by definition of divergence of a tensor field, the following identity holds

div (v ⊗ v) = (∇v)v + v div v (22)

the acceleration field can also be given the expression

a = div
(

v ⊗ v
)

− v div v + v′ (23)
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4 Incompressibility

The placement gradient
F (p, t) := ∇χ(p, t) (24)

is the tensor transforming a body line element ℓ, a vector tangent to a curve p̂(h) in B at
p = p̂(0), into a vector e tangent to the corresponding curve χ(p̂(h), t) in E .

e := F (p, t) ℓ = lim
h→0

1

h

(

χ
(

p̂(h), t
)

− χ
(

p̂(0), t
)

)

(25)

ℓ := lim
h→0

1

h

(

p̂(h) − p̂(0)
)

(26)

Differentiating with respect to time we obtain

Ḟ (p, t) ℓ = lim
h→0

1

h

(

χ̇
(

p̂(h), t
)

− χ̇
(

p̂(0), t
)

)

(27)

= lim
h→0

1

h

(

vm

(

p̂(h), t
)

− vm

(

p̂(0), t
)

)

= ∇vm(p, t) ℓ (28)

On the other hand

Ḟ (p, t) ℓ = lim
h→0

1

h

(

vm

(

p̂(h), t
)

− vm

(

p̂(0), t
)

)

(29)

= lim
h→0

1

h

(

v
(

χ(p̂(h), t), t
)

− v
(

χ(p̂(0), t), t
)

)

(30)

= ∇v(p, t) e = ∇v(p, t)F (p, t)ℓ (31)

So we can conclude that
Ḟ = ∇vm = ∇v F (32)

We define the volume of a part of B as the volume of the region of E occupied by it. Denoting
the volume of a parallelepiped in E by

vol (F ℓ1, F ℓ2, F ℓ3) (33)

its time derivative is

d

dt
vol (F ℓ1, F ℓ2, F ℓ3) (34)

= vol (Ḟ ℓ1, F ℓ2, F ℓ3) + vol (F ℓ1, Ḟ ℓ2, F ℓ3) + vol (F ℓ1, F ℓ2, Ḟ ℓ3) (35)

= vol (∇v F ℓ1, F ℓ2, F ℓ3) + vol (F ℓ1,∇v F ℓ2, F ℓ3) + vol (F ℓ1, F ℓ2,∇v F ℓ3) (36)

= tr∇v vol (F ℓ1, F ℓ2, F ℓ3) = div v vol (F ℓ1, F ℓ2, F ℓ3) (37)

by definition of tr and div . That is why the condition that the volume stays constant in
time is

div v = 0 (38)

A. Tatone, DISAT, Università dell’Aquila [22nd April 2005 – November 14, 2006 (16:30)]



navier-stokes equations in a moving domain 5

5 Balance

Balance principle: for any test velocity field w

∫

D

b · w +

∫

∂D

t · w −

∫

D

T · ∇w = 0 (39)

By definition of divergence of a tensor field

div T · w = div (TTw) − T · ∇w (40)

∫

D

b · w +

∫

∂D

t · w +

∫

D

div T · w −

∫

D

div (TTw) = 0 (41)

By the divergence theorem

∫

D

div (TTw) =

∫

∂D

(TTw) · n =

∫

∂D

Tn · w (42)

∫

D

(b + div T ) · w +

∫

∂D

(t − Tn) · w = 0 (43)

Balance equations in D and on its boundary ∂D

div T + b = 0 (44)

t = Tn (45)

6 Material response

The response function for an incompressible linearly viscous fluid has the expression (see
[1])

T = −pI + 2µ sym∇v (46)

7 Navier Stokes equations

By substituting the stress with the response function we get

div T = −∇p + µ
(

div∇v + div∇vT
)

(47)

Because of the following properties

div∇v = ∆v (48)

div∇vT = ∇(tr∇v) = ∇ div v = 0 (49)

the previous expression becomes

div T = −∇p + µ∆v (50)
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γ

D̄ D

Figure 1: Grid deformation

As the only force distribution with respect to the volume is the inertial force density

b = −ρa = −ρ
(

∇v v + v′
)

(51)

the balance equation turns into

−∇p + µ∆v − ρ
(

∇v v + v′
)

