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A decade ago, the so-called Kröner-Lee decomposition—primarily introduced
to discern between elastic and (visco-)plastic strains—was given a broader
scope and a deeper interpretation than the original ones, as describing the
interplay between the actual and the relaxed configuration of each body ele-
ment. The main intended application was to growth mechanics of soft living
tissues. In 2002, a novel (tensorial) balance law governing the time evolution of
the relaxed configuration was devised, and endowed with a proper constitutive
theory, thus establishing the foundations of a dynamical theory of material
remodeling. Material remodeling does not describe explicitly the chemistry or
whatever else is acting behind the changes in material structure. However, it
does account explicitly for the power expended by the biochemical control sys-
tem, which is of the essence for modeling the mechanics of living tissue. Material
remodeling discriminates active from passive remodeling, while treating both
on the same footing. Thus it provides mechanistic models of living materials
without conceiving of them as inert materials engineered with magic constitu-
tive recipes. The present study develops a toy model of saccular aneurysms,
focussing on the two-way coupling between growth and stress.

Keywords: Material remodeling; Growth mechanics; Growing spherical shells;
Soft tissue; Saccular aneurysms.
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1. Introduction

Soft shell-like structures are ubiquitous in living organisms, ranging from
organelles and cell membranes to lymph and blood vessels, the alimentary
canal and respiratory ducts, the urinary tract, and the uterus. The passive
mechanical response of these structures—a key feature of their physiolog-
ical and pathological functioning—is highly diversified and rather subtle.
However, a much more elusive issue is their ability to grow and remodel, in
a way which is both biochemically controlled and strongly coupled with the
prevailing mechanical conditions. While the characterization of the passive
mechanical response of soft tissue is progressing at a reasonably fast pace
nowadays, we find that growth mechanics is definitely the weakest link in
the modeling chain. For this reason, we focus on the two-way coupling be-
tween growth and stress, which we study using the apparatus of the theory
of material remodeling, set forth in Ref. 1 and further developed, expounded
and applied in Refs. 2–6.

In Sec. 2 we introduce the model of a pressurized vessel which
may undergo large deformations—both passive (visco-elastic) and active
(accretive)—while keeping a spherically symmetric shape. Since we regard
this as a drastically simplified model of saccular aneurysms, a short intro-
ductory section on real aneurysms is in order. Section 1.1 draws mostly
from Refs. 7–10.

1.1. Saccular aneurysms

According to Yonekura,9 saccular aneurysms can be classified into four
types (see Fig. 1 (top)):

(1) the aneurysm ruptures within a time span as short as several days to
several months after formation;

(2) the aneurysm builds up slowly for a few years after formation and
ruptures in this process;

(3) the aneurysm keeps growing slowly for many years without rupturing;
(4) the aneurysm grows up to a certain size (probably under 5 mm in di-

ameter) and thereafter remains unchanged.

Fig. 1 (bottom) reproduces the cartoon where Humphrey7 has summarized
the somewhat unpredictable evolution—either ill-fated or well-behaved—of
a saccular aneurysm.

Histological analyses provide limited information on the underlying
mechanobiological processes. Here is an excerpt from Frösen et al.:8
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Fig. 1. Evolution paths of saccular aneurysms: (top) Process of growth and rupture:
each row pictures one type of development (see text); each column corresponds to an
aneurysm’s lifetime: days to months for the 2nd, years for the 4th, decades for the 5th
(schematics reproduced from Ref. 9); (bottom) Cartoon reproduced from Ref. 7.
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The cellular mechanisms of degeneration and repair preceding rup-
ture of the saccular cerebral artery aneurysm wall need to be elu-
cidated for rational design of growth factor or drug-releasing en-
dovascular devices. [ . . . ] Before rupture, the wall of saccular cere-
bral artery aneurysms undergoes morphological changes associated
with remodeling of the aneurysm wall. Some of these changes, like
SMC [ smooth muscle cell ] proliferation and macrophage infiltra-
tion, likely reflect ongoing repair attempts that could be enhanced
with pharmacological therapy. [ . . . ] The morphological changes
that result from the MH [ myointimal hyperplasia ] and matrix de-
struction are collectively referred to as remodeling of the vascu-
lar wall. Although MH is an adaptation mechanism of arteries to
hemodynamic stress, in SAH [ subarachnoid hemorrhage ] patients,
for undefined reasons, vascular wall remodeling [ is ] insufficient to
prevent SCAA [ saccular cerebral artery aneurysm ] rupture.

