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Abstract-A perturbation procedure for the buckling and postbuckling analysis of elastic struc- 
tures is shown to be well suited to be implemented as an automatic symbolic manipulation 
procedure. The postbuckling analysis of a circular arch is considered as an example, and the 
asymptotic description of the bifurcated equilibrium path is given. The main purposes of the 
automatic procedure are to generate the representation of the Frechet operator for the strain 
field and to perform integration by parts. This allows the manipulation of correct expressions 
of the basic relationships, as the strain-displacement one, without introducing any simplifying 
assumption or restriction. The perturbation equations are automatically generated and a solution 
procedure leads to parametric expressions for the coefficients of the asymptotic expansion of 
the bifurcated path. The symbolic manipulation system used is REDUCE. 

1. INTRODUCTION 

The asymptotic buckling and post-buckling analysis 
of elastic structures is a well established procedure 
[I]. It rests upon the perturbation analysis of three 
groups of differential equations: equilibrium, com- 
patibility and constitutive equations [2]. Carrying 
out the analysis keeping these groups separate from 
each other has proved to be useful not only for the 
sake of clarity but also for imposing undeformabil- 
ity constraints or introducing nonlinear constitutive 
equations. 

The starting point for a bifurcation analysis is a 
“fundamental” equilibrium path along which one 
is interested in looking for bifurcating paths. Un- 
fortunately, even if the fundamental path is very 
simple, the representation of the Frechet deriva- 
tives of the strain field along it involves manipu- 
lations of expressions which take a lot of time and 
hard work to be performed. When the first-order 
equations have been derived, even more work is 
needed, in the substitution of the compatibility and 
constitutive relations into the equilibrium equa- 
tions, and so on. As a result, one has to check 
expressions again and again and is never sure about 
them. 

A symbolic automatic manipulation allows to 
encompass these problems making it possible to 
derive error free expressions by defining simple 
procedures. 

The objective of this work is to check the use- 
fulness of the automatic symbolic manipulation in 
the asymptotic bifurcation analysis of elastic 
beams. In particular we will show an application of 
the algebraic manipulation system REDUCE [3, 41 
to the: (a) generation of formal perturbation equa- 

tions up to the desired order; (b) construction of a 
procedure, essentially interactive, which is a help- 
ful tool in problem solving. 

A specific problem will be considered in order to 
give an example of how the introduced procedures 
can be used. Due to the fact that for this problem 
it is possible to construct an exact solution to the 
perturbation equations, we will follow this way. It 
should be stressed, however, that the procedures 
used retain a more general value also in view of a 
numerical approach, which will not be pursued 
here. 

A first assessment of the use of the Algebraic 
Manipulation Systems in structural mechanics can 
be found in [5], while an application to the solution 
of perturbation problems has recently been re- 
ported in [6]. 

2. ASYMPTOTIC BIFURCATION ANALYSIS 

Let us consider a hyperelastic system acted upon 
by external conservative loads and let 

l-I@, E; A) : = O’(E) - p(h) f(u) (1) 

be the total potential energy function. Further let 

E = e(u), 

u = s(e) := Q’(E), (2) 

be the strain and stress field, respectively. The 
equilibrium equation is obtained by imposing (1) to 
be stationary, and reads 

Q’(E) e’(u) 6u - p(X) f’(u) 6u = 0 (3) 
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or equivalently 

UC’(U) i%r - p(h)f’(u) ELI = 0, 

u = S(E), 

E = e(u), (4) 

where a prime denotes differentiation of each func- 
tion with respect to its own argument. 

Two regular branches are supposed to be solu- 
tions of eqns (4). We assume the first to be known 
in the form 

u = J(A), 

E = Ef(A), 

u = &(A), 

and we are looking for a second one 

(5) 

u = ub(t) = &A(t)] + v(t), 

E = Eb(?) = Ef[A(f)l + r(t), 

u = ub(t) = &[A(?)] + 7(t), (6) 

which is supposed to bifurcate from the first one at 
a point label led by t = 0. 

For an introduction to these concepts and further 
details on the methods and notations used, the 
reader is referred to the essay of Budiansky [4]. 
Here we intend to point out that the aim of the per- 
turbation method is to derive asymptotic expres- 
sions for the unknown “bifurcated” equilibrium 
path by using eqns (4) and (6). Perturbation equa- 
tions up to the third order are written as follows 

ue”i6u + ie’6u - pj”iAu = 0, 

i = St+, 

+ = e’4, 

(ue”ij + Ye’ - pf”i;)6u 

(7) 

where A denotes differentiation with respect to A and 
a superposed dot differentiation with respect to t. 
From eqns (8), by imposing Fredholm compatibility 
condition. we obtain the equation which determines 
the value of A 

s”~3 + 3ie”i,’ + ae”‘~3 _ p,~i,3 + 2);(S”ij2 

+ 2ie”iri, + ~_e”i,’ + o-e”‘&,” _ fif”i,’ 

