Dynamics of a Soft Contractile Body on a Hard
Support
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Abstract The motion of a soft and contractile body on a hard supporésdbed
by fields of short range contact forces. Besides repulsieseltiorces are able to
describe also viscous friction, damping and adhesion atigwthe body to have
complex motions which look rather realistic. The contiégtis used to make the
body behave like a living body with some basic locomotionatalities. The sim-
ulated motions, showing jumping or crawling, are driveheitby a contraction or
by a contractile couple. Although only homogeneous defdiona are allowed, the
model arises from a general theory of remodeling in finitesteddy. The body is
made of a viscoelastic incompressible neo-Hookean materia

1 Introduction

The aim of this paper is to use a contact model to describeah®lex motions
of stiff, soft and contractile bodies interacting with aiddlat support. The body
model, though restricted to homogeneous deformationsriset from a general
continuum theory of remodeling in finite elasticity, as sptin [3, 7]. A summary
of that theory is given in sections 2 and 3. The body is madew$eoelastic in-
compressible neo-Hookean material.

Contractility is the ability of bodies, like muscle cellsdafibres to contract or
to extend in order to apply forces. More precisely, it can béneg:d as the ability
to modify the zero stress, or relaxed, configuration [11]n{actility can also give
an elementary body some motility and locomotion capaéditllowing it to move
over a substrate [14, 9]. The simulated motions describegl khowing jumping or
crawling, are driven either by a contraction or by a contlacbuple.

We use a contact model described by constitutive laws forctirgact forces
arising from the interaction of the body boundary and thepsuipsurface, which
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get close to each other during a motion, without enforcirgieily unilateral con-

straints, in the spirit of [15], chap. 5. An interatomic patial was used in [8, 10, 6]
to add adhesion to the Hertz model, and in contact modelisgdan molecular
dynamics, as in [4]. In macroscopic modeling the interatopatential is replaced
by a surface contact potential, as in [16, 1] and more regeligtussed in [12, 13].

The contact tractions on the body boundary are given her@tyshort range
force fields of different kind, potential or dissipative] af them depending on
the distance from the support: i) a repulsive force fieldai)adhesive force field,
both derived from a Lennard-Jones—like surface contaamntiad; iii) a damping
force field, describing the impact dissipation and depegndimthe normal velocity;
iv) a viscous frictional force field, depending on the slglivelocity. They decay
very fast as the distance increases and grow to infinity abdkg and the support
get closer and closer. Hence the body will neieerchthe support. Instead, the true
contact distancavill depend on the motion, although some characteristicestan
be related to the constitutive properties of each contacefbield.

Although the law used for the frictional force field does moplement a Coulomb
like friction, the two dissipation mechanisms iii) and iyt out to be suitable to
describe the dynamical behavior of a body over a support.

Summarizing, this paper briefly shows how a simple model eatdfined within
the context of finite elasticity and contact mechanicsuduig all the details needed
to set up numerical physics-based simulations, showinglg bouncing and rolling
and even crawling over a flat rigid support.

Though the simulations do not make use of experimental datthé material
properties of neither the body nor the substrate, they sessfuluto provide some
insight into the dynamics of a simple body over a substratkthe mechanisms on
which locomotion could be based.

2 Affine Contractile Body

The motion of a bodyZ is described by a mapping
P:Ix I —&, (1)

transforming theeference shapey, at each tima € .#, into the current shape
p(Z,t) in a three-dimensional Euclidean spateAn affineor homogeneouso-
tion is completely defined at any tinidy the current positiopg(t) of a point occu-
pying a positiorxg in ¢ and by thedeformation gradienfp(t), with detp(t) > 0,
through the following representation

p(X;t) =po(t) + p(t)(x —xo), Vx€Z. ()
As a consequence, an affine velocity figldt any timet has the representation

V(X) = Vo + [V (X —Xo), ®3)
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wherel is the velocity gradient. Along the motion (2) at tirhe
v=Dp(t), Vvo=po(t), (4)

where the dot denotes time derivatives.
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Fig. 1 Kroner-Lee decomposition of the deformation gradiept

