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Abstract The motion of a soft and contractile body on a hard support is described
by fields of short range contact forces. Besides repulsion these forces are able to
describe also viscous friction, damping and adhesion allowing the body to have
complex motions which look rather realistic. The contractility is used to make the
body behave like a living body with some basic locomotion capabilities. The sim-
ulated motions, showing jumping or crawling, are driven either by a contraction or
by a contractile couple. Although only homogeneous deformations are allowed, the
model arises from a general theory of remodeling in finite elasticity. The body is
made of a viscoelastic incompressible neo-Hookean material.

1 Introduction

The aim of this paper is to use a contact model to describe the complex motions
of stiff, soft and contractile bodies interacting with a rigid flat support. The body
model, though restricted to homogeneous deformations, is derived from a general
continuum theory of remodeling in finite elasticity, as set up in [3, 7]. A summary
of that theory is given in sections 2 and 3. The body is made of aviscoelastic in-
compressible neo-Hookean material.

Contractility is the ability of bodies, like muscle cells and fibres to contract or
to extend in order to apply forces. More precisely, it can be defined as the ability
to modify the zero stress, or relaxed, configuration [11]. Contractility can also give
an elementary body some motility and locomotion capabilities allowing it to move
over a substrate [14, 9]. The simulated motions described here, showing jumping or
crawling, are driven either by a contraction or by a contractile couple.

We use a contact model described by constitutive laws for thecontact forces
arising from the interaction of the body boundary and the support surface, which
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get close to each other during a motion, without enforcing explicitly unilateral con-
straints, in the spirit of [15], chap. 5. An interatomic potential was used in [8, 10, 6]
to add adhesion to the Hertz model, and in contact modeling based on molecular
dynamics, as in [4]. In macroscopic modeling the interatomic potential is replaced
by a surface contact potential, as in [16, 1] and more recently discussed in [12, 13].

The contact tractions on the body boundary are given here by four short range
force fields of different kind, potential or dissipative, all of them depending on
the distance from the support: i) a repulsive force field; ii)an adhesive force field,
both derived from a Lennard-Jones–like surface contact potential; iii) a damping
force field, describing the impact dissipation and depending on the normal velocity;
iv) a viscous frictional force field, depending on the sliding velocity. They decay
very fast as the distance increases and grow to infinity as thebody and the support
get closer and closer. Hence the body will nevertouchthe support. Instead, the true
contact distancewill depend on the motion, although some characteristic values can
be related to the constitutive properties of each contact force field.

Although the law used for the frictional force field does not implement a Coulomb
like friction, the two dissipation mechanisms iii) and iv) turn out to be suitable to
describe the dynamical behavior of a body over a support.

Summarizing, this paper briefly shows how a simple model can be defined within
the context of finite elasticity and contact mechanics, including all the details needed
to set up numerical physics-based simulations, showing a body bouncing and rolling
and even crawling over a flat rigid support.

Though the simulations do not make use of experimental data for the material
properties of neither the body nor the substrate, they seem useful to provide some
insight into the dynamics of a simple body over a substrate and the mechanisms on
which locomotion could be based.

2 Affine Contractile Body

The motion of a bodyB is described by a mapping

p : D ×I → E , (1)

transforming thereference shapeD , at each timet ∈ I , into thecurrent shape
p(D ,t) in a three-dimensional Euclidean spaceE . An affineor homogeneousmo-
tion is completely defined at any timet by the current positionp0(t) of a point occu-
pying a positionx0 in D and by thedeformation gradient∇p(t), with det∇p(t) > 0,
through the following representation

p(x,t) = p0(t)+ ∇p(t)(x−x0) , ∀x ∈ D . (2)

As a consequence, an affine velocity fieldv at any timet has the representation

v(x) = v0 + ∇v(x−x0) , (3)
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where∇v is the velocity gradient. Along the motion (2) at timet

∇v = ∇ṗ(t) , v0 = ṗ0(t) , (4)

where the dot denotes time derivatives.

∇p

G

F

reference
shape

relaxed
shape

current
shape

Fig. 1 Kröner-Lee decomposition of the deformation gradient∇p.

