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Abstract: We present a mechanical model—
a growing spherical shell—suitable for predict-
ing the evolution of a Saccular Cerebral Artery
Aneurysms (SCAA). It relies basically on the
Kröner-Lee decomposition, used to describe
the interplay between the current and the re-
laxed configuration of body elements. Rup-
ture or stabilization of a SCAA are the end ef-
fect of a number of biological mechanisms, still
poorly understood. We propose a model based
on three competing remodeling mechanisms—
one passive and two active. Despite drastic
simplifying assumptions, preliminary numeri-
cal experiments attest to the potential of our
model to account for nontrivial evolutions en-
suing from accidental perturbations of a home-
ostatic state.
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1 Introduction

We discuss the computational issues related
to the implementation of a highly simpli-
fied mathematical caricature of a saccular
cerebral artery aneurysm: a spherical thick
shell susceptible of growth and remodelling.
Aneurysms are lesions of the arterial wall hav-
ing the form of a balloon-like pouch (sac-
cular aneurysms) or of a barrel-like dilation
(fusiform aneurysms). While an aneurysm
forms and evolves, the arterial wall undergoes
numerous morphological changes. The final
fate of the lesion depends essentially on the
capability of the arterial wall tissue to adapt
to such changes. We focus on the two-way
coupling between growth and stress, which we
model within a theory in which bulk growth
is governed by a novel balance law, i.e., the
balance of remodelling couples. It relies ba-
sically on the Krner-Lee decomposition (1),
used to describe the interplay between the cur-

rent and the relaxed configuration of body el-
ements. We propose a model based on three
competing growth mechanisms, which we call
decay, recovery and apposition. The first one
is passive, describing a degradation of the tis-
sue, while the other two arise as a response of
the biochemical control system to changes in
the hoop stress (which is the dominant stress
component). We assume the material to be
elastically incompressible and the problem to
be spherically symmetric. By using spherical
coordinates we obtain a one-dimensional evo-
lution problem where the only significant spa-
tial coordinate is the radial one. The thick
shell is subjected to an intramural pressure–
the blood pressure inside the aneurysm–, and
a smaller extramural pressure–the intracranial
pressure.

2 Geometry & kinematics

To satisfy a priori the spherical symmetry con-
straint, we conceive of a reference shape D
of the vessel B consisting in the (open) dif-
ference of two balls centered at xo ∈ E , the
three-dimensional Euclidean ambient space.
Let ξ−, ξ+ be the radii of the two balls, with
0 < ξ− < ξ+ < ∞ . From now on, we shall
identify each body-point b in B and on its
boundary ∂B with its place in x∈D (the clo-
sure of D). In turn, each place x ∈ D will
be identified with the triple of its spherical
coordinates (ξ, ϑ, ϕ), where ξ is the distance
from the center xo (or radius) and ϑ, ϕ are
the coordinates of its projection on the unit
sphere. All spherically symmetric vector fields
v : D → VE (with VE the translation space of
E ) and tensor fields L : D → VE ⊗VE admit
the following representation:

v(x) = v(ξ) er(ϑ, ϕ) , (1)

L(x) = Lr(ξ)Pr(ϑ, ϕ) + Lh(ξ)Ph(ϑ, ϕ) , (2)

respectively, er being the unit outward radial
vector field, and Pr := er ⊗ er, Ph := I−Pr the

Excerpt from the Proceedings of the COMSOL Conference 2009 Milan



orthogonal projectors of VE ⊗VE onto the ra-
dial direction and the hoop directions, respec-
tively (with I the identity on VE ). All gross
placement of B will be described through the
corresponding transplacement p : D×[ 0, τ+[⊂
T → E :

p(x, τ) = xo + ρ (ξ, τ) er(ϑ, ϕ) , (3)

where T is the (real) time line, and 0 <
τ+ ≤ ∞ is the duration of the process. The
smooth, strictly positive real-valued radius-to-
radius map ρ : [ ξ−, ξ+]× [ 0, τ+[→ R+, is as-
sumed to be such that ρ ( ·, τ) is monotonically
increasing. Consequently, the transplacement
gradient is the spherically symmetric, positive-
valued tensor field

∇p(x, τ) = ρ′(ξ, τ)Pr(ϑ, ϕ)

+
ρ

ξ
(ξ, τ)Ph(ϑ, ϕ) ,

(4)

where a prime denotes radial differentiation.
To make precise the idea of an evolving re-
laxed state, we introduce the smooth, positive-
valued tensor field

