Impact, bouncing and motility
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SUMMARY. The impact of a soft contractile body on a hard supdescribed by fields of short

range forces. Besides repulsion these forces are ableddlmalso friction, damping and adhesion
allowing the body to have complex motions which look ratteslistic. The contractility is used

to make the body look like a living body with some basic locdio capabilities. The simulated

motion, like jumping or crawling, is driven either by a caattion or by the corresponding force.
Although only affine motions are allowed, the model arisesnfra general theory of remodeling
in finite elasticity and shows also creep and plastic deftiona. The body is made of a viscous
incompressible Mooney-Rivlin material.

1 INTRODUCTION

Contractility is the ability of bodies, like muscle cellschfibres, to contract or to extend in order
to apply forces. More precisely, contractility can be dafias the ability to modify the zero stress,
or relaxed, configuration. This property can also give amelgary body the capability to move
over a substrate. In the form of a short tutorial this papenshhow a simple model can be defined
within the context of finite elasticity, including all the tdéls needed to get a working toy model.
This allows fully physics-based simulations exhibitingreofunny and hopefully realistic motions,
with bouncing and rolling and even crawling over a flat rigighgort. Based upon methods which
have been employed to cope with constraints, the Lagramgidiiplier method [1] and the penalty
method [2], a model for the contact between a contractileylzdl a rigid flat support is defined
by constitutive laws for the contact forces. The contaditiom on the body boundary is given by
four short range force fields of different kinds: i) a reputsforce field; ii) an adhesive force field,
both described by a Lennard-Jones—like potential; iii) mpiag force field, describing the impact
dissipation and depending both on the normal velocity antherdistance; iv) a friction force field,
depending both on the sliding velocity and on the distancecaBse of the nature of these force
fields the body will nevetouchthe support. Instead, the tr@gentact distancevill depend on the
motion. We follow here the theory of material remodeling asug in [3, 4], applied and further
expounded in [5, 6] and in endless discussions with thelmast also about some projects still in
progress. While restricting it taffine motions summary of that theory is given in sections 2 and 3.
Contact forces are defined and illustrated in section 4, egwere in [7]. Some simulations are
shown in the next sections.

2 AFFINE CONTRACTILE BODY
The motion of a body is described at each tintdy atransplacemenp defined on theeference
shapeD :
p:DxIT—=¢& 1)



wheref is a three-dimensional Euclidean space.aiineor homogeneousiotion is characterized
by the following representation:

p(x,t) = py(t) + Vp(t)(x — xo), ()
wherex is a given point ofD and thetransplacement gradient
Vp(t): V-V 3)

is a tensor, i.e. an endomorphism of the translation spaée siich thatlet Vp(¢) > 0. An affine
velocity fieldv at timet has the representation:

v(x) = vo + Vo(x — ), 4)
whereVw is the velocity gradient. Along the motion (2) at time
vo = Po(t), Vv =Vp(t). ()
wherep,(t) := dpy(t)/dt andVp(t) := d Vp(t)/dt.
In order to describeontractility we introduce a new tens6¥(¢), such thatlet G(¢) > 0, trans-

forming the reference shafi2into arelaxed shapeat timet and will assume that the strain energy
is a function of thevarp defined by the Kroner-Lee decomposition:

F(t) = Vp(t) G(t) " . (6)
Let us denote by the corresponding velocity which takes the value
V=GtG(H™ (7)

at timet along a motion described hp, G). By assuming, athe balance principlgthat at any
timet
/ b(x,t) ~vdV+/ q(z,t)-vdA—S(t) - VovolD+ (Q(t)- V — A(t)- V) vol D = 0 (8)
D oD

for any test velocity fieldv, V'), we get the following balance equations:

—mpy(t) —mg+ f(t) =0, 9)
—Vp(t)J + M(t) — S(t) vol(D) =0, (10)
Q(t)—A(t)=0. (11)

whereVp(t) := d? Vp(t)/dt?, S(t) is the Piola Kirchhoff stress, and the bulk density force has
been assumed to be composed of the inertial force and thitygi@ee densities:

b(z,t) = —p (p(z,t) +g). (12)

The Euler tensor has been denoted by:

J = / p(x —xo) ® (x — 20)dV (13)
D

2



the total mass byn := fD pdV andx, has been chosen to be the barycentdp of
The tractiong on the boundary is assumed to be the sum of different convace ffieldsg;
giving rise to the total force:

ft) = Z /aD q;(z,1)dA (14)

and to the moment tensor:
M(t) := E / (x —x0) ® q;(x,t)dA. (15)
— Jop
J

TensorsA(t) andQ(t) are callednner andouter accretive coupleser unit reference volume.

