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SUMMARY. The impact of a soft contractile body on a hard support is described by fields of short
range forces. Besides repulsion these forces are able to describe also friction, damping and adhesion
allowing the body to have complex motions which look rather realistic. The contractility is used
to make the body look like a living body with some basic locomotion capabilities. The simulated
motion, like jumping or crawling, is driven either by a contraction or by the corresponding force.
Although only affine motions are allowed, the model arises from a general theory of remodeling
in finite elasticity and shows also creep and plastic deformations. The body is made of a viscous
incompressible Mooney-Rivlin material.

1 INTRODUCTION
Contractility is the ability of bodies, like muscle cells and fibres, to contract or to extend in order

to apply forces. More precisely, contractility can be defined as the ability to modify the zero stress,
or relaxed, configuration. This property can also give an elementary body the capability to move
over a substrate. In the form of a short tutorial this paper shows how a simple model can be defined
within the context of finite elasticity, including all the details needed to get a working toy model.
This allows fully physics-based simulations exhibiting some funny and hopefully realistic motions,
with bouncing and rolling and even crawling over a flat rigid support. Based upon methods which
have been employed to cope with constraints, the Lagrangianmultiplier method [1] and the penalty
method [2], a model for the contact between a contractile body and a rigid flat support is defined
by constitutive laws for the contact forces. The contact traction on the body boundary is given by
four short range force fields of different kinds: i) a repulsive force field; ii) an adhesive force field,
both described by a Lennard-Jones–like potential; iii) a damping force field, describing the impact
dissipation and depending both on the normal velocity and onthe distance; iv) a friction force field,
depending both on the sliding velocity and on the distance. Because of the nature of these force
fields the body will nevertouchthe support. Instead, the truecontact distancewill depend on the
motion. We follow here the theory of material remodeling as set up in [3, 4], applied and further
expounded in [5, 6] and in endless discussions with their authors, also about some projects still in
progress. While restricting it toaffine motionsa summary of that theory is given in sections 2 and 3.
Contact forces are defined and illustrated in section 4, as they were in [7]. Some simulations are
shown in the next sections.

2 AFFINE CONTRACTILE BODY
The motion of a bodyB is described at each timet by atransplacementp defined on thereference

shapeD :
p : D × I → E (1)

1



whereE is a three-dimensional Euclidean space. Anaffineor homogeneousmotion is characterized
by the following representation:

p(x, t) = p0(t) + ∇p(t)(x − x0) , (2)

wherex0 is a given point ofD and thetransplacement gradient:

∇p(t) : V → V (3)

is a tensor, i.e. an endomorphism of the translation space ofE , such thatdet∇p(t) > 0. An affine
velocity fieldv at timet has the representation:

v(x) = v0 + ∇v(x − x0) , (4)

where∇v is the velocity gradient. Along the motion (2) at timet

v0 = ṗ0(t), ∇v = ∇ṗ(t) . (5)

whereṗ0(t) := d p0(t)/dt and∇ṗ(t) := d∇p(t)/dt.
In order to describecontractilitywe introduce a new tensorG(t), such thatdetG(t) > 0, trans-

forming the reference shapeD into arelaxed shapeat timet and will assume that the strain energy
is a function of thewarpdefined by the Kröner-Lee decomposition:

F (t) := ∇p(t)G(t)−1 . (6)

Let us denote byV the corresponding velocity which takes the value

V = Ġ(t)G(t)−1 (7)

at timet along a motion described by(p, G). By assuming, asthe balance principle, that at any
time t
∫

D

b(x, t) · v dV +

∫

∂D

q(x, t) · v dA−S(t) · ∇v volD +
(
Q(t) ·V −A(t) ·V

)
volD = 0 (8)

for any test velocity field(v, V ), we get the following balance equations:

−m p̈0(t) − m g + f(t) = 0 , (9)

−∇p̈(t)J + M(t) − S(t) vol(D) = 0 , (10)

Q(t) − A(t) = 0 . (11)

where∇p̈(t) := d2 ∇p(t)/dt2, S(t) is the Piola Kirchhoff stress, and the bulk density force has
been assumed to be composed of the inertial force and the gravity force densities:

b(x, t) := −ρ
(
p̈(x, t) + g

)
. (12)

The Euler tensor has been denoted by:

J :=

∫

D

ρ(x − x0) ⊗ (x − x0)dV , (13)
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the total mass bym :=
∫
D

ρdV andx0 has been chosen to be the barycenter ofD.
The tractionq on the boundary is assumed to be the sum of different contact force fieldsqj

giving rise to the total force:

f (t) :=
∑

j

∫

∂D

qj(x, t)dA (14)

and to the moment tensor:

M(t) :=
∑

j

∫

∂D

(x − x0) ⊗ qj(x, t)dA . (15)

TensorsA(t) andQ(t) are calledinner andouter accretive couplesper unit reference volume.

