In addition to functional deficiencies, bladder pathologies involve changes in tissue morphology (2) and mechanical properties (3), suggesting a strong relation between the three. A structural constitutive model of the urinary bladder wall is needed to clarify this relation. For this, the multiaxial mechanical data of the tissue and quantitative morphology of intact bladder wall are needed. In addition to the mechanical properties of rat bladder wall tissue in the inactive state, in which muscle function is abolished, mechanical properties of the tissue in the passive (i.e. with muscle tone) and the active state are determined, using biaxial testing in Krebs solution. The smooth muscle orientation was determined and structural data of the ECM is acquired using SALS. It was found that the urinary bladder exhibits significant anisotropy (being stiffer in the longitudinal direction than in the circumferential direction), in both the inactive and the passive state. The passive stress–strain behavior is found to be strain-rate insensitive and differs from the inactive behavior. Electrical stimulation resulted in active contraction of the bladder tissue, with different levels of stress in the circumferential and longitudinal directions. The collagen orientation is found to be along the longitudinal axis, which is the same preferred orientation of the smooth muscle cells. This is the first time that the actual multiaxial passive behavior of the urinary bladder wall is shown. Now all the necessary data is obtained to develop a structural constitutive wall of the intact urinary bladder, i.e. the multiaxial mechanical behavior of the passive and active state and the quantitative morphology of the smooth muscle cells and the ECM, a structural model can be derived.

20.4. Soft Tissues

References


Biomechanical and bio mechanical methods for mechanical study of soft tissues

D. Laux1, A. Leydier1, J.-V. Ferrandis1, J. Mathieu1, K. Hnia2, D. Chazallete2, G. Hugon2, G. Despaux1, D. Morret2.

1Laboratoire d’Analyse des Interfaces et de Nanophysique UMR5011 Université Montpellier II, Montpellier, France

2Laboratoire de Physiologie des Interactions – EA 701 Institut de Biologie Universite de Montpellier, Montpellier, France

In order to perform comparative multi-scale analyses of soft tissues, three experiments have been developed: (a) high frequency (600 MHz) imaging and phase acquisition for longitudinal velocity measurement; (b) low frequency echography (from 5 to 50 MHz) with two coupling fluids (H2O and D2O) for ultrasonic velocity and thickness measurements; and (c) ultrasonic indentation with specific longitudinal sensor for both velocity and Young modulus evaluation in one measurement. These different approaches will be presented first, validated by test on various materials. Then these methods will be comparatively applied on normal and dystrophic muscles. We used mdx mice diaphragm that better reproduces the lost of muscle membrane integrity found in muscles from Duchenne muscular dystrophy patients (MDM). First results on diaphragm from mdx mice show that the ultrasonic velocity is not very sensitive to pathology. With few meters variation per second between mdx and control diaphragms, the recorded data cannot constitute a reliable result. Then, the ultrasonic indentation was used. In specific experimental condition, some force–displacement curves were obtained and then analysed using finite elements calculations [12]. First evaluations of Young modulus were performed and demonstrated, when compared to ultrasonic velocity measurements, that the micro indentation provides better correlation with the muscle dystrophic phenotype.

Small intestinal obstruction is a frequently encountered clinical problem. To understand the mechanisms behind obstruction, data are needed on the relation between the morphometric and biomechanical remodeling of the intestinal wall during chronic obstruction. We aimed to determine the effect of partial obstruction on biomechanical and morphometric properties of the guinea pig small intestine. Male guinea pigs weighing about 600 g were used in this study. Partial obstruction and sham operation were created surgically in four groups living for two days, four days, one week and two weeks. Six guinea pigs were included in each group. Another ten guinea pigs were used as control. Segment of 7 cm proximally to obstruction site was harvested. Two rings from each side of the segment were cut to obtain no-load state and zero-stress state. The remaining segment was put into an organ bath for biomechanical tension test in vitro. The proximal end was connected to a syringe pump for applying pressure up to 10 cm H2O. The distal end was ligated to manipulator for applying different longitudinal stretch ratios. The outer diameter change during the inflation was monitored by microscope with CCD camera. Compared with sham operation and normal groups, the luminal area, circumferences, wall thickness and area were increased in the segments at the obstruction group in time-dependent manner. The opening angle and absolute value of residual strain decreased (P < 0.01) while the wall stiffness in circumferential direction significantly increased after two weeks obstruction (P < 0.01). Furthermore, the circumferential wall stiffness increased with the longitudinal stretch ratio of the segments in all groups. However, the biomechanical and morphometrical data did not differ between the sham and normal groups (P > 0.05). Partial obstruction remodelled the morphological and biomechanical properties of small intestine proximally to the obstruction site.

Biomechanical remodeling of obstructed guinea pig jejunum with reference to the zero-stress state

J. Yang, J. Zhao, D. Liao, P. Kunwald, H. Gregersen, Center of Visceral Biomechanics and Pain, Aalborg Hospital; Aalborg, Denmark

The study is devoted to mathematical modelling of localized pressure increase induced by deformation during impacts. The macroscopic model reflects the hierarchical structure of pores treated in terms of multiple compartments separated by permeable interfaces. It is suggested how the effective coefficients of the macro-model can be identified with support of the homogenization-based upscaling of a specific tissue microstructure. As an advantage, this approach allows to find relationship between different effective coefficients and geometrical features. Vice versa, having computed the macroscopic figures (pressure distribution in different compartments of the pore hierarchy) the local stress at the macroscale can be identified. Such multiscale approach should assist in modelling and understanding the damage mechanisms in fluid saturated porous tissues (myocardium, kidneys). The model is implemented in a finite element code, numerical examples are presented, e.g. pressure response and stress distribution in microstructure to a step change in macroscopic deformation. (This work is supported by project MSM 4977751303.)