In order to describecontractility we introduce a new tensorG(t), such that
detG(t) > 0, transforming the reference shapeD into arelaxed shapeat timet, and
will assume that the strain energy is a function ofF as defined by the Kröner-Lee
decomposition (see Fig. 1)

F(t) := ∇p(t)G(t)−1 . (5)

Let us denote byV the velocity corresponding toG which takes the value

V = Ġ(t)G(t)−1 (6)

at timet along a motion described by(p,G). We assume asbalance principle(fol-
lowing [5]) that at any timet for any test velocity field(v,V)

∫

D

b(x,t) ·vdV +
∫

∂D

q(x,t) ·vdA

−S(t) ·∇v vol(D)+
(
Q(t)−A(t)

)
·V vol(D) = 0,

(7)

where the bulk density forceb, denoting byρ the reference mass density, is com-
posed of the inertial force and the gravity force densities

b(x,t) := −ρ(x)
(
p̈(x,t)+g

)
, (8)

while the tractionq on the boundary is assumed to be the sum of different contact
force fieldsq j . The tensorS(t) is the Piola stress in the reference shape, related to
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the Cauchy stressT by
T = S∇pT(det∇p)−1 . (9)

The tensorsA(t) andQ(t) are theinternalandexternal contractile couplesper unit
reference volume. The first one describes the material response while the second one
describes an action from outside the mechanical system, which could be controlled
by an electrical or biochemical signal.

The balance equations corresponding to (7) turn out to be

−mp̈0(t)−mg+ f(t) = 0, (10)

−∇p̈(t)E+M(t)−S(t) vol(D) = 0, (11)

Q(t)−A(t) = 0. (12)

The scalar quantitym is the total mass
∫
D

ρ dV, while E is the Euler tensor

E :=
∫

D

ρ(x)(x−x0)⊗ (x−x0)dV , (13)

wherex0 has been chosen as the barycenter ofD . The contact force fieldsq j give
rise to the total force

f(t) := ∑
j

∫

∂D

q j(x,t)dA (14)

and to the total moment tensor1

M(t) := ∑
j

∫

∂D

(x−x0)⊗q j(x,t)dA. (15)

The volume of the reference shape is denoted by vol(D).

3 Dissipation Inequality and Material Characterization

The material response can be characterized (as in [3] and [7]) by assuming that
along any motion at any timet

A · ĠG
−1 +S ·∇ṗ−

d
dt

(
Jϕ(F)

)
≥ 0, (16)

whereϕ is thestrain energy densityper unit relaxed volume andJ := detG. Note
that, because of the balance principle (7), the power(A · ĠG−1 +S ·∇ṗ) equals the

1 Here we use the following definition of tensor product:

(u⊗ f)e= (u ·e)f ∀e.
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power, per unit reference volume, of the bulk forces, the contact forces and the ex-
ternal contractile couple. Thus the dissipation principleabove states that the external
power is not entirely balanced by a rate of change of the strain energy. By replacing
∇ṗ with the time derivative of the Kröner-Lee decomposition of ∇p defined in (5),
we get

A · ĠG−1 +SGT · Ḟ+FTSGT · ĠG−1−J
d
dt

ϕ(F)−Jϕ(F)I · ĠG−1 ≥ 0. (17)

Sincedϕ(F)/dt is linear inḞ, we can define theelastic responsefor the Piola stress
S := J−1SGT, pull-backof T to the relaxed shape, as the functionŜ such that in any
motion

Ŝ(F) · Ḟ =
d
dt

ϕ(F) . (18)

By requiring ϕ to be frame-indifferent it turns out that the Cauchy stress (9) is
a symmetric tensor. Going back to (17), after substituting (18) we can collect all
terms in two groups

(
S− Ŝ(F)

)
∇pT · ḞF−1 +

(
A+FTSGT −Jϕ(F)I

)
· ĠG−1 ≥ 0 (19)

with Ŝ(F) = J−1 Ŝ(F)GT. Setting

S+ := S− Ŝ(F) ,

A+ := A+FTSGT −Jϕ(F)I ,
(20)

the dissipation inequality (19) takes the form

S
+∇pT · ḞF

−1 +A
+ · ĠG

−1 ≥ 0. (21)

In order forS+ andA+ to satisfy a-priori the dissipation inequality (21) both ofthem
have to depend oṅFF−1 andĠG−1. A possible constitutive prescription, recovering
the classical viscous stress, consists in assuming