= 0 (52)

8 Moving grid

By grid deformation we mean a regular function

γ : D̄ × R → E (53)

For a fixed time t

γ(·, t) : D̄ → D (54)

Pull-back to D̄ of the velocity field v in D

v(x̄, t) = v(γ(x̄, t), t) (55)

A vector tanget to a curve c̄(h) in D̄

ē := lim
h→0

1

h

(

c̄(h) − c̄(0)
)

(56)

Grid deformation gradient
Γ := ∇γ (57)

The vector tanget to the curve γ(c̄(h), t) in D

e = Γ(x̄, t)ē = lim
h→0

1

h

(

γ
(

c̄(h), t
)

− γ
(

c̄(0), t
)

)

(58)

Pull-back to D̄ of the velocity field gradient ∇v in D

∇v(x̄, t)ē = lim
h→0

1

h

(

v
(

c̄(h), t
)

− v
(

c̄(0), t
)

)

(59)

= lim
h→0

1

h

(

v
(

γ(c̄(h), t), t
)

− v
(

γ(c̄(0), t), t
)

)

(60)

= ∇v
(

γ(x̄, t), t
)

e = ∇v
(

γ(x̄, t), t
)

Γ(x̄, t)ē (61)
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In short
∇v = ∇v Γ (62)

The derivative with respect to time of the value of the velocity field at a place x transforms
as follows

v′(x, t) = lim
τ→0

1

τ

(

v(x, t + τ) − v(x, t)
)

(63)

v′
(

γ(x̄, t), t
)

= lim
τ→0

1

τ

(

v
(

γ(x̄, t), t + τ
)

− v
(

γ(x̄, t), t
)

)

(64)

By using the trick of adding the null expression

− v
(

γ(x̄, t + τ), t + τ
)

+ v
(

γ(x̄, t + τ), t + τ
)

(65)

and rearranging the terms between brackets, we get

v′
(

γ(x̄, t), t
)

= − lim
τ→0

1

τ

(

v
(

γ(x̄, t + τ), t + τ
)

− v
(

γ(x̄, t), t + τ
)

)

(66)

+ lim
τ→0

1

τ

(

v
(

γ(x̄, t + τ), t + τ
)

− v
(

γ(x̄, t), t
)

)

(67)

= −∇v(x̄, t) γ̇(x̄, t) + v̇(x̄, t) (68)

Pull-back to D̄ of the acceleration field a in D

a(x̄, t) = a
(

γ(x̄, t), t
)

(69)

Substituting the expression for a(x, t) we get

a(x̄, t) = ∇v
(

γ(x̄, t), t
)

v
(

γ(x̄, t), t
)

+ v′
(

γ(x̄, t), t
)

(70)

= ∇v(x̄, t) Γ(x̄, t)−1 v(x̄, t) −∇v(x̄, t) Γ(x̄, t)−1 γ̇(x̄, t) + v̇(x̄, t) (71)

= ∇v(x̄, t) Γ(x̄, t)−1
(

v(x̄, t) − γ̇(x̄, t)
)

+ v̇(x̄, t) (72)

In short
a = ∇v Γ−1(v − γ̇) + v̇ (73)

The incompressibility condition becomes

div v = tr∇v = tr∇vΓ−1 = ∇vT · Γ−1 = 0 (74)

As an alternative description of the grid deformation we can define the grid displacement

field u, such that
u(x̄, t) = γ(x̄, t) − x̄ (75)

whose gradient turns out to be
∇u = Γ − I (76)
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9 Volume and area changing

While det Γ, by definition, is the ratio between the volume of a parallelepiped deformed
by Γ and its former volume, the ratio between the area of a parallelogram tangent to ∂D̄
deformed by Γ and its former area, is given by (see sect. A)

det Γ‖Γ−Tm‖ (77)

where m is the unit external normal to the closed surface in D̄. The unit normal to the
corresponding closed surface in D is

n =
Γ−Tm

‖Γ−Tm‖
(78)

The expressions above give us a good reason to define the cofactor of Γ

Γ⋆ := det Γ Γ−T (79)

It would be nice to have a volume preserving grid deformation. In such a case

det Γ = 1 (80)

In general we assume
det Γ > 0 (81)