In order to describeontractility we introduce a new tensdg(t), such that
detG(t) > 0, transforming the reference shapento arelaxed shapat timet, and
will assume that the strain energy is a functionFadis defined by the Kroner-Lee
decomposition (see Fig. 1)

F(t):=Dp() G(t) ™. (5)
Let us denote by the velocity corresponding 6 which takes the value
V=G(t)G(t) ()

at timet along a motion described Hp, G). We assume dsalance principlgfol-
lowing [5]) that at any time for any test velocity fieldv, V)

/ b(x,t)-vdv+/ q(x,t)-vdA
Ja 07

—S(t)-Dvvol(2) + (Q(t) — A(t)) -V vol (2) =0,

(7)

where the bulk density forde, denoting byp the reference mass density, is com-
posed of the inertial force and the gravity force densities

b(x,t) := —p(x) (B(x,1) +9), (8)

while the tractiong on the boundary is assumed to be the sum of different contact
force fieldsqgj. The tensof5(t) is the Piola stress in the reference shape, related to
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the Cauchy stress by
T=Sp" (detp) L. (9)

The tensorg\(t) andQ(t) are theinternalandexternal contractile coupleser unit
reference volume. The first one describes the material nsgpwhile the second one
describes an action from outside the mechanical systenchwdaiuld be controlled
by an electrical or biochemical signal.

The balance equations corresponding to (7) turn out to be

—mpg(t) —mg-+f(t) =0, (10)
—P()E+M(t) —S(t)vol (2) =0, (11)
Q(t) ~ A(t) =0. (12)

The scalar quantitynis the total masg,, pdVv, while E is the Euler tensor

Eim / P(X) (X —X0) @ (X — Xo) AV, (13)
9

wherexg has been chosen as the barycenteoflhe contact force fieldg; give
rise to the total force

f(t) = z d@qj(x,t)dA (14)
]

and to the total moment tenéor
M(t) .= E/ X —Xg) ®Qj(X,t)dA. 15
( ) J d@( 0) qJ( ) (15)

The volume of the reference shape is denoted by¥9l

3 Dissipation Inequality and Material Characterization

The material response can be characterized (as in [3] andy7assuming that
along any motion at any timte

A-GG’1+S-DF')—%(J¢(F))ZO, (16)
where¢ is thestrain energy densitper unit relaxed volume andl:= detG. Note

that, because of the balance principle (7), the po@'@\er'GG*1 +S-0Op) equals the

1 Here we use the following definition of tensor product:

(uef)e=(u-ef Ve.



Soft Contractile Body on a Hard Support 5

power, per unit reference volume, of the bulk forces, thaacdrforces and the ex-
ternal contractile couple. Thus the dissipation princgiieve states that the external
power is not entirely balanced by a rate of change of therstnagrgy. By replacing
Cp with the time derivative of the Kroner-Lee decompositidrip defined in (5),
we get

A-GG14SGT-F+ FTSGT-CG*—J%MF) ~Jo(F)I-GGt>0. (17)

Sinced ¢ (F)/dt is linear inF, we can define thelastic responstor the Piola stress
S:=J"1SG', pull-backof T to the relaxed shape, as the functibsuch that in any
motion

= - d
F)-F=—¢(F). 18
S(F)-F = 0 (F) (18)
By requiring ¢ to be frame-indifferent it turns out that the Cauchy stre®sig
a symmetric tensor. Going back to (17), after substitutit®) fve can collect all

terms in two groups
(S—S(F))p"-FF 14 (A+FTSGT —J¢(F)I) -GG 1> 0 (19)

with S(F) = J-15(F)GT. Setting

St:=5—5(F),
(20)
At = A+FTSGT —J¢(F)I,
the dissipation inequality (19) takes the form
Stp"-FF 14+ At.GG 1 >0. (21)

In order forS*™ andA™ to satisfy a-priori the dissipation inequality (21) botttieém
have to depend oRF—* andGG 1. A possible constitutive prescription, recovering
the classical viscous stress, consists in assuming