- pf”‘Q) = 0. (10) 

Again, the Fredholm compatibility condition for 
eqns (9) gives the value of A through the equation 

(11) 

3. BEAM MODEL (1-D POLAR CONTINUUM 

IN 2-D) 

In this section we briefly outline the continuum 
beam model which will be used in the sequel. In 
Fig. 1 the beam 53 is depicted in its reference shape 
~(33) and in the generic one x(S), together with 
the set of directors, Bi and bi (i = 1,2), respectively. 
Here the prime denotes differentiation with respect 
to the reference abscissa s. 
Let the displacement vector u and the rotation ten- 
sor R be 

u(s) : = x(s) - X(S) = u(s)bi + u(S)b2, 

R(s) : Bi(s) ++ hi(s). (12) 

Fig. 1. Reference and generic beam shape. 
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Let the strain measures be defined as 

L(S) : = x’(s) - R(s) X’(s) = l b, + ybl, 

p(s) := i(R’R’). = kb3, (13) 

x denoting the Gibbs cross and R' the transpose 
of R. The corresponding scalar compatibility rela- 
tions read 

E = u’ - (k + e’)v + cos e - 1, 

y = ZI’ + (k + 6’)~ - sin 0, (14) 

p, = 0’. 

Let n(s), m(s) denote internal force and couple vec- 
tor fields. The components we will refer to are de- 
fined by 

m = h&. US) 

4. AUTOMATIC GENERATION OF THE PERTURBATION 

EQUATIONS FOR BEAMS 

Let us examine now how to specialize the per- 
turbation equations to the continuum beam model 
introduced in the previous section, and how this 
process can be performed automatically by some 
algebraic manipulation procedures. 

From now on the vectors u, c, u appearing in eqn 
(2) will assume the form 

u = [u(s), v(s), WI, 

E = [EW, YW, I4u)l, (16) 

r~ = [NW, ‘Us), MWI. 

It is necessary to point out that, at this step of the 
analysis, the beam model just defined is essentially 
“kinematic” in the sense that nothing was said 
about the constitutive relation (4)~. Indeed, for the 
sake of generality, it is convenient to look at the 
constitutive relation as an element characterizing 
each particular problem as are the load functions 
p(h), f(u) and the known equilibrium path. Con- 
sequently we do not specify any of them at this 
stage. Hence we will consider neither the terms in 
eqns (7)-(9) in which appears the external load, nor 
the asymptotic expansion of eqn (4)2. 

For generating all the other terms in eqns (7)-(9) 
a REDUCE program has been implemented. The 
features of the main modules will be outlined here. 

As it clearly appears looking at the asymptotic 
equations (7)-(9), what is needed first are the Ga- 
teaux differentials of functions (14) up to the fourth 
order, calculated along four different directions ul, 
u2, u3, u4. 

These are generated by the module GATEAUX, 
which is listed in Appendix A together with its out- 
put. This module is able to perform the differentia- 
tion process up to a specified order. 
OIS 21:4-p 

A little bit more sophisticated is the module that 
accomplishes the generation of the differential equi- 
librium equations starting from the terms. 

(17) 

appearing in eqn (7)1 and from the corresponding 
ones at higher orders. We have to recall that terms 
(17) stand for scalar products which represent vir- 
tual works, that is 

ie’6u = (i, e’(u)Ch) = 

ue”i6u = (a, e”(u)i&d) 

E I u(s)e”[u(s)]ti (s) 6u(s) ds. 
f, 

(18) 

In order to obtain the asymptotic equilibrium equa- 
tions, we have to construct the adjoints of the dif- 
ferential operators 

e’(u); e”(u)fi. (19) 

Such operators can be obtained, together with the 
boundary conditions defining their domain, by per- 
forming successive integrations by parts. This can 
be done by using the module GREEN which is 
listed in Appendix A. It essentially makes use of 
the standard differentiation function DF, associated 
with the statement COEFF in order to isolate the 
coefftcients of the derivatives of 6~. 

Once the load function and the constitutive re- 
lation have been specified, Gateaux differentiations 
and integration by parts on the rest of the terms in 
eqn (7) can be performed by modules which operate 
exactly as the modules GATEAUX and GREEN 
but on different expressions. 

Before moving on to discuss how to solve a spe- 
cific problem using the results of the previous steps, 
it is important to stress the fundamental role played 
by the output facilities of an algebraic manipulation 
system. 