G : (x, τ) 7→ γr(ξ, τ)Pr(ϑ, ϕ)
+γh(ξ, τ)Ph(ϑ, ϕ) ,

(5)

which we call relaxed transplant. The (posi-
tive-valued) radial and hoop transformation
stretches γr and γh gauge the discrepancy be-
tween the relaxed state and the reference con-
figuration. We introduce the relaxed Jacobian

J(x, τ) := detG(x, τ)

= γr(ξ, τ) γh(ξ, τ)2
(6)

From now on, time τ and/or reference position
x (or its coordinates (ξ, ϑ, ϕ)) will be dropped
from notation whenever unambiguously infer-
able from the context. The Kröner-Lee de-
composition defines the warp

F :=∇pG−1 = λr Pr + λh Ph , (7)

where the radial and hoop effective stretches
are given by the (positive) ratios:

λr :=
ρ′

γr
, λh :=

ρ

ξ γh
, (8)

respectively. Of course, F is a gradient if and
only if G is. The actual configuration at time τ
is stress-free if and only if F(x, τ) = I for all
x ∈ D . The velocity realized along the refined

motion (p,G) is, by definition, the pair con-
sisting of the gross velocity ṗ and the growth
velocity ĠG−1 (a superposed dot denoting
time differentiation):

ṗ = ρ̇ er ,

ĠG−1 =
γ̇r

γr
Pr +

γ̇h

γh
Ph ,

(9)

2.1 Multiple remodeling mechanisms

As a first attempt to mimic the homestatic
mechanisms presiding over the evolution of
saccular aneurysms, we split G into three fac-
tors:

G = Ga Gr Gd , (10)

corresponding respectively to decay (d), recov-
ery (r), and apposition (a). The decay trans-
plant Gd is meant to provide a creep-like cari-
cature of the kinematical effects of tissue dam-
age, due to any biophysical reasons (e.g., de-
cay of collagen fibers). It is assumed to be
isochoric:

Jd := detGd = 1 ⇔
Gd = γd

−2 Pr + γd Ph .
(11)

The recovery transplant Gr is representative
of a hypothetical mechanobiological feedback
aiming at countering the effects of tissue dam-
age. Also this transplant is assumed to be iso-
choric:

Jr := detGr = 1 ⇔
Gr = γr

−2 Pr + γr Ph .
(12)

The apposition transplant Ga accounts for
new tissue deposition, triggered, e.g., by an oc-
casional shift from an established homeostatic
state. This transplant is supposed to act triv-
ially in the hoop directions

Ga = γa Pr + Ph ⇒
Ja := detGa = γa .

(13)

Substituting Eqs. (11), (12), and (13) into
Eq. (10), we get the representation

G = γa(γdγr)−2 Pr + γdγr Ph , (14)

showing how the relaxed transplant G is pa-
rameterized by three independent scalar fields:
the hoop decay stretch γd, the hoop recovery
stretch γr, and the radial apposition stretch
γa. Time differentiation of Eq. (14) leads to



the following representation of the growth ve-
locity realized along the refined motion:

ĠG−1 =
(

γ̇a

γa
− 2

(
γ̇d

γd
+

γ̇r

γr

))
Pr

+
(

γ̇d

γd
+

γ̇r

γr

)
Ph .

(15)

3 Working & balance

Let T be the linear space of instantaneous test
velocities comprising all smooth fields x 7→
(v,Vd,Vr,Va), with v the gross velocity, Vd

the decay velocity, Vr the recovery velocity,
and Va the apposition velocity. To get rid
of reactive accretive couples, we evaluate the
power expended on the restricted test space
comprised of growth velocities parameterized
by the hoop decay stretching νd:

Vd = νd(Ph − 2Pr) , (16)

the hoop recovery stretching νr:

Vr = νr(Ph − 2Pr) , (17)

and the radial apposition stretching νa:

Va = νa Pr . (18)

Because of the compound structure of test
velocities, force splits additively into a brute
force, dual to v, and an accretive force, dual
to V. The working expended on (v,V) is as-
sumed to be represented by

∫

D

(−S ·∇v) +
∫

∂D

t
∂D· v

+
∫

D

J(Ad ·Vd + Ar ·Vr + Aa ·Va) .