S+ ∇pT = µ sym(ḞF−1) ,

A+ = µγ ĠG−1 ,
(22)

with positive scalarsµ , theviscosity, andµγ , theresistance to contraction.
HenceA andS are constitutively characterized by the expressions

S = S
+ + Ŝ(F) = µ sym(ḞF

−1)∇p−T + Ŝ(F) ,

A = A+ −FTSGT +Jϕ(F)I = µγ ĠG−1−FTSGT +Jϕ(F)I .
(23)

Now the balance equation (12) takes the form of an evolution equation

µγ ĠG−1 = FTSGT −Jϕ(F)I+Q , (24)
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whereS is meant to be given by the first of (23). The external contractile coupleQ

is the driving force, which could be related to some other quantity like an electrical
or biochemical signal. In some of the simulations shown in this paper the motion
is driven byG instead. In those casesQ is just a reactive contractile couple given
by (24). We will consider an incompressible material definedby the neo-Hookean
strain energy function

ϕ(F) := c1(ı1(C)−3) , (25)

wherec1 is the elastic moduli andı1(C) is the trace of the Cauchy–Green tensor
C := FTF. Because of the incompressibility constraint detF = 1, the velocity fields
turn out to be isochoric, i.e. such that trḞF−1 = 0 . Hence there exists areactive
spherical part−π I of S, while the inequality (19) characterizes only the deviatoric
partS0. Thus the first of (23) will be replaced by

S = µ sym(ḞF−1)∇p−T + Ŝ0(F)−π ∇p−T . (26)

4 Surface Energy and Contact Force Characterization

The flat surfaceS of the rigid support can be defined by the positiono of a point
on it and by the exterior unit normal vectorn. The distance of a pointx on∂D from
S at timet is

d(x,t) := (p(x,t)−o) ·n , (27)

wherep(x,t) is the position occupied byx at timet.
In order to describe the contact interaction it is convenient to consider the body

and the support as a whole body and to define asurface contact potentialψ as a
density per unit reference area on∂D . If we assume that this potential depends only
on the distanced it turns out to be frame-indifferent. Accordingly, the dissipation
inequality (16) should be changed into

vol(D)
(
A · ĠG−1 +S ·∇ṗ

)
−
∫

∂D

q · ṗdA

−vol(D)
d
dt

(
Jϕ(F)

)
−

d
dt

∫

∂D

ψ(d)dA≥ 0,

(28)

where the terms in the first row, through (7), equal the power of the external bulk
forces and the external contractile couple. This conditioncan be replaced by the
stronger requirement that (16) be satisfied together with the following condition

−q(x,t) · ṗ(x,t)−
d
dt

ψ(d(x,t)) ≥ 0 ∀x ∈ ∂D (29)

Since the rate of change of the contact potential is linear inḋ = n · ṗ, we can define
thepotential contact forcethrough a scalar field ˆq such that in any motion
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q̂(x,t)n · ṗ(x,t) = −
d
dt

ψ(d(x,t)) , (30)

which allows (29) to be rewritten as

−
(
q(x,t)− q̂(x,t)n

)
· ṗ(x,t) ≥ 0 ∀x ∈ ∂D , (31)

or simply
−q+(x,t) · ṗ(x,t) ≥ 0, (32)

with q+(x,t) := (q(x,t)− q̂(x,t)n) the dissipative contact force. The requirement
above is a restriction on constitutive laws for contact forces.

5 Contact Constitutive Laws

Therepulsivetraction field is assumed to be defined on∂D by a surface potential

ψr(d(x,t)) :=
αr

νr −1
d(x,t)−νr+1 . (33)

where the coefficientαr is a positive real number and the exponentνr > 1 is an
integer. The corresponding constitutive law, through (30), turns out to be

qr(x,t) = αr d(x,t)−νr n , (34)

A value forαr can be obtained by requiring the repulsive force to balance the gravity
force when the body stays at rest at an equilibrium distanced0 from a horizontal
surface, thus relatingαr to a characteristic distance.

An impact dissipation can be described by the followingdampingtraction on∂D

qd(x,t) = −βd d(x,t)−νd (n⊗n) ṗ(x,t) , (35)

where the damping factorβd is a positive real number andνd a positive integer. The
tensor(n⊗n) is the projector onto the direction orthogonal toS .