To sum up, wall remodeling is generally believed10 to be stress driven. When
the arterial wall is unduly stressed, some repair mechanisms get triggered.
Their working, however, is still poorly understood.

2. Mathematical Model

In order to concentrate on growth mechanics, we strive to minimize all ac-
cessory difficulties, by tailoring an exceedingly simplified model of a saccular
aneurysm. Our toy model consists in a highly deformable three-dimensional
pressure vessel, constrained in such a way as to undergo only spherical sym-
metrical motions. Such a strong hypothesis curtails all technical difficulties
related to finite kinematics and the allied dynamical issues; tensor algebra
and analysis get elementary—though nontrivial, because of curvature and
topology—, and a transparent treatment in components is made available
by the exceptional existence of natural coordinates, provided by a spherical
coordinate system. These features allow us to paraphrase the theory of ma-
terial remodeling in terms perhaps more digestible than those in Refs. 1–6.
However, the reader should be aware that simplicity is not synonymous
with clarity, since in a highly simplified setting distinct general concepts
may easily collapse into a single quantity and become confused. Warnings
will be issued lest the näıve reader be caught in the most treacherous traps.



July 17, 2007 20:28 WSPC - Proceedings Trim Size: 9in x 6in Living˙Shells-continued

5

2.1. Geometry & kinematics

To a priori satisfy the above mentioned symmetry constraint, we conceive
of a paragon shape D of the vessel B consisting in the (open) difference
of two balls centred at xo ∈ E , the three-dimensional Euclidean ambient
space. Let ξ−, ξ+ be the radii of the two balls, with ξ− < ξ+. From now
on, we shall identify each body-point b in B and on its boundary ∂B with
the place κ(b) it has in the assumed paragon configuration κ : B ↔ D .
In turn, each place x ∈ D will be identified with the triple of its spherical
coordinates (ξ̂(x), ϑ̂(x), φ̂(x)), where ξ̂(x) = ‖x − xo‖ is the radius of x

and ϑ̂(x), φ̂(x) are coordinates of its projection on the unit sphere. (Since
all fields of interest will depend only on radius and time, there is no need
to detail ϑ̂ and φ̂.)

All (gross) placement of B will be described through the corresponding
transplacement

p : D → E

x 7→ xo + ρ (ξ̂(x)) er(ϑ̂(x), φ̂(x)) ,
(1)

where er(ϑ, ϕ) is the outward unit normal to the sphere at (ϑ, ϕ). Therefore,
the (smooth) placements of B compatible with the symmetry constraint are
ultimately parameterized by the set of (smooth) real-valued, monotonically
increasing maps

ρ : [ ξ−, ξ+] → R , (2)

which provide the actual radius ρ(ξ) as a function of the paragon ra-
dius ξ. Henceforth, we will abridge notations by assuming that, whenever
a place x ∈ D is intended unambiguously, the triple (ξ, ϑ, ϕ) stands for
(ξ̂(x), ϑ̂(x), φ̂(x)).

All spherically symmetric vector fields v : D → VE (with VE the trans-
lation space of E ) admit the following parameterization, in terms of a scalar
field v : [ ξ−, ξ+] → R , which provides the radial component of v (its only
strict component):

v(x) = v(ξ) er(ϑ, ϕ) . (3)

Similarly, spherically symmetric tensor fields L : D → VE ⊗VE are linear
combinations of the two fields of orthogonal projectors

Pr(x) := er(ϑ, ϕ)⊗ er(ϑ, ϕ) , Ph(x) := I−Pr(x) (4)

which depend only on (ϑ, ϕ), weighted with scalar fields that depend only
on ξ, representing the radial and hoop components of L, respectively:

L(x) = Lr(ξ)Pr(ϑ, ϕ) + Lh(ξ)Ph(ϑ, ϕ) , (5)
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In particular, the gradient of the transplacement (1) reads:

∇p|x = ρ′(ξ)Pr(ϑ, ϕ) +
ρ(ξ)
ξ

Ph(ϑ, ϕ) , (6)

where ρ′ denotes the derivative of the radius-to-radius map (2). Of course,
both components of ∇p depend on the single scalar field ρ.