In REDUCE, where the output is essentially one- 
dimensional, the user has to face some difficulties 
when the variables that he is dealing with are not 
very few and their formal derivatives are to be gen- 
erated. In fact, taking successive derivatives means 
nothing but generating new symbols in a recursive 
way, while for the sake of clarity these symbols 
must retain information about their origin, in order 
to be easily detectable as derivatives of the original 
variables. Using the expression DF(F(x), x) for de- 
noting derivatives, previously defining F as an op- 
erator, is quite unsatisfacctory. In order to obtain 
a representation for formal derivatives as short and 
clear as possible, a different notation has been de- 
viced. In this respect systems like SCRATCHPAD 
or MACSYMA, containing two-dimensional output 
facilities, should prove more suitable. 
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5. A SOLUTION PROCEDURE 

As an application of the general procedure for 
curved beams, the bifurcation analysis of a circular 
arch under hydrostatic pressure, shown in Fig. 2, 
has been carried out. 

The constitutive relations considered are the fol- 
lowing 

N = AE, 

T= Gy, (20) 

M = BP, 

where A, G, B are constants. 
The external force field is defined by 

p(h) = A, 

f(u) = R P[b (k + W) (u2 + v2) 

- ZJ cos 0 - u sin 8 - U’V] ds (21) 

while the only nonvanishing function along the fun- 
damental path is 

ApR* 

7~ = (ApR + A)’ 
(22) 

It is possible now to complete the generation of 
the perturbation equations. 

Looking at eqn (7), the only term which has been 
neglected is 

pf”G6u. (23) 

This can be constructed by performing Gateaux dif- 
ferentiations of f(u) as was done for e(u). The sub- 
sequent integration by parts follows the same pro- 
cedure used for the terms in (17). The eqn (7)~ is 
trivially derived from (20) noting that s’ (c) is rep- 
resented by a diagonal matrix whose entries are A, 
G, B. The eqn (7)3 can be evaluated from the first 
differential of e(u), obtained as output of GA- 
TEAUX, by subsituting ic for ul. Now, if eqns (7), , 
(7)2, (7)3 reside simultaneously in a REDUCE en- 
vironment, an automatic substitution is performed 
leading to a homogeneous system of three ordinary 
differential equations of the second order, with con- 
stant coefficients, defining an eigenvalue problem. 

A standard method for solving this kind of dif- 
ferential equations, implemented as an automatic 
procedure, has been used to compute the solution 
given in Appendix B. 

Fig. 2. Arch under hydrostatic pressure. 

The next step of the analysis is the calculation of 
the expression for i,. The module LAMBDADOT, 
which is listed in Appendix C, performs the task of 
constructing the expressions for the terms appear- 
ing in the orthogonality condition (10). After that 
each of them is to be integrated over the interval 
[-L, I,]. Such integration is automatically per- 
formed by another module. 

For the case we are dealing with i, turns out to 
be zero. 

The eqns (8) can then be obtained following the 
same line as for eqns (7), now getting to a system 
of ordinary linear differential equations with con- 
stant coefficients which are not homogeneous. It 
can easily be seen that the solution has the form 

ii = ii, + d ic, (24) 

where U is the solution to the first-order equations, 
d is an arbitrary coefficient and ii, is any particular 
solution. An expression for ii, has been found by 
checking some trial functions and we omit writing 
it here for the sake of brevity. 

Once such a solution has been found the last task 
to be performed is the evaluation of i, through eqn 
(1 l), using the same technique as that used for eval- 
uating >;,. The REDUCE output for the numerator 
and denominator or i, is given in Appendix D. 

Thus as a final result we have obtained a general 
parametric solution with no need to normalize the 
first (eigenvector) and the second-order solution 
vector, so retaining the possibility of dealing with 
a wide class of cases simply performing numerical 
substitutions. This is easily achieved by automati- 
cally translating the symbolic expressions of the re- 
sults into FORTRAN statements. 

It is worth noting here that, in spite of the dif- 
ficulties in dealing with a sophisticated beam model, 
both the generation of the field equations and the 
construction of the solution have been performed 
using an algebraic manipulation system, thus avoid- 
ing hand calculations that would have been un- 
manageable. 

6. PROGRAM STRUCTURE 

As explained in the previous sections, the pro- 
gram is made up of modules to be called and exe- 
cuted in a REDUCE environment in a certain se- 
quence. A called module interacts with the 
environment in the sense that it can introduce new 
identifiers, bind some others and so on. 

For the sake of clarity each module contains not 
only the formal description of the actions to be per- 
formed, but also a documentation about the iden- 
tifiers involved in the actions. To this end it has 
proved useful to divide the identifiers into the fol- 
lowing groups: (1) input identifiers are identifiers 
the module needs in the sense that they must be 
present in the environment when the module is 
called; if operators they must be defined as well; 
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(2) output identifiers are identifiers which are as- 
signed some value by the module. They can be (a) 
already present in the environment, then their value 
is modified; (b) new identifiers, then they are not 
only introduced but also assigned a value; (3) new 
identifiers are identifiers introduced by the module 
but not bound to any other identifier, nor assigned 
a value; (4) local identifiers are dummy identifiers 
which reside in the environment only for the time 
the module is running. They are cleared after the 
actions in which they are involved have been per- 
formed. 