The simulations shown in this paper make use of a viscousfriction defined by
the following constitutive law

qf(x,t) = −βf d(x,t)−νf ṗτ (x,t) , (36)

which is linear in the tangent velocity projectionṗτ(x,t) := (I−n⊗n) ṗ(x,t) and
depends also ond. The coefficientβf is a positive real number andνf is a positive
integer. If we allowβf not to be a constant we could also use the following law

qfC(x,t) = −αr d(x,t)−νr µf(‖ṗτ(x,t)‖)
ṗτ(x,t)
‖ṗτ(x,t)‖

. (37)
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This expression could be given the form of a regularized Coulomb law ([15],
chap. 5) depending on the repulsive traction (34) and on a regular positive func-
tion µf of the tangent velocity. In some of the following simulations adhesion will
be introduced through an additional potential contact force which is given the fol-
lowing law

qa(x,t) =
(
βr d(x,t)−νr −βa d(x,t)−νa

)
n , (38)

whereβr andβa are positive real numbers andνa is a positive integer.
It is worth noting that the condition thatβd, βf, µf be positive makes each of the

above constitutive laws for the dissipative traction fieldsqd, qf, qfC fulfill separately
the requirement (32).

6 Contact Force Distributions

(a) (b) (c) (d)

d

dν

d0

π
4

π
100

d(t)ν

t

(e) d0

Fig. 2 (a) Spatial distribution of the functiond−ν , with d0 = 0.01 and lower face parallel to the
support surface; (b) body rotated byϑ = π/100 about the left lower edge; (c) body rotated by
ϑ = π/4. (d) Time evolution of the functiond−ν at the bottom edge during an undamped vertical
bouncing motion, withϑ = π/4. (e) Different frames of a bouncing rigid sphere and sections at
distanced0.

In order to illustrate the role of the parameters on which thecontact tractions
depend, it could useful to recall some elementary properties. All of the traction
fields given by (34)-(38) depend on the functiond−ν . Figures 2 (a)-(b)-(c) show how
rapidly the graph ofd−ν changes when rotating a body in the shape of a cube around
an edge: when the lower face of the body is parallel to the support S (Fig. 2 a), the
graph is flat; as soon as the body rotates by a very small angle (Fig. 2 b) the graph
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rapidly decreases from a maximum value attained at the edge;when the body is in
the unstable equilibrium configuration (Fig. 2 c) the graph becomes very sharp: the
higher the value of the exponentν the sharper the graph. Finally, figure 2 (d) shows
the time evolution of the functiond−ν at the edge close to the support, when the
body bounces vertically.

Even though the support does not deform and the body never touches its surface,
we can consider the cross section of the body shape at a characteristic distanced0

from the support as a “contact area”. In Fig. 2 (d), differentframes of a bouncing
rigid sphere are shown together with the corresponding contact cross sections.

7 Numerical Simulations

7.1 Parameter Choice and Computational Details

Several numerical simulations have been performed using different constitutive pa-
rameters and different initial conditions. The whole boundary of the body was sup-
posed to be able to interact with the support surface, with uniform properties. The
body has a nonzero uniform mass density and is subjected to a downward gravity
field, while the support is rigid, flat and usually horizontal.

All the simulations were aimed at testing the ability of boththe body model
and the contact model to exhibit a somewhat “qualitatively realistic” behavior. By
this we mean the ability of bouncing and rolling, and also jumping and crawling,
within a time interval of few seconds, with a length scale of 1m, a mass density of
about 103kg/m3, an elastic modulus around 1MPa. Calibration of the parameters
was done to this end. No comparison was made with experimental data. That is
why the presented simulations do not constitute a quantitative benchmark set. Some
simulations of a three-dimensional motion of a rigid body can be found in [2].