In order to distinguish growth from passive deformation, we postulate
that, at each time τ ∈T (the time line, identified with the real line), there
exists a dynamically distinguished tensor field P (τ)—smoothly depending
on time—which we call prototypal transplant or, briefly, prototype. The as-
signment of a gross placement and a prototype to each time defines a refined
motion (p,P). The idea to refine the gross motion in this way dates back
to Kröner11 and Lee,12 who introduced the notion of an “intermediate”
configuration in the sixties, to distinguish between elastic and visco-plastic
strains. Much later Rodriguez, Hoger and McCulloch imported that notion
into biomechanics, reinterpreting it as the “zero-stress reference state” of
a growing body element, to quote verbatim from their 1994 paper.13 Since
there is no reason why the tensor field P(τ) should be the gradient of any
(gross) placement,a it has two independent component:

P(x, τ) = αr(ξ, τ)Pr(ϑ, ϕ) + αh(ξ, τ)Ph(ϑ, ϕ) . (7)

The warp F, defined by the Kröner-Lee decomposition

F := (∇p)P−1 = λr Pr + λhPh , (8)

gauges how the actual transplant of body elements, characterized by ∇p,
differs from the prototypal transplant P. Since all spherically symmetric
tensor fields are symmetric-valued (orthogonal projectors are symmetric),
F coincides with the stretch U, and its radial and hoop components are the
fields of principal stretches. From Eqs. (6)–(8), one readily obtains:

λr(ξ, τ) =
ρ′(ξ, τ)
αr(ξ, τ)

, λh(ξ, τ) =
ρ(ξ, τ)
ξαh(ξ, τ)

. (9)

The velocity realized along the refined motion (p,P) is, by definition,
the pair consisting of the gross velocity ṗ and the growth velocity Ṗ P−1:

ṗ(x, τ)= ρ̇(ξ, τ) er(ϑ, ϕ) ,

Ṗ P−1(x, τ)=
α̇r(ξ, τ)
αr(ξ, τ)

Pr(ϑ, ϕ) +
α̇h(ξ, τ)
αh(ξ, τ)

Ph(ϑ, ϕ) ,
(10)

aBeware that spherical symmetry blots out the distinction between local and global
obstructions to compatibility.



July 17, 2007 20:28 WSPC - Proceedings Trim Size: 9in x 6in Living˙Shells-continued

7

where a superposed dot denotes time differentiation. The linear space of
instantaneous test velocities T , comprising all smooth fields x 7→ (v,V ),
with v vector-valued and V tensor-valued, will play a central role in Sec. 2.2.

2.2. Dynamics: brute and accretive forces; balance principle

The basic balance structure of a mechanical theory is encoded in the way
in which forces expend working on a general test velocity. Because of the
compound structure of test velocities, force splits here additively into a
brute force, dual to v, and an accretive force, dual to V. To be specific, we
postulate that the working expended on (v,V) is given by

∫

D

(
Ai · V− S ·∇v

)
+

∫

D

Ao · V +
∫

∂D

t
∂D· v , (11)

where the integrals are taken with respect to the bulk volume and sur-
face area of body elements in their paragon configuration—to be called
paragon volume and paragon area, for short. The distinction between the
inner working, given by the first bulk integral in Eq. (11), and the outer
working, given by the remaining sum, is not germane to balance and was
brought forward to this section just to save space. It will be discussed in
Sec. 2.4. The inner and outer accretive couples per unit paragon volume
Ai, Ao and the (brute) Piola stress S—also a specific couple—take values
in VE ⊗VE ; the (brute) boundary-force per unit paragon area t

∂D take
values in VE . Because of spherical symmetry, Eq. (11) boils down to the
one-dimensional representation:

∫ ξ+

ξ−

(
ArVr + 2 AhVh − Sr v

′ − 2 Sh v/ξ
)

4π ξ2dξ +
(
4π ξ2 t v

)∣∣∣
ξ∓
, (12)

with the obvious meaning of the components Sr, Sh of S and t of t
∂D , and

making use of the position:

A :=Ai + Ao = Ar Pr + Ah Ph . (13)

Balance laws are provided by the balance principle stating that, at each
time, the working expended on any test velocity should be zero. Via stan-
dard localization arguments, this yields the local statements of balance:

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

Ar(ξ) = Ah(ξ) = 0

}
(ξ−< ξ <ξ+),

∓Sr(ξ∓) = t∓ .