3 DISSIPATION INEQUALITY AND MATERIAL CHARACTERIZATION
We assume (as in [3, 4]) that along any motion at any timet:

A · ĠG−1 + S · ∇ṗ −
d

dt

(
ϕ(F ) det G

)
≥ 0 , (16)

whereϕ is thestrain energy densityper unit relaxed volume. By replacing∇ṗ with the time deriva-
tive of the Kröner-Lee decomposition of∇p defined in (6), we get

A ·ĠG−1 +SGT · Ḟ +F TSGT ·ĠG−1− (detG)
d

dt
ϕ(F )− (det G)ϕ(F )I ·ĠG−1 ≥ 0 , (17)

Since dϕ(F )/dt is linear in Ḟ , we can define theelastic response function̂S as the function
Lin(V) → Lin(V) such that in any motion:

Ŝ(F )GT · Ḟ = (det G)
d

dt
ϕ(F ) . (18)

By requiringϕ to be frame-indifferent it turns out that the Cauchy stress

T = S ∇pT(det∇p)−1 (19)

is a symmetic tensor. These property will be reflected onS and its response function̂S.
Going back to (17), after substituting (18) we can collect terms thus getting:

(
S − Ŝ(F )

)
∇pT · ḞF−1 +

(
A + F TSGT − (detG)ϕ(F )I

)
· ĠG−1 ≥ 0 (20)

or equivalently
S+∇pT · ḞF−1 + A+ · ĠG−1 ≥ 0 , (21)

where we set
S+ := S − Ŝ(F ) ,

A+ := A + F TSGT − (detG)ϕ(F )I .
(22)

The simplest way for satisfyinga-priori the dissipation inequality (21) is to assume:

S+∇pT = µ sym(Ḟ F−1) ,

A+ = µγ ĠG−1 ,
(23)
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with positive scalarsµγ andµ. HenceA andS are constitutively characterized by the expressions:

S = S+ + Ŝ(F ) = µ sym (Ḟ F−1)(∇pT)−1 + Ŝ(F ) , (24)

A = A+ −
(
F TSGT − (det G)ϕ(F )I

)
= µγ ĠG−1 −

(
F TSGT − (detG)ϕ(F )I

)
. (25)

The balance equations take more clearly the form of equations of motion:

−m p̈0 − m g + f = 0 , (26)

−∇p̈ J + M − S vol(D) = 0 , (27)

µγ ĠG−1 = F TSGT − (det G)ϕ(F )I + Q . (28)

whereS is meant to be given by (24). The outer accretive coupleQ is the driving force, which could
be related to some other quantity like a voltage or a biochemical signal. In some of the preliminary
simulations shown in this paper the motion is driven byG instead. ThusQ is just a reactive force
given by (28).

We will consider an incompressible Mooney-Rivlin materialdefined by the strain energy func-
tion:

ϕ(F ) := c1(ı1(C) − 3) + c2(ı2(C) − 3) . (29)

wherec1 andc2 are elastic moduli andı1(C) andı2(C) are the principal invariants of the Cauchy–
Green tensorC := F TF :

ı1(C) := tr (C), ı2(C) :=
1

2

(
tr(C)2 − tr(C2)

)
. (30)

Because of the incompressibility constraintdet F = 1, the velocity fields turn out to be isochoric,
i.e. such thattr ḞF−1 = 0. Thus there exists areactivepartSr of the stressS whose power in any
isochoric velocity field is zero. HenceSr∇pT is a spherical tensor, which can be denoted by−πI.
For isochoric motions the inequality (20) characterizes only the deviatoric partS0 of the stress,
allowing an arbitrary spherical part. Thus (24) will be replaced by:

S = µ sym (ḞF−1)(∇pT)−1 + Ŝ0(F ) − π (∇pT)−1 (31)