S*Op" = psym(FF 1),

. (22)
AT =p, GG,
with positive scalarg, theviscosity andpuy, theresistance to contractian
HenceA andS are constitutively characterized by the expressions
S=S"+S(F)=pusym(FF )Tp T+ 5(F), (23)

A=A"—FTSGT + 3¢ (F)l = puy GG L —FTSGT + J¢ (F)I.
Now the balance equation (12) takes the form of an evolutipragon

py GGt =FTSGT -3¢ (F)I+Q, (24)
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whereS is meant to be given by the first of (23). The external conieacoupleQ
is the driving force, which could be related to some othemgjtyalike an electrical
or biochemical signal. In some of the simulations shown ias ffaper the motion
is driven byG instead. In those casésis just a reactive contractile couple given
by (24). We will consider an incompressible material defibgdhe neo-Hookean
strain energy function

¢(F) :==c1(12(C) - 3), (25)

wherec; is the elastic moduli and (C) is the trace of the Cauchy—Green tensor
C :=FTF. Because of the incompressibility constraintfélet 1, the velocity fields
turn out to be isochoric, i.e. such thaFf#1 = 0. Hence there exists reactive
spherical part-mi of S, while the inequality (19) characterizes only the deviator
partSp. Thus the first of (23) will be replaced by

S=psymFFY)Op T+ So(F)—mp 7. (26)

4 Surface Energy and Contact Force Characterization

The flat surface” of the rigid support can be defined by the positmaf a point
on it and by the exterior unit normal vector The distance of a pointon d% from
< attimet is

d(x,t) := (p(x,t) —0) - n, (27)

wherep(x,t) is the position occupied by at timet.

In order to describe the contact interaction it is convertiertonsider the body
and the support as a whole body and to defirsidiace contact potentiap as a
density per unit reference area@@. If we assume that this potential depends only
on the distancel it turns out to be frame-indifferent. Accordingly, the dissgion
inequality (16) should be changed into

voI(@)(A-GG*H—S-Dp)—A@q-pdA

d

. (28)
~vol(2)5 (39(F) — 7 | wi@)ydaxo,

where the terms in the first row, through (7), equal the povi¢he® external bulk
forces and the external contractile couple. This conditian be replaced by the
stronger requirement that (16) be satisfied together wéatdHowing condition

—q(x,t)-p(x,t) — %w(d(X,t)) >0 Vxe€odz (29)

Since the rate of change of the contact potential is linedrs=inn - p, we can define
thepotential contact forcéhrough a scalar field Such that in any motion
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N . d
q(X,t)n'p(X,t):_a (d(X,t)), (30)
which allows (29) to be rewritten as
—(a(x,t)—a(x.t)n)-p(x,t) >0 Vxe€dZ, (31)

or simply
—q+(X,t)'p(X,t) Zoa (32)

with g™ (x,t) := (q(x,t) — §(x,t)n) the dissipative contact forc&he requirement
above is a restriction on constitutive laws for contact ésic

5 Contact Constitutive Laws

Therepulsivetraction field is assumed to be defineda by a surface potential

We(d(x,1)) = v“t Cd(x,t) 33)
where the coefficientr, is a positive real number and the exponent> 1 is an
integer. The corresponding constitutive law, through (8@ns out to be

ge(X,t) = a d(x,t)"¥*n, (34)

A value fora, can be obtained by requiring the repulsive force to balamegtavity
force when the body stays at rest at an equilibrium distalgdeom a horizontal
surface, thus relating, to a characteristic distance.