The computational scheme can shortly be described as follows: the main pro-
cedure consists in the numerical integration of the equations of motion (10), (11),
(12) starting from given initial conditions. For plane motions, the number of corre-
sponding scalar time differential equations is 2 for eqn. (10), 4 for eqn. (11), and 4
for eqn. (24) which is the explicit form of eqn. (12). At a lower level, for each time
step, the main task consists in computing the integrals (14)and (15) over the bound-
ary ∂D . The whole procedure has been implemented inMathematicar, which has
also been used to derive the general expressions for each of the traction fields in
sect. 4, starting from the motion description (2) and makinguse of (7). The time
integration, as well as the integration on the boundary, hasbeen performed by using
the Mathematica built-in functions with only some parameter tweaking.

The outcome of each time integration, after a dump of the Mathematica session,
was routinely processed producing graphs and movies.
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Fig. 3 Plane motion of a rigid body in the shape of a cube. Left column: contact without friction
(L = 1m, d0 = 0.002m,v0 = 0, ϑ0 = 0.99π/4, νr = 8, ρ = 103 kg/m3, νd = 2, βd/dνd

0 = 2.5×

105 Pa s/m,βf = 0). Right column: contact with friction (νf = 2,βf/d
νf

0 = 2.5×107 Pa s/m); (a)-(e)
initial and final configurations and trajectory of the center; (b)-(f) distance ofA from the support;
(c)-(g) distance ofB from the support; (d)-(h) rotation amplitude.

7.2 Sliding, Bouncing and Rocking

Figure 3 shows the plane motion of a rigid body in the shape of acube, with edge
lengthL, starting from a slightly perturbed unstable equilibrium configuration. The
left column (a)-(d) refers to a contact without friction, while the right column (e)-(h)
refers to a contact with friction. The graphs show the time evolution of the distances
yA(t) andyB(t) of theA andB edges from the support, together with the time evo-
lution of the rotation amplitudeϑ(t). Both the initial configurations (gray) and the
limit configurations (dashed) can be seen at the top of the figure. Looking at the left
column (Fig. 3 b-c) we can see how the edgeA changes only slightly its distance
from the support, while the edgeB falls down in a clockwise rotation of the body
(Fig. 3 d) until it starts bouncing. BothA andB edges reach, in a long enough time
span, the same distance from the support, slightly greater than the initial one be-
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Fig. 4 Plane motion of a rigid circular cylinder. Left column: contact without friction (L = 1m,
d0 = 0.002m,v0 = 0.15m,u̇0 = 5m/s,νr = 8,ρ = 103 kg/m3, νd = 4,βd/dνd

0 = 6.25×105 Pa s/m,

βf = 0). Right column: contact with friction (νf = 6, βf/d
νf

0 = 1.6×1019Pa s/m).

cause the body ends up lying on a flat face instead of an edge. This fact, together
with the small oscillations the edgeA exhibits in the transition (Fig. 3 b), reveals
the absence of a real contact surface. When frictional forces are added, the system
exhibits a richer dynamics.

As can be seen from the bouncing of both edgesA andB (Fig. 3 f-g), the rigid mo-
tion resembles a rocking motion until it fades out. In the frictionless case (Fig. 3 a)
the trajectory of the center of the rigid body turns out to be vertical. That means that
while the body rotates, the edgeA slides leftward. Instead, if the friction coefficient
is large enough the edgeA does not slide any more, though it bounces for a while
(Fig. 3 e-g), thus making the trajectory of the center very different from the previous
case and even longer. These differences could be caught alsoby comparing the first
impact time (Fig. 3 c-g).
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7.3 Bouncing and Rolling

Figure 4 shows the plane motion of a rigid body in the shape of acircular cylinder,
with diameterL, which drops on the support from a distancev0 with initial horizon-
tal velocityu̇0. The left column (b)-(d) refers to a contact without friction, while the
right column (e)-(g) refers to a contact with friction. Graphs (b)-(e) and (c)-(f) show
the time evolution of the vertical and horizontal coordinates of the center,yC(t) and
xC(t), while graphs (d)-(g) show the time evolution of the angularvelocity. The
trajectory of the center drawn in the top panel (a) has been rescaled to make the
bouncing more visible. Although friction does not affect the time evolution of the
distance of the center from the support (the vertical motionof the body), as can be
seen comparing Fig. 4 (b) and Fig. 4 (e), it makes the motion quite different: at the
first impact the angular velocity rises suddenly (Fig. 4 g), as a consequence of the
initial value of the horizontal velocity. That means that the friction makes the cylin-
der roll while, at the same time, lowering the horizontal velocity (compare Fig. 4 (f)
and Fig. 4 (c)). Finally, it is worth to note how the angular velocity decreases after
the bouncing has faded out. This is a consequence of the damping forces (35) acting
on points close to the contact, whose vertical velocity is different from zero because
of rolling.