1. 

2. 

3. 

4. 

7. CONCLUSIONS 5. 

In this paper the use of an algebraic manipulation 
system in buckling problems for curved beams with 
exact kinematics has been outlined. As an appli- 
cation the bifurcation analysis for a circular arch 
under hydrostatic pressure, up to the second order, 
has been presented. 

6. 

The use of an algebraic manipulation system has 
given evidence of how even a cumbersome pro- 
cedure, such as the bifurcation analysis carried out, 
can be handled with a little effort while providing 
reliable results. 

It is worth noting that, although it has been pos- 
sible in the above application to find a closed form 
solution to the perturbation equations, this is not 
the case in general. Then it would be necessary to 
devise a procedure for finding an approximate so- 
lution. To this end the described symbolic proce- 
dures would play a relevant role, at least in deriving 
the perturbation equations in the integral form, as 
shown in the previous sections. Those equations 
should in fact be the starting point for constructing 
an approximate formulation. But a discussion on 
such a subject is beyond the scope of this work. 

Modules for generating the perturbation equations 
Identifiers defined as operators are used to allow a rep- 

resentation for derivatives of functions. Recalling that in 
REDUCE operators are represented through identifiers 
with subscripts in parentheses, we use the following rule: 
the first subscript (., ) is a number denoting the order of 
differentiation with respect to the curvilinear abscissa; the 
second subscript ( ,.), when a number, denotes generic 
direction in the Gateaux differentials, different numbers 
denoting different directions. 

With reference to directions of particular interest, al- 
fanumeric expressions will be used as subscripts. In par- 
ticular 

u being a generic function identifier. 
Only for EPS, GAM, MU, the second subscript, when 

a number, denotes order of Gateaux differentiation. 

1 

2 
3 
4 
5 
6 
7 
G 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
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APPENDIX A 

rc(n, DOT) will stand for ic(“‘. 

u(n, CFX) will stand for ri’“), 

* variablm. 
l 

a 
* 
c Xnput idmtifiorm 
* 
* Output idmntifiws 
+ 
I( 
+ New idcntifior!6 
* 
* 
* 
c 
I Local idmntifiws 
* 

~xxl,**~c+***I++++***++l+*+++++,+ix*i 

* * 

* Module GPlTEAUX + 
* + 
* Computation of formal Gatmaux derivatives of ths strain m~arurss. + 
+ Components up to thr ardw sprcifird by "Difforrmtirtionordcr" I( 

* 
l 

* 

l 

I mpc(O),grm(O),mu(O) * 
l 

8 l p~(O,i~,g~m(O,i),mu(O,i) l 

ir=l:Diff~rmti~tionOrd~r l 

l 

: u(m,i),v(m,i),tr(m,i) l 
"mu has the valuer already introduced in thm l 

expressions for the strain measurrs components l 

il-i:Diffor~nti~tionOrd=r c 
l 

I l p~~0,0~.g~m~0.0~.mu~O,O~,~,b,c,j * 
+ 



27 
26 
29 
30 
31 
32 
33 
34 
315 
fb 
57 
38 
39 
40 
41 
42 
43 
44 
4s 
46 
47 
48 
49 
SO 
51 

:i: 
54 
5s 
56 
57 
LSB 
S9 
60 
41 
62 
63 
64 
65 

66 

67 
b8 
69 
70 
$1. 
72 
> 

: 
3 
4 
s 
b 
7 
9 
9 
10 
tl 
12 
13 
14 
1s 
14 
17 
1s 
19 
20 
21 
22 
23 
24 
25 
26 

P:, 
29 
SO 
31 

32 
33 
34 
3S 
36 
37 
30 
59 
40 
41 
42 
43 
44 
45 

DiffwmntiationDrdmr:=4; 

for i:=l~DiffmrmntiationOrdmr do 
bmqin 

for all m 18t df (u(m),g~tm~un)=u(a,i), 
df (vfmf,g8tmaux)=v(m,i), 
df(tr(m),qltrmux)-tm(e,itt 

for all m,n lot df(u(m,n),gatm~ux)~O, 
df~v~m,n~,p~to~ux~~O, 
df (te(m,n) ,grtmruw)-01 