An impact dissipation can be described by the followdagnpingtraction ond%

Qo(x,t) = =Bo d(x,t) " (n@N)p(x,1), (35)

where the damping factd; is a positive real number ang a positive integer. The
tensor(n®n) is the projector onto the direction orthogonalta

The simulations shown in this paper make use of a viséocison defined by
the following constitutive law

Qf(X,t) = _Bf d(xat)ivf pr(xvt)v (36)

which is linear in the tangent velocity projectign(x,t) := (I—n®n)p(x,t) and
depends also od. The coefficienf3; is a positive real number ang is a positive
integer. If we allowp; not to be a constant we could also use the following law

Pr(X:t)

e 0.) =~ dx. )~ g o 0Ol 25

(37)
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This expression could be given the form of a regularized Qobl law ([15],
chap. 5) depending on the repulsive traction (34) and on alaegositive func-
tion y; of the tangent velocity. In some of the following simulatsoadhesion will
be introduced through an additional potential contactdantiich is given the fol-
lowing law

Ja(X,t) = (Bed(x,t) "V — Bad(x,t) V) n, (38)

wheref, andf, are positive real numbers amg is a positive integer.

It is worth noting that the condition thi, 3;, u; be positive makes each of the
above constitutive laws for the dissipative traction fielgsqs, g;.. fulfill separately
the requirement (32).

6 Contact Force Distributions

dos
d

T

<

Fig. 2 (a) Spatial distribution of the functiod™", with dy = 0.01 and lower face parallel to the
support surface; (b) body rotated By= 71/100 about the left lower edge; (c) body rotated by
8 = m/4. (d) Time evolution of the functiod~" at the bottom edge during an undamped vertical
bouncing motion, withy = rr/4. (e) Different frames of a bouncing rigid sphere and sestiat
distancedy.

In order to illustrate the role of the parameters on whichdbetact tractions
depend, it could useful to recall some elementary properédd of the traction
fields given by (34)-(38) depend on the functiar. Figures 2 (a)-(b)-(c) show how
rapidly the graph ofi—¥ changes when rotating a body in the shape of a cube around
an edge: when the lower face of the body is parallel to thesupy (Fig. 2 a), the
graph is flat; as soon as the body rotates by a very small aRigjeZ b) the graph
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rapidly decreases from a maximum value attained at the eduyen the body is in
the unstable equilibrium configuration (Fig. 2 c) the grapbdmes very sharp: the
higher the value of the exponewmthe sharper the graph. Finally, figure 2 (d) shows
the time evolution of the functiod™" at the edge close to the support, when the
body bounces vertically.

Even though the support does not deform and the body nevehnéstits surface,
we can consider the cross section of the body shape at a tdrdstc distancely
from the support as a “contact area”. In Fig. 2 (d), differigatmes of a bouncing
rigid sphere are shown together with the correspondingambietoss sections.

7 Numerical Simulations

7.1 Parameter Choice and Computational Details

Several numerical simulations have been performed usifeyeint constitutive pa-
rameters and different initial conditions. The whole boarybf the body was sup-
posed to be able to interact with the support surface, witform properties. The
body has a nonzero uniform mass density and is subjected ¢avaveard gravity

field, while the supportis rigid, flat and usually horizontal

All the simulations were aimed at testing the ability of batle body model
and the contact model to exhibit a somewhat “qualitativeBlistic” behavior. By
this we mean the ability of bouncing and rolling, and also pimg and crawling,
within a time interval of few seconds, with a length scale of,Ja mass density of
about 18kg/m?, an elastic modulus around 1 MPa. Calibration of the pararset
was done to this end. No comparison was made with experifdata. That is
why the presented simulations do not constitute a quaingtbenchmark set. Some
simulations of a three-dimensional motion of a rigid body ba found in [2].

The computational scheme can shortly be described as fwllitve main pro-
cedure consists in the numerical integration of the eqoata motion (10), (11),
(12) starting from given initial conditions. For plane nats, the number of corre-
sponding scalar time differential equations is 2 for eqf),(4 for eqn. (11), and 4
for egn. (24) which is the explicit form of egn. (12). At a lowlevel, for each time
step, the main task consists in computing the integralsdid)15) over the bound-
ary 2. The whole procedure has been implementellaithematic&, which has
also been used to derive the general expressions for eatte difetction fields in
sect. 4, starting from the motion description (2) and makisg of (7). The time
integration, as well as the integration on the boundarybleas performed by using
the Mathematica built-in functions with only some paramateaking.