7.4 Adhesion and Detachment

trajectory
trajectory

(a) (b)

Fig. 5 Effect of the adhesive forces: (a) adhesion to a ceiling; (b)adhesion to a vertical wall;
(L = 1m, d0 = 0.002m,νr = 8, νa = 6, νd = 3, νf = 6, βa = 4×106 αr βd = 4×106 αr, βf =

4×106 αr).

Figure 5 shows the outcome of simulations where adhesive contact forces (38)
have been added. To better understand the influence of adhesive forces these sim-
ulations consist in computing the motion generated by throwing the body against
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either a horizontal support (like a ceiling, Fig. 5 a) or a vertical support (like a wall,
Fig. 5 b), in order not to confuse the adhesive forces with thegravity force. The
initial velocity has been calibrated in such a way to let the body touch the support
without bouncing back. Once the body has got stuck to the support, the mass den-
sity of the body is increased gradually as a trick to make the bond brake. And that is
exactly what happens: the body detaches from the support andfalls down.

The role of the friction is very different in the two simulations. While in case
(a) the friction just slows down the body until it stops sliding on the ceiling, in
case (b) the friction prevents the body from sliding down thewall until it suddenly
starts detaching. The trajectory of the center of the body and a few frames help to
understand the motion.

7.5 Bouncing and Vibrations of a Soft Body

For plane deformations it is convenient to enforcea-priori the incompressibility
constraint detF = (detR)(detU) = 1 by giving the matrix of the stretchU the fol-
lowing parameterized form (

1+κ2

χ κ
κ χ

)
. (39)

The principal stretchesλ and 1/λ , turn out to be given by the expression

λ :=

(
1+ κ2+ χ2+

√
(1+ κ2)2 +2(κ2−1)χ2+ χ4

)
/(2χ) . (40)

Denoting byθ the amplitude of the rotationR, the tensorF will be described by the
three parameters:θ ,κ ,χ .

Figure 6 shows a cylinder, with diameterL, bouncing in a plane vertical motion,
after dropping on the support from a distancev0. In this caseλ denotes the vertical
stretch while 1/λ denotes the horizontal stretch, given by the ratiol(t)/L. Both fric-
tion and impact damping have been neglected. The motion described by the graphs
in Figure 6 (b)-(c) is only slightly damped by a dissipative stress with a low value
for the coefficientµ . It is worth noticing how the deformation of the body reflects
on the bouncing. Comparing the time-histories of the centerC and the bottomB
(Fig. 6 b), we can see a sequence of bounces, due to the motion of the center, to-
gether with other bounces with a lower amplitude and a higherfrequency, due to
the stretching. The frequencies of the two kinds of bouncingseem to be far enough
not to interact significantly with each other. The graphs in Fig. 6 (d)-(e) show the
effects of a higher value for the coefficientµ , to be compared with the graphs above.
After a short while the dissipation is able to slow down both the bouncing and the
vibrations.

The body in Fig. 7 falls down on the support from a distancev0 with an initial
leftward horizontal velocity ˙u0. The friction makes it start rolling while the impact is
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Fig. 6 Motion of an elastic cylinder (L = 1m, d0 = 0.002m,v0 = 100d0, c1 = 6× 104 Pa,ρ =
4×103 Kg/m2, νr = 8, νd = 2, νf = 2, βd = 0, βf = 109 αr, µ = 102 Pa s): (a) selected frames;
(b) distance ofB andC from the support; (c) principal stretch; (d)-(e) effect of ahigher dissipative
stress (µ = 5×103 Pa s).

followed by a few bounces. The body is stiffer and heavier than the body in Fig. 6.
The resulting vibration frequency is higher while it bounces almost at the same
frequency.
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Fig. 7 Motion of an elastic cylinder (L = 1m, d0 = 0.002m,c1 = 6× 106 Pa,ρ = 105 Kg/m2,
νr = 8, νd = 2, νf = 2, βd = 0, βf = 107 αr, µ = 102 Pa s,v0 = 100d0, u̇0 = −1m/s).