111 RprfO,Of=rpe101t 
lmt ~~m(0.01-~wltO)~ 
1st mu(O,O)-mu(O)t 

j:*i-11 

l :*df (rp=(O,j) 
br-df (gam<O, j! 
et-df (mu(O, ff ,I 

mp=(O,i),=a* 
grmtO,i)r-bS 
mu(O,i)l-c* 

rndt 

.qat@aUX) 8 
,gateaux 2 s 
ptraur ) * 

%---___-__-__---____--_--__--_--- -___ 
- Clear substitutions and local idmtifirra 
--_-__- - -_----____---_---_--_---____* 

clear •p~10,0~,g~m~0,0l.mu~O,O~~ 
for all m clrar df (u(m),gatoaux), 

df(vfm$,gat.mux), 
df (tf?(mf ,gatrauxf j 

for aI1 m,n clrw df (u(m.n) ,qrteaux), 
df (v(m,n) ,gatrsux), 
df (ta(m,n) ,gatrrux)t 

clear l ,b,ct 

* 
l Module GREEN 
c 
i Evaluation of the following terms of thm first order parturbation 
* rmlationshipr : 
* - rquilibrium lsquations without terms inVOlVing eXtQrna1 lords 
*- kinmmatical rmlationships 
l 

l 

* f<..VARf denotes the 
c f (, ,I)OT> dw,otrs the 
* 
l 

+ Input idmntifimrs I 
l 

* 
* Output idmntifiarm : 
46 
l New idmntifirrm 
l 

c 
* Local idmntifirrr ! 
* 
* 
l 

“variation” of f 
“dot ” of f 

,DOTS n(.).n(.,DOT),q(.),q(. ,DOTI,mf.),m(. 
uf..DOT),v(..DOT),ts~.,DOT) 

l lfa,bmta,gamma (used in COEFF), 
iard,j,~,b,c,rxprr9sion,bound~ry 

***************+********************s 

* 
It 

* 

* 

+ 

+ 

46 

II 

45 

* 

* 

+ 

* 

* 

c 
* 
+ 
+ 
* 
* 
* 
* 
* 
* 
4 

operator n.q.m * 

for all m let u(m,l)=u(r,VAR) ,v(m,i)-v(m,VAR) ,tm(m,l)*tm(m,VAR)I 
u<m,2I=utm,DOTi ,v~m,2~=v~m,DOTf,tr~m,Zf=tr~m,DOT~ 8 

~~__________--_-____-_----_------_---- 
- First ardor mprrssian for thr contact forces pcw.r dmsity - 
______ __ ______ _ ____- __-..________-a_--_ * 

rxprSwSionr- n~O~*Dpr~0,2~+q~O~rgrm(0,2~+m~o~*mu~o~2~ 
+n~O,D0T~*~~~O,l~+q~O,DOT~+p~m~O,l~+m~O,DOT~rmu~O,11 S 

% Initirlizrticn to 0 for idrntifirrr usmd l m l ccunruiators * 

rq.1:-*qs2,-mq231-0* 
BoundaryTermsr-00 
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46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
S6 
57 
SB 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
El1 
a2 
es 
84 
ES 
86 
07 
B8 
89 
90 
91 
92 
93 
94 
9s 
96 
97 
98 
99 

100 
101 
102 
103 
104 
10s 
106 
107 
108 
109 
110 
111 
112 
11s 
114 
115 
116 
117 
110 
119 
120 
121 
122 
> 

~__________~~___~_____~_~__~_____~_~_ 
- Diffwentiation p~ttrrn through substitution8 
_--_-_---____--- 

for all k 1mt 
df (u(k) ,m)-u(k+l), 
df (v(k) .s)=v(k+l). 
df(t=(ki,.)=tc(k+i), 
df (n(k),s)=n(k+l), 
df (q(k) .s)-q(k+l), 
df (m(k) ,s)=m(k+l), 
df(u(k,DOT),c)=u(k+l,DOT), 
df (v(k,DOT) ,s)=v(k+I,DOT), 
df (tr(k,DOT) ,s)-te(k+l,DOT), 
df (n(k,DOT),s)m(k+l,DOT), 
df (q(k,DOT) ,s)-q(k+l,DOT), 
df (m(k,DOT) ,s)=m(k+l.DOT) # 

Y. iord I= diffrrmntiation ordw 

intmgw iordl 
iord I= 0) 

__________-__--__--_* 

* 

~_________----________________------- 
- Intrqratlon by parts and evaluation of the boundary twms 
_ _ ,_ _ -. _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - -* 

while expression nrq 0 do 

co.ff (.lf~O,v(iord,VRR);b.t.~S 
corff (botaO,tm(iord,VAR) ,pamma)S 

l r=df (alfal,m,tord)# 
br-df (bmtal,s,iord)i 
c:~df(gamm~l,m,inrd)~ 

l qrlr~.qri+(-l)**iord*al 
l qzZ:=,qz2+(-l)**iord*b: 
.qt3:-~qz3+(-i)**iord~cl 

boundary := for j:=l:iord sum 
(-l)cc(iord-1)cdf (~lf~i,=,j-l)+u(iord-~,i)+ 
(-l)*i(iord-l)+df (b~t~l,=,j-l)*v(iord-j,i)+ 
~-l~**~~ord-l~*df~g~mm~l,~,j-l~~t~~iord-~,l~~ 