10 Balance on a moving grid

Balance principle: for any test velocity field w

∫

D

b · w +

∫

∂D

t · w −

∫

D

T · ∇w = 0 (82)

In order to change the domain of integration, from the moving domain D to the fixed domain
D̄, we have to define the pull-back of the test velocity field

w(x̄, t) = w(γ(x̄, t), t) (83)

whose gradient will be
∇w = ∇w Γ (84)

From the balance above we get
∫

D̄

b · w det Γ +

∫

∂D̄

t · w detΓ‖Γ−Tm‖ −

∫

D̄

T · ∇w Γ−1 det Γ = 0 (85)

Rearranging the integrands
∫

D̄

(b det Γ) · w +

∫

∂D̄

(

t det Γ‖Γ−Tm‖
)

· w −

∫

D̄

(

T Γ−T det Γ
)

· ∇w = 0 (86)
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Using the definition of cofactor

∫

D̄

(b det Γ) · w +

∫

∂D̄

‖Γ⋆m‖ t · w −

∫

D̄

(T Γ⋆) · ∇w = 0 (87)

By definition of divergence of a tensor field

div (T Γ⋆) · w = div ((T Γ⋆)Tw) − (T Γ⋆) · ∇w (88)

It is worth noting that here the divergence is for tensor and vector fields in D̄.

∫

D̄

(b det Γ) · w +

∫

∂D̄

‖Γ⋆m‖ t · w +

∫

D̄

div (T Γ⋆) · w −

∫

D̄

div((T Γ⋆)Tw) = 0 (89)

By the divergence theorem

∫

D̄

div ((T Γ⋆)Tw) =

∫

∂D̄

(

(T Γ⋆)Tw
)

· m =

∫

∂D̄

(T Γ⋆m) · w (90)

The balance equation above turns into

∫

D̄

(b det Γ + div (T Γ⋆)) · w +

∫

∂D̄

(‖Γ⋆m‖ t − T Γ⋆m) · w = 0 (91)

The usual localization argument gives us the balance equations in D̄ and on its boundary
∂D̄

div (T Γ⋆) + b det Γ = 0 (92)

‖Γ⋆m‖ t = T Γ⋆m (93)

By setting

b̆ := b det Γ (94)

T̆ := T Γ⋆ (95)

t̆ := ‖Γ⋆m‖ t (96)

the balance equations become

div T̆ + b̆ = 0 (97)

t̆ = T̆m (98)

11 Navier Stokes equations on a moving grid

The material response is

T = −pI + 2µ sym∇v = −pI + 2µ sym (∇v Γ−1) (99)
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Thus
T̆ = T Γ⋆ = −p Γ⋆ + 2µ sym (∇v Γ−1) Γ⋆ (100)

The inertial forces are
b = −ρ a = −ρ

(

∇v Γ−1(v − γ̇) + v̇
)

(101)

Thus
b̆ = −ρ a det Γ = −ρ

(

∇v Γ−1(v − γ̇) + v̇
)

det Γ (102)

Putting all terms together we get

− div (p Γ⋆) + 2µ div (sym (∇v Γ−1) Γ⋆) − ρ
(

∇v Γ−1(v − γ̇) + v̇
)

det Γ = 0 (103)

The first term expands into

div (p Γ⋆) = p div Γ⋆ + Γ⋆ ∇p (104)

By the property
div Γ⋆ = 0 (105)

we get the new form of the Navier-Stokes equation

− Γ⋆ ∇p + 2µ div (sym (∇v Γ−1) Γ⋆) − ρ
(

∇v Γ−1(v − γ̇) + v̇
)

det Γ = 0 (106)

The incompressibility condition is

div v = tr (∇vΓ−1) = ∇vT · Γ−1 = 0 (107)

Differently from the case of non moving grid it is not possible here to use the incompress-
ibility condition for simplifying the balance equation. Nevertheless the gradient of the
espression on the left, multiplied by µ, can be subtracted from the Navier-Stokes equation
just to recover the former case and hoping for computational simplifications.