7.6 Driven Motion of a Soft Contractile Body

Figure 8 shows the vertical motion of a contractile body driven by an oscillating
external contractile coupleQ. The contraction is assumed to be isochoric and with
a fixed eigenvectorn, the external unit normal to the support. In such a motionG is
described by a scalar time functionγ, which is one of its eigenvalues together with
1/γ. The coupleQ is described by a scalar function as well, which has been assigned
the lawQ(t) = Q0sin(2π t/T), with T = 0.4s, Q0/µγ = 0.9s−1. The resistance to
contactionµγ was set to a very high value in order to prevent plastic deformation
or relaxation induced by the stress and the energy terms in (24). The body initially
lies at rest on the support, slightly deformed by its weight.As soon as the signal is
activated the body starts oscillating and, as can be noticedin the selected frames in
Fig. 8 (a)-(b), and from the graph (d), it contracts and jumpsupward. The evolution
of the relaxed shape is shown in Fig. 8 (c). The graph in Fig. 8 (e) describes the time
evolution of the vertical elongation(λ (t)γ(t)−1), which is compared withQ(t).

Figure 9 shows a motion driven directly by an oscillating tensor G. The con-
traction is assumed again to be isochoric and is assigned by the eigenvalue law
γ(t) = 1+ (γ0 − 1) sin(2π t/T), with T = 1.1s, γ0 = 1.2, and by a rotating eigen-
vectora(t), with a constant angular velocity(0.8π /T). It is worth noting thatG(t)
at any timet is a symmetric tensor with positive eigenvalues. HenceG does not
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Fig. 8 Motion generated by an oscillating contractile couple withfixed principal axes: (a) selected
frames showing how the body jumps upward; (b) overlapped body shapes during the motion; (c)
oscillating relaxed shape; (d) bouncing of the bottom over the support, and driving contractile cou-
ple Q (dashed line, rescaled amplitude); (e) vertical elongation (solid line) and driving contractile
coupleQ (dashed line, rescaled amplitude).

generate a rotating relaxed shape but just a pulsing relaxedshape with varying pulse
axis (Fig. 9 c). The body starts oscillating and soon, from aninitial configuration
on the right side of Fig. 9 (a), it moves leftward rolling, almost crawling, and even
jumping a little. In Fig. 9 (d) the increasing horizontal displacement of the center
C and of the bottom B in the starting configuration are showed together with the
oscillating driving contraction.

As expected, locomotion on a support relies on the frictional traction: removing
the friction the body cannot move forward any more while the center follows a
vertical trajectory (Fig. 9 b).

The contractile coupleQ, which was a given quantity in the previous case, can
now be computed through (24), as a reactive couple. In both cases the power ex-
pended per unit volume to sustain the body motion isQ · ĠG−1.
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Fig. 9 Motion driven by an oscillatory contraction with rotating principal axes: (a) trajectory of
the center and some frames from right to left; (b) frictionless motion; (c) the oscillating relaxed
shape; (d) normalized leftward displacement of the initialbottom point B (solid line) and of the
center C (dotted line), and driving contraction amplitude (dashed line).

8 Conclusions

The aim of this paper was to study the motion of a soft contractile body over a
rigid substrate. To this end a non linear elastic model has been used together with
a contact model based on constitutive laws for different kind of interactions. The
body model, though restricted to homogeneous deformations, accounts for large de-
formations and also for an evolving relaxed shape. This makes it possible to give a
precise meaning to contractility. The constitutive characterization of both the ma-
terial and the contact is based on a purely mechanical dissipation principle which
enlighten the role of energy functions for both stress and contact forces. The pre-
sented simulations are meant to illustrate the realizable motions, in the presence
of contact interactions, like repulsion, adhesion, impactdamping and friction, of a
body with different material properties, showing the interplay between contact, vi-
brations and contractions. In particular it is shown how thecontractility endows a
body with motility capabilities which can be exploited for locomotion. All the com-
putations, both symbolic and numerical, have been performed usingMathematicar,
starting from the very basic expressions in sections 2, 3 and4. Further work should
be done for gaining better physical interpretations of numerical simulations by using
parameters based on experimental data and by comparing results with other models.
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