(14)
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2.3. Energetics

To parametrize the state of the body, an additional energetic descriptor is
needed. We postulate the existence of a real-valued free energy measure,
such that the energy available to any part P of D is given by

Ψ(P)=
∫

P

Jψ , (15)

where the density ψ is the free energy per unit prototypal volume and

J := det(P) = αr α
2
h > 0 , (16)

so that Jψ is the free energy per unit paragon volume, the integral in
Eq. (15) being taken with respect to the paragon volume. Within the present
symmetry-restricted theory, only spherically symmetric subsets of D are to
be considered as body-parts.

2.4. Constitutive issues

The inner force represents the interactions among the degrees of freedom
resolved by the theory, i.e., described by the refined motion (p,P); the outer
force, on the contrary, represents the interactions between these d.o.f.’s and
those whose evolution is not described by (p,P). In the present theory of
the biomechanics of growth, the outer accretive couple Ao plays a primary
role, representing the mechanical effects of the biochemical control system,
finely distributed in the bulk of B. Ignoring the chemical d.o.f.’s—as we
do—does not allow us to neglect their feedback on mechanics.

The constitutive theory of inner forces rests on two main pillars, al-
together independent of balance: the principle of material indifference to
change in observer, and the dissipation principle. In the present context,
the first of these principles is idle, since only the trivial action of the group
of changes in observer is compatible with spherical symmetry.

2.4.1. Dissipation principle

We call power expended along a refined motion at any given time the op-
posite of the working expended by the inner force constitutively related to
that motion on the velocity realized along the motion at the given time.
Hence, the power expended measures the working done by a putative outer
force balanced with the constitutively determined inner force. The dissipa-
tion principle we enforce requires that the power dissipated—defined as the
difference between the power expended along a refined motion and the time
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derivative of the free energy along that motion—should be non-negative,
for all body-parts, at all times. This localizes into:

S ·(∇ṗ)− Ai · ( Ṗ P−1)− (J ψ)· ≥ 0 . (17)

2.4.2. Free energy and inner force

We posit that the value of the free energy ψ(x, τ) depends solely on the
value of the warp F(x, τ): there exists a map φ such that

ψ(x, τ) = φ (λr(ξ, τ), λh(ξ, τ); ξ ) . (18)

The requirement that inequality (17) be satisfied along all refined motions
is fulfilled if and only if for each ξ (which will be dropped from now on)
the constitutive mappings for the (brute) stress S and the inner accretive
couple Ai satisfy the following equalities:b

Sr = Jφ,r/αr +
+

Sr , Sh = Jφ,h/(2αh) +
+

Sh ,

Ai
r = J [ Sr αr λr/J − φ ] +

+

Ar , Ai
h = J [ Sh αh λh/J − φ ] +

+

Ah ,

(19)

where the extra-energetic components (
+

Sr,
+

Sh) and (
+

Ar,
+

Ah) make the re-
duced dissipation inequality identically satisfied:

+

Sr αr λ̇r + 2
+

Sh αh λ̇h −
+

Ar α̇r/αr − 2
+

Ah α̇h/αh ≥ 0 . (20)

In Eqs. (19) φ,r and φ,h are shorthands for the derivatives of φ with respect
to the radial and hoop stretches, λr and λh, respectively.

We regard all dissipative mechanisms extraneous to growth to be neg-

ligible, assuming the extra-energetic brute stress to be null:
+

Sr =
+

Sh = 0.
Then, we make inequality (20) satisfied in the most facile—though scarcely
warranted—way, letting each component of the extra-energetic accretive
couple be simply proportional to the homonymous component of the growth
velocity through a prescribed negative scalar factor:

+

Ar = −JDr α̇r/αr ,
+

Ah = −JDh α̇h/αh , (21)

the radial and the hoop reluctance to growth (per unit prototypal volume)
being positive: Dr > 0 , Dh > 0 .

bNotice that the two bracketed quantities in Eqs. (19) are just the radial and hoop
components of the Eshelby tensor E := (J−1F>SP>)− φ I in disguise.
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2.4.3. Characterizing the passive mechanical response of soft tissue:
incompressible elasticity