The outcome of each time integration, after a dump of the Bratitica session,
was routinely processed producing graphs and movies.
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Fig. 3 Plane motion of a rigid body in the shape of a cube. Left coluoomtact without friction
(L=1m,do=0.002m,vg = 0, 8¢ = 0.9971/4, v, = 8, p = 103kg/m®, v, = 2, B, /dg° = 2.5 x
10°Pa s/mf; = 0). Right column: contact with frictiong = 2, B; /d," = 2.5x 10" Pa s/m); (a)-(e)
initial and final configurations and trajectory of the cente)-(f) distance ofA from the support;
(c)-(g) distance oB from the support; (d)-(h) rotation amplitude.

7.2 Sliding, Bouncing and Rocking

Figure 3 shows the plane motion of a rigid body in the shapeaftee, with edge
lengthL, starting from a slightly perturbed unstable equilibriuamfiguration. The
left column (a)-(d) refers to a contact without friction, the right column (e)-(h)
refers to a contact with friction. The graphs show the tima@ion of the distances
ya(t) andyg(t) of the A andB edges from the support, together with the time evo-
lution of the rotation amplitudé (t). Both the initial configurations (gray) and the
limit configurations (dashed) can be seen at the top of thedidwooking at the left
column (Fig. 3 b-c) we can see how the edgehanges only slightly its distance
from the support, while the edd&falls down in a clockwise rotation of the body
(Fig. 3 d) until it starts bouncing. Both andB edges reach, in a long enough time
span, the same distance from the support, slightly grelger the initial one be-
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Fig. 4 Plane motion of a rigid circular cylinder. Left column: cant without friction L = 1 m,
do =0.002m,vp = 0.15m,lp =5m/s,v, = 8, p = 10°kg/m®, v, = 4, B, /dy® = 6.25x 10°Pa s/m,

B; = 0). Right column: contact with frictiong = 6, B;/d," = 1.6 x 10'°Pa s/m).

cause the body ends up lying on a flat face instead of an edggfadt, together
with the small oscillations the edgeexhibits in the transition (Fig. 3 b), reveals
the absence of a real contact surface. When frictional foace added, the system
exhibits a richer dynamics.

As can be seen from the bouncing of both edgasdB (Fig. 3 f-g), the rigid mo-
tion resembles a rocking motion until it fades out. In thetfanless case (Fig. 3 a)
the trajectory of the center of the rigid body turns out to beigal. That means that
while the body rotates, the eddeslides leftward. Instead, if the friction coefficient
is large enough the edgedoes not slide any more, though it bounces for a while
(Fig. 3 e-g), thus making the trajectory of the center veffedint from the previous
case and even longer. These differences could be caughtyatsmmparing the first
impact time (Fig. 3 c-g).
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7.3 Bouncing and Rolling

Figure 4 shows the plane motion of a rigid body in the shapeaifcalar cylinder,
with diametelL, which drops on the support from a distavgevith initial horizon-
tal velocityup. The left column (b)-(d) refers to a contact without frietjavhile the
right column (e)-(g) refers to a contact with friction. Gregy(b)-(e) and (c)-(f) show
the time evolution of the vertical and horizontal coordesatf the centegc(t) and
xc(t), while graphs (d)-(g) show the time evolution of the angwelocity. The
trajectory of the center drawn in the top panel (a) has bescated to make the
bouncing more visible. Although friction does not affect ttime evolution of the
distance of the center from the support (the vertical motibthe body), as can be
seen comparing Fig. 4 (b) and Fig. 4 (e), it makes the motidte glifferent: at the
first impact the angular velocity rises suddenly (Fig. 4 g)aaconsequence of the
initial value of the horizontal velocity. That means that thiction makes the cylin-
der roll while, at the same time, lowering the horizontabaity (compare Fig. 4 (f)
and Fig. 4 (c)). Finally, it is worth to note how the angulalogity decreases after
the bouncing has faded out. This is a consequence of the dgrfgptes (35) acting
on points close to the contact, whose vertical velocityfedent from zero because
of rolling.