12 The boundary as a membrane

Balance principle: for any test velocity field w
∫

∂D

q · w +

∫

∂∂D

s · w −

∫

∂D

S · ∇w = 0 (108)

∫

∂D̄

q · w ‖Γ⋆m‖ +

∫

∂∂D̄

s · w β −

∫

∂D̄

S · ∇w Γ−1‖Γ⋆m‖ = 0 (109)

Balance equations in ∂D̄

divs (‖Γ⋆m‖Γ−T S) + q ‖Γ⋆m‖ = 0 (110)

where

q ‖Γ⋆m‖ = (−ρw a − Tn)‖Γ⋆m‖ = −ρw‖Γ
⋆m‖ a − T Γ⋆m (111)
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13 Fluid-wall interaction

14 Linearization

Let us assume that the flow is made up of a wave superposed to a stationary flow. Let
δ be a wave control parameter: we can think of it as a scaling factor of the amplitude of
the pressure wave. It is instrumental in the linearization process making it a well defined
procedure. [After completion of the linearization process we can remove the parameter δ

just by assigning it a unit value, if we like.]

Γ = I + δ Γ̃ + o(δ) (112)

Γ−1 = I − δ Γ̃ + o(δ) (113)

det Γ = 1 + δ tr Γ̃ + o(δ) (114)

Γ⋆ = detΓ Γ−T + o(δ) (115)

= (I − δ Γ̃T)(1 + δ tr Γ̃) + o(δ) (116)

= I − δ Γ̃T + δ tr Γ̃ I + o(δ) (117)

sym (∇v Γ−1)Γ⋆ = sym∇v̄ + δ ... (118)

A Area changing

Let vol be any volume form in E . An area form on ∂D̄ can be defined in the following
way. Let m be the unit external normal to ∂D̄ at a position x̄. Any couple of independent
tangent vectors a1, a2 at x̄ defines a parallelogram on the tangent plane whose area can be
defined as

area (a1, a2) = vol (a1, a2,m) (119)

In the grid deformation γ that couple of tangent vectors turns into a couple of vectors
Γa1,Γa2, tangent to ∂D at γ(x̄). Denoting by n any unit normal (one of the two possible
choices) to ∂D at γ(x̄), the area of the corresponding parallelogram is

area (Γa1,Γa2) = vol (Γa1,Γa2, n) (120)

= vol
(

Γa1,Γa2,Γ(Γ−1n)
)

(121)

= det Γ vol
(

a1, a2, (Γ
−1n)

)

(122)

The vector (Γ−1n) can be decomposed into its orthogonal projection on span{m}

(m ⊗ m)Γ−1n = (Γ−1n · m)m (123)

and its complement on span{a1, a2}. As for any vector a ∈ span{a1, a2}

vol (a1, a2, a) = 0 (124)
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the expression for the area above becomes

area (Γa1,Γa2) = det Γ vol
(

a1, a2, (Γ
−1n · m)m

)

(125)

= detΓ vol
(

a1, a2,m
)

(Γ−1n · m) (126)

= detΓ area (a1, a2)(n · Γ−Tm) (127)

Note that the vector Γ−Tm is orthogonal to span{Γa1,Γa2}, the tangent space to ∂D at
γ(x̄). For

Γ−Tm · Γa1 = m · Γ−1Γa1 = m · a1 = 0 (128)

Γ−Tm · Γa2 = m · Γ−1Γa2 = m · a2 = 0 (129)

Hence

Γ−Tm = α n (130)

Γ−Tm · n = α (131)

The condition that the area does not change sign implies α > 0. So the right choice for n is

n :=
Γ−Tm

‖Γ −Tm‖
=

Γ⋆m

‖Γ⋆m‖
(132)

We finally obtain
area (Γa1,Γa2)

area (a1, a2)
= det Γ‖Γ−Tm‖ = ‖Γ⋆m‖ (133)

B Cofactor divergence

For any uniform vector field e in D̄

div Γ⋆ · e = div (Γ⋆Te) (134)

Integrating over D̄ and applying the divergence theorem we get

∫

D̄

div (Γ⋆Te) =

∫

∂D̄

Γ⋆Te · m =

∫

∂D̄

Γ⋆m · e (135)

=

∫

∂D̄

n‖Γ⋆m‖ · e =

∫

∂D

n · e =

∫

D

div e = 0 (136)

This applies to every part of D̄ so, through an assumption of regularity, we come to the
conclusion

div Γ⋆ = 0 (137)
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