3 DISSIPATION INEQUALITY AND MATERIAL CHARACTERIZATION
We assume (as in [3, 4]) that along any motion at any time

A-GG_l—i—S-Vp—%(cp(F)detG)20, (16)

wherey is thestrain energy densitger unit relaxed volume. By replacingp with the time deriva-
tive of the Kroner-Lee decomposition ®fp defined in (6), we get

A-GG'+SG" F+F'SG" -GG — (det G)%cp(F)—(det G)p(F)I-GG™' >0, (17)

Since d o(F)/dt is linear in F', we can define thelastic response functiod as the function
Lin(V) — Lin(V) such that in any motion:

~ . d
S(F)G" - F = (det G) - o(F). (18)
By requiringyp to be frame-indifferent it turns out that the Cauchy stress
T = S Vp'(det Vp)~* (19)

is a symmetic tensor. These property will be reflectedand its response functios.
Going back to (17), after substituting (18) we can colleotigthus getting:

(S —S(F)Vp'-FF' + (A+ F'SG" — (det G)p(F)I) -GG~ >0 (20)
or equivalently . .
STVvp' - FF '+ AT.GG™'>0, (21)
where we set .
St.=8-S(F),
(22)
AT := A+ F'SG" — (det G)p(F)I .
The simplest way for satisfying-priori the dissipation inequality (21) is to assume:
Stvp' = FF™ ),
p = psym( ) (23)

AT =, GG,



with positive scalarg., andu.. HenceA andS are constitutively characterized by the expressions:
S=8"+8(F)=psym(FF ) (Vp")~' +8(F), (24)
A=A"— (F'SG" - (det G)p(F)I) = i, GG — (FTSG" — (det G)p(F)I). (25)

The balance equations take more clearly the form of equatbémotion:

—mpy—mg+f=0, (26)
—VpJ + M — Svol(D) =0, (27)
1y, GG = F'SG" — (det G)p(F)I + Q. (28)

whereS is meant to be given by (24). The outer accretive co@ple the driving force, which could
be related to some other quantity like a voltage or a biocbalsignal. In some of the preliminary
simulations shown in this paper the motion is driven@®ynstead. Thus) is just a reactive force
given by (28).
We will consider an incompressible Mooney-Rivlin matedafined by the strain energy func-
tion:
O(F) :=c1(11(C) = 3) + c2(22(C) — 3) . (29)

wherec; ande, are elastic moduli and (C) andq»(C') are the principal invariants of the Cauchy—
Green tenso€ := F'F:

1(C) =tr(C), 12(C):= %(tr(C’)2 - tr(CQ)) . (30)
Because of the incompressibility constraiiat F' = 1, the velocity fields turn out to be isochoric,
i.e. such thatr FF~' = 0. Thus there exists @activepartS,. of the stressS whose power in any
isochoric velocity field is zero. Henc®,.Vp' is a spherical tensor, which can be denoted-by .
For isochoric motions the inequality (20) characterizely dhe deviatoric partS, of the stress,
allowing an arbitrary spherical part. Thus (24) will be @d by:

S = psym (FFY)(Vp") ™' + 8o(F) — 7 (Vp")~! (31)