(19)

The accretive couples per unit reference vol-
ume Ad, Ar, Aa and the reference Piola
stress S (also a specific couple) take values in
VE ⊗VE ; the (brute) boundary-force per unit
reference area t

∂D takes values in VE . The ac-
cretive couple working per unit reference vol-
ume can be given the expression:

J(Ad ·Vd + Ar ·Vr + Aa ·Va)
= J(Adνd + Arνr + Aaνa) ,

(20)

where the scalar fields Ad, Ar, Aa are the effec-
tive accretive couples per unit relaxed volume:

Ad = Ad · (Ph− 2Pr) = 2 (Adh−Adr) , (21)

Ar = Ar · (Ph− 2Pr) = 2 (Arh−Arr) , (22)

Aa = Aa ·Pr = Aar , (23)

dual respectively to the decay, recovery, and
apposition stretching. Balance laws are sys-
tematically provided by the balance princi-
ple stating that, at each time, the work-
ing expended on any test velocity should be
zero. Via standard localization arguments,
this yields the local statements of balance of
brute forces and accretive couples:

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0 , (24)

Ad = Ai
d + Ao

d = 0 ,

Ar = Ai
r + Ao

r = 0 ,

Aa = Ai
a + Ao

a = 0 ,

(25)

for all ξ−< ξ<ξ+, and

Sr(ξ∓) = −π∓ , (26)

where Sr is the radial and Sh the hoop com-
ponent of the reference stress S (the same
attributes apply to the homonymous compo-
nents of accretive couples), and (plus or mi-
nus) the outer reference pressure π is the only
strict component of the boundary force per
unit reference area:

t
∂D (xo + ξ∓er(ϑ, ϕ)) = ±π∓ er(ϑ, ϕ) . (27)

The total couples Ad, Ar, Aa have been split
into the sum of an inner and an outer contri-
bution. The distinction between them belongs
in the constitutive theory

4 Constitutive issues

4.1 Constitutive theory: energetics

To parameterize the state of the body, we
postulate the existence of a real-valued free-
energy measure, such that the energy available
to any part P of D is given by

Ψ(P) =
∫

P

J ψ , (28)

where the density ψ represents the free energy
per unit relaxed volume, so that J ψ is the
free energy per unit reference volume (recall
Eq. (6)). We assume the free-energy density
ψ(x, τ) to depend solely on the actual value of
the warp F(x, τ) and on x itself :

ψ(x, τ) = φ (F(x, τ), x) . (29)



4.2 Constitutive theory: inner forces

The dissipation principle plays a primary role
in the constitutive theory of inner forces:

S ·∇ṗ− J

(
Ai

d

γ̇d

γd
+ Ai

r

γ̇r

γr
+ Ai

a

γ̇a

γa

)

− (J ψ)̇ ≥ 0 .

(30)

Inequality (30) is satisfied along all refined mo-
tions if and only if the constitutive prescrip-
tions for the Piola stress and the inner accre-
tive couples have the following structure:

S = (D1φ)|F +
+

S , (31)

Ai
d = 2 (Th− Tr) +

+

Ad ,

Ai
r = 2 (Th− Tr) +

+

Ar ,

Ai
a = Tr − φ +

+

Aa ,

(32)

where S denotes the relaxed Piola stress per
unit relaxed volume:

S := J−1SG>, (33)

D1φ is the derivative of φ with respect to its
first argument, Th and Tr are the components
of the Cauchy stress

T := (detF)−1SF>

= (det∇p)−1S (∇p)>,
(34)

and the constitutive prescriptions for the dissi-

pative components
+

S and
+

A identically satisfy
the reduced dissipation inequality :

+

S ·Ḟ−
(

+

Ad
γ̇d

γd
+

+

Ar
γ̇r

γr
+

+

Aa
γ̇a

γa

)
≥ 0 . (35)

We assume the inner brute force to be hyper-
elastic, i.e.,

+

S = 0 . (36)

Following (2), we assume the aneurysm wall
to be elastically incompressible, enforcing the
constraint

detF = λrλ
2
h = 1 ⇔ λr = λ−2

h , (37)

and restricting φ to the submanifold U of
(spherical symmetric) unimodular warps pa-
rameterized by the hoop stretch λ as follows:

U 3F = λ−2 Pr + λPh , (38)

φ|U(F(x),x)

= k
{
exp

[
α
(
λ(ξ)2− 1

)2 ]− 1
}

.
(39)

The incompressibility constraint (37) is main-
tained by a reactive inner force. The set of re-
actions is parameterized by a scalar field, the
reactive pressure p, so that the Cauchy stress
is now:

T = (D1φ|U)|F F>− p I , (40)

4.3 Constitutive characterization of
effective accretive couples

We assume decay (d), recovery (r), and appo-
sition (a) mechanisms to be uncoupled from
each other. In our preliminary numerical ex-
periments (see Sect. 6) we simply assume:

+

Ad = − dd
γ̇d

γd
,

+

Ar = − dr
γ̇r

γr
,

+

Aa = − da
γ̇a

γd

with dd > 0 , dr > 0 , da > 0 .