Soft tissue—as all of soft matter—may be considered elastically incompress-
ible (beware: growth may well change volume!):

detF = λr λ
2
h = 1 ⇐⇒ λr = 1/λ2

h . (22)

The incompressibility constraint (22) is maintained by a reactive inner force,
which is requested to expend null working on all divergence-free test veloc-
ity. The ensuing set of reactions is parameterized by a scalar field

./

π :c

./

S = J
./

π

(
1

αr λr
Pr +

1
αh λh

Ph

)
,

./

A = J
./

π I . (23)

The active component of the inner force stems from the free-energy density
(18) restricted to the constraint manifold:

φ̃ : λ 7→ φ ( 1/λ2, λ ) . (24)

Finally, collecting the active and reactive components, we get:

Sr =
J

αr λr

(
./

π − (λh/3) φ̃ ′
)
, Sh =

J

αh λh

(
./

π + (λh/6) φ̃ ′
)
,

Ai
r = J

(
Tr − φ̃−Dr α̇r/αr

)
, Ai

h = J
(
Th − φ̃−Dh α̇h/αh

)
,

(25)

where Tr =J−1Sr αr λr and Th =J−1Sh αh λh are the radial and hoop com-
ponents of the Cauchy stress T = (J det(F))−1 SP>F>.

The constitutive function φ̃ may be reasonably specified as follows:7

φ̃(λ) = (c/δ) exp
(
(Γ/2) (λ2 − 1)2

)
, (26)

where the moduli c and Γ may be identified—at least in principle—by
performing biaxial traction tests on membrane samples, whose relaxed
thickness is δ. According to Kyriacou and Humphrey14 and Haslach and
Humphrey,15 the best fit to the experimental findings of Scott et al.16 on
aneurysmal tissue is given by c = 0.88N/m and Γ = 12.99.

cThe parameter
./
π is to be interpreted as (the opposite of) a pressure, since the reactive

Cauchy stress
./

T = (J det(F))−1
./

S P>F> equals
./
π I .
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2.4.4. Characterizing the active mechanical response of living tissue:
constitutive recipes for the outer accretive couple

In the intended application, the brute boundary-force t
∂D represents es-

sentially the intramural blood pressure. To a first approximation, it may
be assigned a constant value (10KPa).d The key assumption is the one
concerning the outer accretive couple Ao, whose constitutive prescrip-
tion should hopefully short-circuit the complex—and ill-understood—
sensing/actuating mechanobiological functions that control vascular wall
remodeling.

We put forward a preliminary, crude proposal, along lines akin to those
of Ref. 10. We posit a homeostatic target value T¯h of the hoop component
of the Cauchy stress and prescribe the outer accretive couple Ao as follows:

Ao
r = J

(
Gr (Th − T¯h )− Tr + φ̃

)
,

Ao
h= J

(
Gh (T¯h − Th)− Th + φ̃

)
,

(27)

where Gr, Gh are positive control gains. Under this hypothesis, the evolution
law for the prototypal transplant P takes the form:

α̇r/αr = (Gr/Dr) (Th − T¯h ) ,

α̇h/αh = (Gh/Dh) (T¯h − Th) .
(28)

Notice that α̇r ≷ 0 while α̇h ≶ 0 when Th ≷ T¯h .

3. Remarks

We are presently attempting to fathom the computational depths of this
model, numerically elusive despite its modest complexity. We defer therefore
the presentation of numerical results to a later moment. In the meantime,
a modicum of self-criticism is in order. Of course, the extreme geometrical
and kinematical limitations of the present model need to be removed, if we
want to develop a versatile mechanical theory of growing shells. However, its
weakest point is elsewhere. In our opinion, a major conceptual improvement
would be in distinguishing between different remodeling mechanisms. In the
case at hand, at least three such mechanisms come to mind: passive viscous
slipping between cells and various components of the extracellular matrix;
active recovery due to cell adhesion and contractility; cell proliferation and
collagen production. In the next sections we are going to formalize them
separately, in order to include them individually into our model.

dThe brute bulk-force, playing a negligible role, has been neglected altogether.
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4. Different remodeling mechanisms

In order to distinguish between different remodeling mechanisms, we assume
that the prototype P is the composition of different prototypes:e

P = Pp Pc Ps (29)

each of them describing separately slipping, slipping recovery and prolif-
eration. Because of spherical symmetry we can define their components
accordingly to (7). Thus the radial and hoop components of P will be:

αr = αp
rα

c
rα

s
r , αh = αp

hα
c
hα

s
h. (30)

The growth velocity has now three terms:

Ṗ P−1 = Ṗp P−1
p + Pp Ṗc P−1

c P−1
p + Pp Pc Ṗs P−1

s P−1
c P−1

p . (31)

Denoting them by Vp,Vc,Vs, we postulate that the working expended on
test velocities (v,Vp,Vc,Vs) is given by:

∫

D

(
Ai

p · Vp + Ai
c · Vc + Ai

s · Vs − S ·∇v
)

+
∫

D

(
Ao

p · Vp + Ao
c · Vc + Ao

s · Vs

)
+

∫

∂D

t
∂D· v .

(32)

4.1. Dissipation principle

We assume that only Pp affects volume changes, while both Ps and Pc leave
the volume unchanged separately. Hence:

J := det(P) = det(Pp) ; det(Ps) = 1 ; det(Pc) = 1 , (33)

and

J̇ = J tr (Vp) ; tr (Vs) = 0 ; tr (Vc) = 0 . (34)

The dissipation principle states now that along any motion:

S · ∇ṗ− (
Ai

p · Vp + Ai
c · Vc + Ai

s · Vs

)− (J ψ)· ≥ 0 . (35)

From the definition (8) of F follows:

S · ∇ṗ = SP> · ∇ṗP−1 = SP> · (Ḟ + F ṖP−1)

= SP> · (
Ḟ + F (Vp + Vc + Vs)

)

= SP> · Ḟ + F>SP> · (Vp + Vc + Vs).

(36)

eThe order of composition (29) should be irrelevant. Such requirement and its implica-
tions will not be discussed in general. It is trivially fulfilled here by spherical symmetry.
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By substituting (36) into (35) we get:

SP> · Ḟ− J ψ̇ − (
Ai

p − (F>SP> − J ψ I)
) · Vp

− (
Ai

c − F>SP>
) · Vc −

(
Ai

s − F>SP>
) · Vs ≥ 0 .

(37)

This inequality motivates the following decompositions. If we assume
ψ(x, τ) = φ(F(x, τ)) we can decompose S into the sum of an energetic

part S̆ and a dissipative part
+

S such that:

S = S̆ +
+

S , J−1 S̆P> · Ḟ = φ̇ . (38)

The inner accretive couples can be decomposed into:

Ai
p =

(
F>SP> − J φ I

)
+

+

Ai
p ,

Ai
c = F>SP> +

+

Ai
c ,

Ai
s = F>SP> +

+

Ai
s ,

(39)

where both
+

Ai
c and

+

Ai
s are traceless tensors, because of the corresponding

accretive velocities being isochoric.
Now we can rephrase the dissipation principle as follows: along any

motion all the extra-energetic components make the reduced dissipation
inequality :

+

SP> · Ḟ−
+

Ai
p · Vp −

+

Ai
c · Vc −

+

Ai
s · Vs ≥ 0 (40)

identically satisfied. By using the Cauchy stress T = (J det(F))−1 SP>F>,
expressions (39) turn into:

Ai
p = J

(
F>TF−> − φ I

)
+

+

Ai
p ,

Ai
c = J

(
F>TF−>

)
+

+

Ai
c ,

Ai
s = J

(
F>TF−>

)
+

+

Ai
s .

(41)

4.2. Remodeling balance laws

The remodeling balance laws provided by the balance principle correspond-
ing to the working (32) are:

Ai
p + Ao

p = 0 ,

Ai
c + Ao

c = 0 ,

Ai
s + Ao

s = 0 .

(42)
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Substitution of (41) transforms them into:

−
+

Ai
p/J =

(
F>TF−> − φ I

)
+ Ao

p/J ,

−
+

Ai
c/J =

(
F>TF−>

)
+ Ao

c/J ,

−
+

Ai
s/J =

(
F>TF−>

)
+ Ao

s/J .

(43)

Because of the incompressibility constrain in (33) the spherical parts of Ao
c

and Ao
s have to be considered reactive.