Bound~ryTlrm=r=Bound~ryTorme + boundary1 

iord:-iord+l; 
write “iord I= “,iord 

end* 

~_______________-_------_-_-___-___-_ 
- Cl~r submtitutionm and local idmtifiws 
_ _ _ __ _, _ ._ ._ _ _ - _ - _ - - - - - - - - _ _ _ _ _ _ _ _ - _ - _ - -* 

for all k cl Pat- 
df (u(k) ,=I ,df (u(k,DOT) ,s), 
df (v(k) ,s) ,df (v(k,DOT) ,s), 
df (t=(k) ,s) ,df (tr(k,DOT) ,,I, 
df (n(k) .s) ,df (n(k.DOT) ,s), 
df (q(k) ,c) ,df (q(k,DOT) ,m), 
df (m(k) ,s) ,df (m(k,DOT) ,%I; 

iord:=O; 
clear r,b,c,boundrry,rxprr~mionS 
for all m clear u~m,l~,v~m,l~,tr~m,l~,u~n,Z),v(n,2~,v~m,2~,t~~m,2~ * 
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When eps(O. 0). gam(0. 0). mu(0, 0) are given the expressions (14) the module Gateaux produces the following differ- 
entials: 

EPS(O,i):=U(l,I) - V(O,l)+TE(l) - V(O,i)*K - SIN(TE(O))*TE(O 

,l) - TE(l,l)*V(O) 

EPS(O,Z) I= - (V(O,l)*TE(l,Z) + TE~O,l~*TE~0,2~*COS~TE~O~~ + 

TE(l,l)*V(O,Z)) 

EPS~0,3~:-SIN~TE~O~~xTE(O,I)FTE~O,Z~~TE~O,3~ 

EPS~0,4~:~TE~O,1~+TE~O,Z~~COS~TE~O~~~TE~O,3~~TE~O,4~ 

GAM(O,~)I-U(O,~)*TE~~) + lJ(O,l)+K + V(l.1) + U(O)*TE(l,i) - 

~E(O,l)*CClS(TE(O)) 

GAM~0,2~:=U~O,l~xTE~l,Z~ + U(0,2)xTE(l,l) + SIN(TE(O))*TE<O, 

l)+TE(O,Z) 

G~M~O,J~r=TE~O,i~*TE~O,2~~COS~TE~O~~*TE~O,3~ 

GPIM(0,4)r= - SIN~TE~O~~*TE~O.l~*TE~O,2~*TE~O,3~~TE~O~4~ 

MlJ(O,l):-TE(l.1) 

MU(O,Z):-0 

MU(O,3):=0 

MLS(0.4) :-0 

Once the required differentials of the expressions (14) have been derived the module Green produces the following 
results: 

EQZ1:=Gl(O,DOT)*TE(l) + Q(O,DOT)xK + P(Ob*TE(i,DOl) - N(l,DOT) 

EPZZ:= .- (N(O,DOT)cTE(l) + N(O,DOT)+K + C!(l,DOT) + TE(l,DOT) 

*N(O) 1 

EQZ3:= -- Q~O,DOl)~CLlS~TE(O)) - Q(O,DOT)xU(l) + V(i,DOT)*N(O) 

+ N(l)W(O,DOT) - lJ(l.DOT)*Q(O) - P(l)+U(O,DOT) - N(O, 

DUl)rSlN(TE(O)) + N(O,DOT)*V(l) - Q(l,DOT)*U(O) + Q(O) 

cSIN(TE(O))*TE(O,DOT) - M(l,DOT) - TE(O,DOT)xCOS(TE(O)) 

*N(O) + V(O)*N(l,DUT) 

BOUNDARYTERMS:=Q(O.DOT)W(O~*TE~O,VfAR) + Q(O,DOT)*V(O,VAR) 

+ N(O.DOT)+U(O,VAR) - N(O,DOT)+V(O)+TE(O,VAR) 

+ U(O,DOT)*Q(O)+TE(O,V~R) -. V(O,DOT)*TE(O, 

VAR)xN(O) + TE(O,VAR)*il(O,DOT) 

APPENDIX B li = a, cos (hs) 

Solution to the first-order perturbation equations i, = -a2 sin (hs) 

The bifurcation points along the fundamental solution 
are defined by the values of A which are roots of the equa- 

i = a3 cos (hs) 

tion where al, az, a3 stand for the following expressions: 

{(G + 3A)h3R3B + [3(G + A)B + R’A’]h2R’A a, = R[-X3R3 - AZRZ(G + 2A) 