The remaining constitutive ingredient is the
prescription for the outer accretive couples Ao

d,
Ao

r , Ao
a appearing in Eq. (25). We shall as-

sume:

Ao
d(ξ, τ) = 0 ,

Ao
r (ξ, τ) = Âr

(
T(ξ, τ),T¦(ξ, τ), τ

)
,

Ao
a(ξ, τ) = Âa

(
T(ξ, τ),T¦(ξ, τ), τ

)
.

(41)

The first of Eqs. (41) declares that the decay
mechanism is supposed to be passive. The
other two hypothesize that the biomechanical
feedback mechanisms controlling recovery and
apposition are pointwise sensitive to the actual
value of the Cauchy stress T, in comparison
with a supposedly known homeostatic stress
T¦. In the following we explore numerically
the most accessible consequences of some sim-
plistic, but reasonable assumptions, such as:

Âr

(
T,T¦

)
= −Ed&r(T)− fr (Th − T¦h)

+ cr
ρ− ρ̄

ρ′
(Th − T¦h)′ , (42)

Âa

(
T,T¦

)
= −Ea(T) + fa (Th − T¦h) , (43)

whose rationale is the idea that the homeo-
static control senses pointwise the hoop com-
ponent of the Cauchy stress Th and of its ra-
dial derivative T′h, aiming to bring them back
to their homeostatic values T¦h and (T¦h)′, re-
spectively. The feedback coefficients fr, fa

and cr are assumed to be constant across the



thickness. Upon substitution of Eqs. (41) and

(32) into Eq. (25), with
+

Ad,
+

Ar,
+

Aa given by
Eq. (4.3) and, finally, recalling Eq. (15), we
readily obtain the set of equations determining
the radial and hoop components of the growth
velocity ĠG−1:

γ̇h

γh
=

µr

dd

(
Ed&r(T) + Âr

(
T,T¦

))
,

γ̇r

γr
+ 2

γ̇h

γh
=

µa

dd

(
Ea(T) + Âa

(
T,T¦

))
,

(44)

where the positive mobility ratios µr and µa

are defined as µr := dd/dr , µa := dd/da , and
the Eshelby maps Ed&r, Ea are defined by

Ed&r(T) := 2
(
1 + µ−1

r

)
(Th− Tr) ,

Ea(T) :=Tr − φ.
(45)

5 Use of COMSOL Multiphysics

Our formulation is originally based on an
integral balance principle. As a result, it
finds a seamless and natural implementation
in COMSOL by using the 1D PDE weak-form
application mode as is, and then exploiting the
capability of the time-dependent COMSOL
solver. We use a mixed approach, inter-
polating independently the following scalar
fields: the actual radius, the (hoop and ra-
dial) transformation stretches, the (hoop and
radial) components of the Cauchy and Eshelby
stresses, and the reactive pressure maintain-
ing the incompressibility constraint. The so-
lution algorithm is arranged in two succes-
sive steps, each encoded in a separate script
file: the first computes the initial–supposedly
homeostatic–state of the system, by solving
a nonlinear semi-inverse equilibrium problem;
the second integrates in time the evolution
of the system–either benign or fatal–triggered
by a perturbation of the initial homeostatic
state, such as an intramural pressure peak or
jump. Other script files manage the post-
processing phase, making it easy to compare
different simulations by arranging and display-
ing a number of graphs, such as those shown in
the next section. This problem, though one-
dimensional, is computationally far from triv-
ial, being highly nonlinear.

6 Numerical simulations

We consider in our analysis a small size spher-
ical aneurysm having attained a homeostatic
state. Homeostasis is then perturbed and the
ensuing evolution of the aneurysm is stud-
ied. The mean radius and the thickness in
the paragon shape are assumed to be (ξ− +
ξ+)/2 = 2.0 mm and (ξ− − ξ+) = 20 µm, re-
spectively (3). The moduli k and α in Eq.(39)
are tuned by following (3). The intramural
pressure and extramural pressure are assumed
to be π− = 90 mmHg and π+ = 15 mmHg,
respectively.

6.1 Initial Homeostatic state

The first step in each of the following simula-
tions, accomplished by the script dofem0, con-
sists in computing the initial (τ = 0) homeo-
static state. We suppose that a homeostatic
state is characterized by a uniform hoop stress
T ¦h . For a fixed shape and given values for π±,
we search for the relaxed transplant making
the corresponding stress (40), through the en-
ergy expression (39), satisfy the balance equa-
tions (24) and (26). It is worth noting that
solving the balance equations above for a uni-
form hoop stress gives the generalized Laplace
formula:

T ¦h =
ρ2
+ π+ − ρ2

− π−
ρ2− − ρ2

+

(46)

By choosing the actual shape as the reference
shape it turns out that ∇p = I ⇒ G = F−1.
Then we can solve the balance equation
(24) for the sole unknown γh, by using
the COMSOL nonlinear stationary solver
femnlin. Starting from the computed values
for γh we finally reconstruct the whole initial
homeostatic state.