4.3. Evolution laws and control couples

Let us assume that there is only radial proliferation:

Pp = αp
r Pr + Ph ,

Pc = αc
r Pr + αc

h Ph ,

Ps = αs
r Pr + αs

h Ph ,

(44)

with

αc
r (α

c
h)

2 = 1 ,

αs
r(α

s
h)

2 = 1 .
(45)

From (30), the expressions for radial and hoop components are:

αr = αp
r /(α

c
hα

s
h)

2,

αh = αc
hα

s
h .

(46)

We assume the extra-energetic brute stress be null:
+

S = 0. Further we set:

+

Ai
p = −J Dp

r α̇
p
r /α

p
r Pr ,

+

Ai
c = −J(Dc

r α̇
c
r/α

c
r Pr +Dc

h α̇
c
h/α

c
h Ph) ,

+

Ai
s = −J(Ds

r α̇
s
r/α

s
r Pr +Ds

h α̇
s
h/α

s
h Ph) .

(47)

Because of assumptions (45):

α̇c
r/α

c
r = −2 α̇c

h/α
c
h ,

α̇s
r/α

s
r = −2 α̇s

h/α
s
h .

(48)
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Hence the scalar form of the (reaction free) remodeling balance laws turns
out to be:

Dp
r α̇

p
r /α

p
r = (Tr − φ̃) +Qp

r ,

(2Dc
r +Dc

h) α̇
c
h/α

c
h = (Th − Tr) + (Qc

h −Qc
r ) ,

(2Ds
r +Ds

h) α̇
s
h/α

s
h = (Th − Tr) + (Qs

h −Qs
r) .

(49)

where the components of Ao
c/J are denoted by (Qc

r , Q
c
h) and so on.

Setting Dp := Dp
r , Dc := (2Dc

r + Dc
h), D

s := (2Ds
r + Ds

h), Q
p := Qp

r ,
Qc := (Qc

h −Qc
r ), Q

s := (Qs
h −Qs

r), we get:

Dp α̇p
r /α

p
r = (Tr − φ̃) +Qp ,

Dc α̇c
h/α

c
h = (Th − Tr) +Qc ,

Ds α̇s
h/α

s
h = (Th − Tr) +Qs .

(50)

If we further assume Qs = 0 we get:

α̇p
r /α

p
r = (Tr − φ̃)/Dp +Qp/Dp ,

α̇c
h/α

c
h = (Th − Tr)/Dc +Qc/Dc ,

α̇s
h/α

s
h = (Th − Tr)/Ds .

(51)

By using the relation between velocities derived from (48):

α̇r/αr = −2 (α̇c
h/α

c
h + α̇s

h/α
s
h) + α̇p

r /α
p
r ,

α̇h/αh = α̇c
h/α

c
h + α̇s

h/α
s
h ,

(52)

we obtain the relevant evolution laws:

α̇r/αr = −2 ((Th − Tr)(1/Dc + 1/Ds) +Qc/Dc)

+ (Tr − φ̃)/Dp +Qp/Dp ,

α̇h/αh = (Th − Tr)(1/Dc + 1/Ds) +Qc/Dc .

(53)

Note that only these equations are coupled to the first balance equation in
(14), while equations (51) need not even to be integrated separately. They
just give the velocities of the three competing mechanisms.

We may use (51) to compute the expression for the power of the control
force Qc:

$c := Qc α̇c
h/α

c
h = Qc ((Th − Tr)/Dc +Qc/Dc) . (54)

We say that slipping and recovery mechanisms are balanced in a time in-
terval centered at τ0 if:

αc
r (τ)α

s
r(τ) = αc

r (τ0)α
s
r(τ0) ,

αc
h(τ)α

s
h(τ) = αc

h(τ0)α
s
h(τ0) .

(55)
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As a consequence, in the same time interval:

α̇s
r/α

s
r = −α̇c

r/α
c
r ,

α̇s
h/α

s
h = −α̇c

h/α
c
h .

(56)

The condition for slipping and recovery mechanisms to be balanced is that
Qc be such that:

Qc = − (1 +Dc/Ds) (Th − Tr) . (57)

The corresponding expression for (54) is:

$c = (Th − Tr)2(1 +Ds/Dc)/Dc . (58)

It is worth noting that when slipping and recovery are balanced then for
the power dissipated we get:

−
+

Ai
c · Vc −

+

Ai
s · Vs = 2Dc (α̇c

h/α
c
h)

2 + 2Ds (α̇s
h/α

s
h)

2

= 2 (Dc +Ds) (α̇s
h/α

s
h)

2 = 2$c . (59)

5. Simulated natural histories

In order to figure out what kind of control could prevent an aneurysm
from rupture, we can conjecture different ways it would respond to some
perturbation during hypothetical histories.