7.4 Adhesion and Detachment

N

trajectory

/

(b)

@
Fig. 5 Effect of the adhesive forces: (a) adhesion to a ceiling;adesion to a vertical wall;
(L=1m,do=0.002m,v, =8, Va =6,V =3,V; =6, B =4 x 1P 0, By =4 x 1P a,, B =
4x10ay).

Figure 5 shows the outcome of simulations where adhesiviacbforces (38)
have been added. To better understand the influence of adHestes these sim-
ulations consist in computing the motion generated by timgwhe body against



Soft Contractile Body on a Hard Support 13

either a horizontal support (like a ceiling, Fig. 5 a) or atioal support (like a wall,

Fig. 5 b), in order not to confuse the adhesive forces withgiavity force. The

initial velocity has been calibrated in such a way to let tbeytouch the support
without bouncing back. Once the body has got stuck to the@tipihe mass den-
sity of the body is increased gradually as a trick to make traltbrake. And that is
exactly what happens: the body detaches from the suppofadadown.

The role of the friction is very different in the two simulatis. While in case
(a) the friction just slows down the body until it stops stigion the ceiling, in
case (b) the friction prevents the body from sliding downwlad! until it suddenly
starts detaching. The trajectory of the center of the bodlyaafew frames help to
understand the motion.

7.5 Bouncing and Vibrations of a Soft Body

For plane deformations it is convenient to enfoeceriori the incompressibility
constraint deff = (detR)(detU) = 1 by giving the matrix of the stretct the fol-

lowing parameterized form
Lk o
X . (39)
KX

The principal stretches and /A, turn out to be given by the expression

A= (1+ K2+ X2+ \/(1+ K2)24+2(k2— 1)X2+X4>/(2X)- (40)

Denoting by6 the amplitude of the rotatioR, the tensofF will be described by the
three parameter#, k., x.

Figure 6 shows a cylinder, with diameterbouncing in a plane vertical motion,
after dropping on the support from a distavgeln this casel denotes the vertical
stretch while A denotes the horizontal stretch, given by the ritig/L. Both fric-
tion and impact damping have been neglected. The motiorrideddy the graphs
in Figure 6 (b)-(c) is only slightly damped by a dissipatitess with a low value
for the coefficientu. It is worth noticing how the deformation of the body reflects
on the bouncing. Comparing the time-histories of the ce@tand the bottonB
(Fig. 6 b), we can see a sequence of bounces, due to the mdtibe center, to-
gether with other bounces with a lower amplitude and a higteguency, due to
the stretching. The frequencies of the two kinds of bounsiggm to be far enough
not to interact significantly with each other. The graphsim B (d)-(e) show the
effects of a higher value for the coefficigitto be compared with the graphs above.
After a short while the dissipation is able to slow down bdté bouncing and the
vibrations.

The body in Fig. 7 falls down on the support from a distang&ith an initial
leftward horizontal velocityg. The friction makes it start rolling while the impact is
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Fig. 6 Motion of an elastic cylinderl(= 1m, dg = 0.002m,vp = 100dg, ¢; = 6 x 10*Pa,p =
4x 10°Kg/m?, v, =8, v, =2,V; =2, B, =0, f; = 10° a,, 4 = 10PPa s): (a) selected frames;
(b) distance oB andC from the support; (c) principal stretch; (d)-(e) effect diigher dissipative
stress i =5x 10°Pa s).

followed by a few bounces. The body is stiffer and heavienttie body in Fig. 6.
The resulting vibration frequency is higher while it bous@most at the same
frequency.
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Fig. 7 Motion of an elastic cylinderl(= 1m, dy = 0.002m,c; = 6 x 1P Pa,p = 10°Kg/m?,
Ve =8,Vp =2,V =2, =0, B; = 10’ a,, 4 = 10? Pa sVp = 100do, Up = —1m/s).