+ [(3G + A)B + R’G A]h R A’ + A R A(h2R2G - 2G - A) - GA’], 

+ A4R4B + GBA3}/[(AR + A)*R*GBA] = h2. a2 = hR2A2(A R + G), 

where the value of h is such that either cos (hL) = 0 or 
sin (hL) = 0. If we consider the case hL = 7712 the car- * 

a3 = [A3R3 + A2RZ(G + 2A) 

responding eigensolution to the first-order equations is - ARA(h2RZG - 2G - A) + GA’(1 - h2R2)]. 
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APPENDIX C 

Module for constructing the expression for x, 

1 
2 

3 
4 

5 
6 
7 
a 
9 

10 
11 

12 

13 
14 
15 

16 
17 

iE 

19 
20 

21 
22 

23 
24 
25 
26 
27 

28 

29 
30 
31 
32 

33 

34 
3s 
36 

37 
38 

39 
40 
41 

42 

43 
44 

45 
46 
47 

40 
49 

50 
51 
s2 
53 
54 

ss 
56 

57 

58 
59 
60 
61 
62 
63 
64 
65 
66 

67 
68 

69 

70 
71 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
> 

t 
+ Module LAMBDADOT 
+ 
+ Evaluation of the terms appearing in the l xprmmmion for lambdrdot 
i and containing internal force and couplr dmnsitics. 
c (Here hyprrelrstic constitutivm relationships are l smumrd). 
(I 

* 

x Si gE3VD3 
* 3eTauDEZVDZ 
l SigE3UFVD2 
l 61 gFEZVD2 
* ZrTauDEZlJFVD 
l 

c 
c 

*Input identifiers : 
* 
l 

l 

* 
+ 
I 
c 

*Output identifiers : 
II 
l 

*New idontifiwm : 
* 

*Local idmtifiws I 
* 
* 

(“Unlw-ata- 
(numwrtor) 

(denominator) 

(dwtominator) 
(denominator) 

“(0) *q(O) ,m(O), 
n(O,CFX) ,t(O,CFX) ,m(O,CFX), 
n(O,DOT) .q(O.DOT) ,m(O,DOT) , 

u(O.CFX) ,v(O.CFX) ,t (O.CFX) , 
u(O,DOT),v~O,DOT),t~~O,DOT), 
rpm(O,Zb ,gam(O,Z) ,mu(O,Z) , 
mpm(O.3) ,gam(O,S) ,mu(0,3) 

Si gE3VD3, TauDEZVDZ, SigE3UFVD2, 
SigFEZVDZ,TauDEZUFVD 

non. 

non. 

*N-B. Being the output identifimrm dmnsitiem of scalar product,thr 
* corresponding wprommions havm to bm integrated 
l 

* 
* 
+ 
* 
c 

* 

* 

* 
l 

l 

* 

+ 
l 

* 

* 
l 

l 

l 

l 

l 

* 

* 
c 
c 
* 

* 
* 
I) 

l 

l 

* 

+ 

l 

c 

l 

%______--_----____--____------------- 
- Substitution pattern 8 f(.,i) --> f(.,DOT) (i-1. .3) 
_____---_________---------------- - - _* 

for ir-lr3 do 

begin 
for all m lrt u(m,i)=df (u(O,DOT) ,s,m), 

v(m,i) -df (v(O,DOT) ,m,m), 
te(m,i)=df (tr(O,DOT) ,s,m) 

endi 

X___-_____________-____-------------- 

- Substitution pattern : ft.,11 =-> f(.,CFX) 
. . f (. ,j) =-> f (. ,DOT) (j-2,3) 
_---------------____________________* 

for a11 m let u(m,l)~df (u(O,CFX),s,m), 
v(m,l)=df (v(O,CFX) ,r,m), 
t=(m,l)-df(tr(O,CFX),~,m) 

~______________________--------______ 
- Clear Substitutions 
_-_---____________________---_______f 

for all m,i clear u(m,i),v(m,i),t~(m,i) f 
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APPENDIXD 

Expressions for numerator and denominator of i, 

NUMp2:=S+A~+2*L~(2*~1**2*~3~~2*R~~2~h~~2 + Zral+d4*a3+R+~Zc 
h I 4+al*d4*aZ*R~+Z*h*+Z + 3+al+a3++3*R + 4+al*a3++2+aZ*R 
*h -. al*a3*dl*R*h + ri*a3*dZ*R+*Zrhc*Z - 3*al*e3*d2 - 5* 
al*a3xd3*R*+Z*h+*Z - alxa3xd3 + Z+d4rr3+rZ*R + 4+d4+a2**2 
.RWI + 3+a3r*4*Rrx2 + bwa3**3*aZ*R**Z*h - 2*a3+*2*dl*R**Z 
l h + Gca3+x2iaZ~iZxRccZ*hrcZ - 3*a3**2*dZ+R - l 3++2+d3*R 