4 CONTACT FORCE CONSTITUTIVE LAWS
Denoting byo any place on the flat surface of the rigid support and by: the outward unit
normal vector to that surface, let us define the distance ofra g on 9D from the flat surface at
timet:
d(z,t) = (p(x,t) —0) -n (32)

wherep(x, t) is the position occupied by at timet. The distance of the body from the surfages
defined as the minimum value dfx, t) over the boundaryD. Because of the large deformations
a soft body can undergo, when defining tractions per unit afé® we have to take into account
the area change factor:

k(x, 1) = |Vp* (z, ) m(z))| (33)

wherem(z) is the outward unit normal vector 8D andVp* (z, t) := (Vp(z,t)") "' det Vp(z,t)
is the cofactor oV p(x, t). Therepulsivetraction field is assumed to be described by the following
constitutive law:

q.(z,t) = k(z,t) acd(z,t) """ n (34)



where the coefficient, is a positive real number and the exponenis a positive integer number.
A value fora, can be obtained by requiring that the repulsive forces loaléime gravity forces when
the body stays at rest at a distanigefrom a horizontal surface. In other words, is determined by
choosing a characteristic distandégand an equilibrium configuration. The impact dissipation ca
be described by the followingampingtraction onoD:

Qo (@, t) = —k(w, 1) Bo d(z, )" (n @ n) p(z, t) (35)

where the damping factgt, is a positive real number and a positive integer number. The tensor
(n ® n) is the projector onto the direction orthogonalfo Thefriction traction field is given the
constitutive law:

q;(z,t) = —k(x,t) By d(x,t) ™" (I —n®@n)p(x,t) (36)

where the friction coefficient; is a positive real number and is a positive integer number. Dif-
ferently from the previous traction fields, both normal te gurfaceS, the friction traction field is
tangent to the surfacs.

Although it has not been used in the shown simulations, aesidh force could be introduced
and given the following law:

qq(z,t) = —k(x,t) fa (d(z,t) """ —d(z, t)""*")n (37)

where the coefficient, is a positive real number ang, andv,, are positive integer numbers such
thatv,, < vy andvgq = vq /2.

5 NUMERICAL SIMULATIONS

Several numerical simulations have been performed usiifgyeint constitutive parameters and
starting from different initial conditions. The whole balary of the body was supposed to be able
to interact with the support surface with uniform valuesta toefficientsy., 5y, 55, .. All the
simulations aimed at challenging both the body model anddméact model to exhibit a somewhat
realistic behavior, at least at first sight. Calibrationtaf parameters was done to this end. Whether
or not they are realistic is still to be investigated.

Some selected simulations are illustrated here. In all efthhe body has a nonzero uniform
mass density and there is a downward gravity field while tippstt is flat and horizontal.

5.1 Creep
If Q(t) = 0, and waiting long enough, one can observe the body flattdrécguse of gravity.
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Figure 1: The body flattens.



Figure 2: The body jumps upward driven by an oscillating atize couple.

Figure 3: Evolution of the relaxed shape generated by arlatsny accretive couple with fixed
principal axes.

5.2 Q driven motion

The motion is allowed to be vertical only. Thus there is notfoin. An oscillating signal repre-
sented by the outer accretive coufilecan make the body oscillate and even jump upward, as the
graphin Fig. 4 shows. The relaxed shape changes as showa iB & a consequence of the applied
accretive couple.

5.3 G driven motion

The motion is two-dimensional and is driven directly by anilbsting tensorG with det G(t) =
1. Denoting its two principal values bl/~ and~, the contractiony is given a periodic law while
the principal axes are given a constant spin. The relaxgueshare shown in Fig. 7. The body starts
oscillating and soon moves forward rolling, almost cragjiand even jumping a little. The motion
is influenced less by the amplitude of the oscillationydhan by its frequency and the spin of the
principal axes. Without friction the body cannot move fordrany more while the center follows a
vertical trajectory (Fig. 6).

6 CONCLUSIONS

The simulated motions are difficult to display in a still picd. But looking at the animations
generated after integrating the equation of motion is anggand sometimes it is a very surprising
and fresh experience. All the computations, both symbalatmumerical, have been performed by
usingMathematic®, starting from the very basic expressions in sections 2d¥an
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Figure 4: Bottom jumps in the motion in Fig. 2.

Figure 5: Trajectory of the center and some frames in a mdtimm right to left, driven by an
oscillating contraction with rotating principal axes.

Figure 6: Without friction the body oscillates but does natv@ forward while the center moves on
a vertical line.



Figure 7: Evolution of the relaxed shape generated by atlatieg contraction with rotating prin-
cipal axes.
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