7.6 Driven Motion of a Soft Contractile Body

Figure 8 shows the vertical motion of a contractile body ey an oscillating
external contractile coupl@. The contraction is assumed to be isochoric and with
a fixed eigenvectan, the external unit normal to the support. In such a mo6as
described by a scalar time functignwhich is one of its eigenvalues together with
1/y. The couple is described by a scalar function as well, which has beegrsdi
the lawQ(t) = Qosin(2mt/T), with T = 0.4s Qo/py = 0.95 L. The resistance to
contactionu, was set to a very high value in order to prevent plastic deétion
or relaxation induced by the stress and the energy termsiin (e body initially
lies at rest on the support, slightly deformed by its weidtstsoon as the signal is
activated the body starts oscillating and, as can be notictte selected frames in
Fig. 8 (a)-(b), and from the graph (d), it contracts and jumpward. The evolution
of the relaxed shape is shown in Fig. 8 (c). The graph in Fig) 8léscribes the time
evolution of the vertical elongatiofd (t)y(t) — 1), which is compared witl®(t).
Figure 9 shows a motion driven directly by an oscillatingsenG. The con-
traction is assumed again to be isochoric and is assignetibgigenvalue law
y(t) =14 (yo—1)sin(2rt/T), with T = 1.15 yp = 1.2, and by a rotating eigen-
vectora(t), with a constant angular velocit@.877/T). It is worth noting that(t)
at any timet is a symmetric tensor with positive eigenvalues. HeGcgoes not
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Fig. 8 Motion generated by an oscillating contractile couple Viihd principal axes: (a) selected
frames showing how the body jumps upward; (b) overlapped lsbadpes during the motion; (c)
oscillating relaxed shape; (d) bouncing of the bottom okrersupport, and driving contractile cou-
ple Q (dashed line, rescaled amplitude); (e) vertical elongasolid line) and driving contractile

coupleQ (dashed line, rescaled amplitude).

generate a rotating relaxed shape but just a pulsing rekhagake with varying pulse
axis (Fig. 9 c). The body starts oscillating and soon, fromrétnal configuration
on the right side of Fig. 9 (a), it moves leftward rolling, @st crawling, and even
jumping a little. In Fig. 9 (d) the increasing horizontal plescement of the center
C and of the bottom B in the starting configuration are shoveggther with the
oscillating driving contraction.

As expected, locomotion on a support relies on the frictitna&tion: removing
the friction the body cannot move forward any more while tleater follows a
vertical trajectory (Fig. 9 b).

The contractile coupl®, which was a given quantity in the previous case, can
now be computed through (24), as a reactive couple. In batbscthe power ex-
pended per unit volume to sustain the body motio® i$sG 1.
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(d)

Fig. 9 Motion driven by an oscillatory contraction with rotatingripal axes: (a) trajectory of
the center and some frames from right to left; (b) fricti@slenotion; (c) the oscillating relaxed
shape; (d) normalized leftward displacement of the inhiaftom point B (solid line) and of the
center C (dotted line), and driving contraction amplitudashed line).

8 Conclusions

The aim of this paper was to study the motion of a soft conteabbdy over a
rigid substrate. To this end a non linear elastic model has lsed together with
a contact model based on constitutive laws for differentlo interactions. The
body model, though restricted to homogeneous deformatimesunts for large de-
formations and also for an evolving relaxed shape. This mékeossible to give a
precise meaning to contractility. The constitutive chtggzation of both the ma-
terial and the contact is based on a purely mechanical dissipprinciple which
enlighten the role of energy functions for both stress andami forces. The pre-
sented simulations are meant to illustrate the realizaldgoms, in the presence
of contact interactions, like repulsion, adhesion, immgkehping and friction, of a
body with different material properties, showing the iptay between contact, vi-
brations and contractions. In particular it is shown howdbatractility endows a
body with motility capabilities which can be exploited focbmotion. All the com-
putations, both symbolic and numerical, have been perfdusmgMathematic&,
starting from the very basic expressions in sections 2, afdrther work should
be done for gaining better physical interpretations of nticaésimulations by using
parameters based on experimental data and by comparirtsnegh other models.
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