Our goal is to find which control is able to make a homeostatic state
stable and to compute the stability regions of the parameters.

We will consider also mechanisms leading the aneurysm to a new stable
homeostatic state after a perturbation. The new state should hopefully be
at the same hoop stress value.

Let us assume that an aneurysm, subjected to a constant intramural
pressure, has reached a spherical shape in a homeostatic state with hoop
and radial stress:

T¦h , T¦r , (60)

thanks to a full slipping recovery control force Qc .

5.1. History A

(1) Qc is held fixed to the previous value for the rest of the time:

Qc(t) = −(
1 +Dc/Ds

)(
T¦h − T¦r

)
, (61)

simulating an inability of the slipping recovery mechanism to keep pace
with a sudden perturbation;

(2) the intramural pressure experiences a jump or an oscillation.
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5.1.1. Remarks from numerical simulations

It looks as if the homeostatic state were unstable: however small the per-
turbation amplitude be, the system goes away from the homeostatic state.

5.2. History B

(1) Qc experiences a jump or an oscillation around the previous homeo-
static value:

Qc(t) = −(
1 +Dc/Ds

)(
T¦h − T¦r

)
h(t) , (62)

simulating a temporary damage or malfunction of the slipping recovery
mechanism;

(2) the intramural pressure is held constant.

5.2.1. Remarks from numerical simulations

It looks as if the homeostatic state were unstable: however small the per-
turbation amplitude be, the system goes away from the homeostatic state.

5.3. History C

(1) The intramural pressure experiences a jump or an oscillation;
(2) Qc is increased to a fraction of the value of a full slipping recovery

control:

Qc(t) = −(
1+Dc/Ds

)((
T¦h−T¦r

)
+g

(
(Th(t)−T¦h)−(Tr(t)−T¦r )

))
, (63)

which is meant to simulate an impaired recovery mechanism, not able
to keep full pace with a sudden perturbation; if g = 0 then Qc is
held constant; if g = 1 then Qc is a full slipping recovery control,
synchronized with any perturbation.

Note that the expression for Qc corresponding to the hoop control law in
(27) would be instead:

Qc(t) = −(
1 +Dc/Ds

)((
Th − Tr

)
+ g

(
Th(t)− T¦h

))
, (64)

subtly different from the previous one, not to mention the difference be-
tween T¯h , a uniform field, and T¦h, the homeostatic hoop stress field.
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5.4. History D

(1) Qc is held fixed to the previous value for the rest of the time:

Qc(t) = −(
1 +Dc/Ds

)(
T¦h − T¦r

)
; (65)

(2) the intramural pressure experiences a jump or an oscillation;
(3) a radial proliferation mechanisms comes into action through a stress

driven control law:

Qp = Gp
(
Th − T¦h

)− (
Tr − φ̃

)
. (66)

Note how the above espression looks like the radial control law in (27),
apart from the difference between T¯h and T¦h.

6. Stability issues

Definition 6.1. A motion M is said to be Lyapunov stable if, given any
ε > 0 there exists a δ > 0 such that if N is any motion which starts out at
t = 0 inside a δ-ball centered at M , then it stays in an ε-ball centered at
M for all time t.

In particular this means that an equilibrium point P will be Lyapunov
stable if you can choose the initial conditions sufficiently close to P (inside
a δ-ball) so as to be able to keep all the ensuing motions inside an arbitrarily
small neighborhood of P (inside an ε-ball). A motion is said to be Lyapunov
unstable if it is not Lyapunov stable.

Definition 6.2. If, in addition to being Lyapunov stable, all motions N
which start out at t = 0 inside a δ-ball centered at M (for some δ) approach
M asymptotically as t→∞, then M is said to be asymptotically Lyapunov
stable.

Theorem 6.1. Lyapunov’s theorems:

(1) An equilibrium point in a nonlinear system is asymptotically Lyapunov
stable if all the eigenvalues of the linear variational equations have neg-
ative real parts.

(2) An equilibrium point in a nonlinear system is Lyapunov unstable if
there exists at least one eigenvalue of the linear variational equations
which has a positive real part.
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