6.2 Perturbation & Controls

In a second step homeostasis is perturbed by
an intramural pressure jump, described by the
smoothed step in Fig. 1, and a control mecha-
nism try to bring the hoop stress back to the
homeostatic value.

Figure 1: Intramural pressure jump.



This step is accomplished by the script
dofem1, where the brute balance equation
(24) and the evolution equations (44) are in-
tegrated by using the COMSOL time solver
femtime. We show how different values for the
feedback coefficients make the control succeed
or not.

6.2.1 Recovery control-I

The first set of simulations was performed by
choosing fa = 0, fr > 0 and cr = 0: only the
recovery control is activated and it does not
sense the value of T′h. The graphs in Fig. 2, 3
and 4 show why in this case the control does
not work: it leads to diverging values of the
hoop stress across the wall. Notice how the
time cross-sections in Fig.4 show a progres-
sive localization of the stress near the interior
boundary (left).

ρ+(µm)
ρ̄ (µm)
ρ−(µm)

τ/τo

Figure 2: Actual radius vs time.

Th+(MPa)

Th (MPa)

Th−(MPa)

τ/τo

Figure 3: Hoop stress vs time.

ξ̄(µm)

Figure 4: Hoop stress field.

6.2.2 Recovery control-II

The second set of simulations was performed
by choosing fa = 0, fr > 0 and cr > 0: only
the recovery control is activated but now it
senses the value of T′h. As shown in Fig. 5, 6,
7, in this case the control works fine.

ρ+(µm)
ρ̄ (µm)
ρ−(µm)

τ/τo

Figure 5: Actual radius vs time.

Th+(MPa)

Th (MPa)

Th−(MPa)

τ/τo

Figure 6: Hoop stress vs time.

γr+
γr−
γh+
γh−

τ/τo

Figure 7: Transformation stretches vs time.

6.2.3 Apposition control

A third set of simulations was performed by
choosing fa > 0, fr = 0 and cr = 0: only the
apposition control is activated and this, by def-
inition (43), does not sense the value of T′h. As
the graphs in Fig. 8, 9 and 10 show, even in
this case the control does not work: it leads
again to diverging values of the hoop stress
across the wall. The time cross-sections in
Fig. 10 show a progressive localization of the
stress near the exterior boundary (right). In
fact, it is easy to prove by means of Eqs.(8,
39, 46) that it is impossible, after a change of
boundary conditions, to restore the value of



Th while leaving γh unchanged. Hence a con-
trol acting only in the radial direction cannot
work.

ρ+(µm)
ρ̄ (µm)
ρ−(µm)

τ/τo

Figure 8: Actual radius vs time.

Th+(MPa)

Th (MPa)

Th−(MPa)

τ/τo

Figure 9: Hoop stress vs time.

ξ̄(µm)

Figure 10: Hoop stress field.

6.2.4 Mixed control

The last set of simulations was performed by
choosing fa > 0, fr = 0 and cr > 0: the appo-
sition control is activated and it is supported,
in controlling the value of T′h, by the recovery
control. In this case the apposition affects the
mean value of Th, while the hoop recovery af-
fects T′h. The main difference between the two
working control types (Recovery control-II and
Mixed control) is that the first one leads to a
decrease of the mean radius of the aneurysm,
while the second one leads just to an increase
of the thickness, that seems more realistic.

ρ+(µm)
ρ̄ (µm)
ρ−(µm)

τ/τo

Figure 11: Actual radius vs time.

Th+(MPa)

Th (MPa)

Th−(MPa)

τ/τo

Figure 12: Hoop stress vs time.

γr+
γr−
γh+
γh−

τ/τo

Figure 13: Transformation stretches vs time.

7 Conclusion

We have proposed a mechanical model—a
growing spherical shell—suitable for predict-
ing the evolution of a Saccular Cerebral Artery
Aneurysms (SCAA), based on three compet-
ing remodeling mechanisms—one passive and
two active. Despite drastic simplifying as-
sumptions, preliminary numerical experiments
attest to the potential of our model to account
for nontrivial evolutions ensuing from acciden-
tal perturbations of a homeostatic state.
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