4 CONTACT FORCE CONSTITUTIVE LAWS
Denoting byo any place on the flat surfaceS of the rigid support and byn the outward unit

normal vector to that surface, let us define the distance of a point x on∂D from the flat surfaceS at
time t:

d(x, t) := (p(x, t) − o) · n (32)

wherep(x, t) is the position occupied byx at timet. The distance of the body from the surfaceS is
defined as the minimum value ofd(x, t) over the boundary∂D. Because of the large deformations
a soft body can undergo, when defining tractions per unit areaof ∂D we have to take into account
the area change factor:

k(x, t) := ‖∇p⋆(x, t)m(x)‖ (33)

wherem(x) is the outward unit normal vector to∂D and∇p⋆(x, t) := (∇p(x, t)T)−1 det∇p(x, t)
is the cofactor of∇p(x, t). Therepulsivetraction field is assumed to be described by the following
constitutive law:

qr(x, t) = k(x, t) αr d(x, t)−νr n (34)
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where the coefficientαr is a positive real number and the exponentνr is a positive integer number.
A value forαr can be obtained by requiring that the repulsive forces balance the gravity forces when
the body stays at rest at a distanced0 from a horizontal surface. In other words,αr is determined by
choosing a characteristic distanced0 and an equilibrium configuration. The impact dissipation can
be described by the followingdampingtraction on∂D:

qd(x, t) = −k(x, t) βd d(x, t)−νd (n ⊗ n) ṗ(x, t) (35)

where the damping factorβd is a positive real number andνd a positive integer number. The tensor
(n ⊗ n) is the projector onto the direction orthogonal toS. Thefriction traction field is given the
constitutive law:

qf(x, t) = −k(x, t) βf d(x, t)−νf (I − n ⊗ n) ṗ(x, t) (36)

where the friction coefficientβf is a positive real number andνf is a positive integer number. Dif-
ferently from the previous traction fields, both normal to the surfaceS, the friction traction field is
tangent to the surfaceS.

Although it has not been used in the shown simulations, an adhesive force could be introduced
and given the following law:

qa(x, t) = −k(x, t) βa

(
d(x, t)−νaa − d(x, t)−νar

)
n (37)

where the coefficientβa is a positive real number andνaa andνar are positive integer numbers such
thatνar < νr andνaa = νar/2 .

5 NUMERICAL SIMULATIONS
Several numerical simulations have been performed using different constitutive parameters and

starting from different initial conditions. The whole boundary of the body was supposed to be able
to interact with the support surface with uniform values of the coefficientsαr, βd, βf, βa. All the
simulations aimed at challenging both the body model and thecontact model to exhibit a somewhat
realistic behavior, at least at first sight. Calibration of the parameters was done to this end. Whether
or not they are realistic is still to be investigated.

Some selected simulations are illustrated here. In all of them the body has a nonzero uniform
mass density and there is a downward gravity field while the support is flat and horizontal.

5.1 Creep
If Q(t) = 0, and waiting long enough, one can observe the body flatteningbecause of gravity.

Figure 1: The body flattens.
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Figure 2: The body jumps upward driven by an oscillating accretive couple.

Figure 3: Evolution of the relaxed shape generated by an oscillating accretive couple with fixed
principal axes.

5.2 Q driven motion
The motion is allowed to be vertical only. Thus there is no friction. An oscillating signal repre-

sented by the outer accretive coupleQ can make the body oscillate and even jump upward, as the
graph in Fig. 4 shows. The relaxed shape changes as shown in Fig. 3 as a consequence of the applied
accretive couple.

5.3 G driven motion
The motion is two-dimensional and is driven directly by an oscillating tensorG with detG(t) =

1. Denoting its two principal values by1/γ andγ, the contractionγ is given a periodic law while
the principal axes are given a constant spin. The relaxed shapes are shown in Fig. 7. The body starts
oscillating and soon moves forward rolling, almost crawling, and even jumping a little. The motion
is influenced less by the amplitude of the oscillation ofγ than by its frequency and the spin of the
principal axes. Without friction the body cannot move forward any more while the center follows a
vertical trajectory (Fig. 6).

6 CONCLUSIONS
The simulated motions are difficult to display in a still picture. But looking at the animations

generated after integrating the equation of motion is amazing and sometimes it is a very surprising
and fresh experience. All the computations, both symbolic and numerical, have been performed by
usingMathematicar, starting from the very basic expressions in sections 2, 3 and 4.

6



0 0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

Figure 4: Bottom jumps in the motion in Fig. 2.

Figure 5: Trajectory of the center and some frames in a motionfrom right to left, driven by an
oscillating contraction with rotating principal axes.

Figure 6: Without friction the body oscillates but does not move forward while the center moves on
a vertical line.
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Figure 7: Evolution of the relaxed shape generated by an oscillating contraction with rotating prin-
cipal axes.
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