4 a3Udlxa2 3*e3*rZxdZ*R*h - 9r~3ff~Z+d3+R+h)/(41R+R++Z 
+ 4ipOxRxx3) +. 3XA+GCL*( - 4+a1+*2+d4*R+h - 4*al+d4+a3* 

RrrZith 4*ri*drl*rZ*R*rZ+h*UZ - 4*ai*a3*+3+R - 4+al+a3**2 
*aZ*R*h + 3+al*a3+dl+Rxh + 3ral*aS*d2 + ai*a3*d3 - d4+a3+ 
a2rR .- 4xa3xr4rRwr2 - &.,a3+a3raZ+R+*Zch + 3+a3++e2*dl*R++2 

.h - Z+a3++2*rZr+Z*R**Z+h**Z + 3+a3*+2*d2*R + a3**2+d3*R 
+ 3*&3*dixrZ*R*rZ*hW&Z - r3xdi*a2 + a3*a2*dZ*R*h + 3*a3+ 

aZ+dJ*R+h)/(4*AIRlcZ + 4cpO*R+c3) + 3+cl*pO*L+( - Z*al*+ 
Z+d4xR+h + Z*aircZ+r3,*2rRr+Z+h++2 - Z*ri+d4*a3*R**2+h + 
4*al*d4+s2+R++2*h+*2 + Zaal+a3++3+R**3*h++2 + Z+ai+a3+*3* 
R + 4*ai+a3**2caZ+R*h + ai+a3*dZ+R*r2rh*cZ - 3*ai+a3*d2 

-- 5*alra3~d3*Rx*Z*h**Z - ai*a3+d3 + 4+d4+a3+rZ+R++3*h*+Z 
+ 3+d4+a3+rZ+R + brd4raZr+ZBR+h + 2+a3**4*R++Z + 6+a3*+3 

caZ+R**Z+h + Bca3crZx~Z,+Z+R+*Zrh+rZ + r3*+2+d2*R**3rhc+2 

- 3*aS**Z*dZ*R - !ii+r3+*2rd3*R**3*h*+2 - a3*+2rd3+R + a3* 
dl*aZ - 4*a3*aZ+dZ*R*h - 12,~3*~2+d3rR*h)/(4*CI+R + 4+pO+ 
R+*Z) + S*G*pO*L*( - 4*al*+Z*d4*R*h - 4*al*d4+a3*R**2rh 

- 4+rlcd4ra2*R**Z+h+*Z - 4+al+a3++3*R - 4*al*a3**2*a2+R* 
h + 3*al*aS*dl*R*h + 3+al*a3*d2 + rl*aS*d3 - d4*a3*a2*R 

4xa3**4cR++2 - 6*a3**3*aZ+R+iZeh + 3*a3w62xdl*R++2rh 
... Z+r3c*2c~Z,*Z,Rrc2chcr2 + 3(rr3,*24td2+R + a3+++2*d3,R + 

3*a3+dl*a2*R**Z*h+*Z - a3*dl*a2 + a3*aZ*d2*R+h + 3*a3*a2* 
d3rRih)/t4*AcR + 4*pO*R*r2) + 3*pO*r2+R+Lxt - 2*ai**2* 
d4ih - 211ali+d4+a3*R*h - al+a3**3 + ai+aS++dl+h + d4ca3+a2 

+ Z+d4rr2+*2*h .- a3rc4+R + a3+*2cdl+R*h - a3*a2*d2*h - 3 
.a3*aZ*d3*h)/t4*& + 4*pO+R) ; 

DENp2:=3*Ai*3*Lr~ - al*+2 - al*a3rRcrlch++Z - 2*ai*a3rR - 2 
l al*a2*R+h - aJ**Z*R**2 - Ica3ra2*R*rZ*h - l 2**2)/(6~*3+R 

+ 3rAw62ipOrRxiZ + 3,Pl+pOcrZcR*+3 + pOr+3cRcc4) + J+A 

.*Z*G+aS*L*tal + aS+R + aZ*R*h)/(fUt*3 + 3*A*+2+pO*R + 3+A* 
pO**Z+R**Z + pO*r3*R*+3) + 3+ArrZ*pO*L+t - 3*ai**Z - 
al*a3+R++3+h+xZ - Siaisa3WR - brri*aZ*R+h - l 3++2*R**4+h 
x12 - 2xa3,+2rRrx2 - bxp3+aZ,R,*Z+h - 3,aZ**Z)/(A*+3 + 3X 

A**Z+pOxR I 3+ClcpOl+ZxRxxZ + p0+*3*R++3) + 3+A*G*a3* 
pO*R*Lx(al + .3*R + aZ*R*h)/(A**S + 3+A**Z*pO*R + 3+R+pO 
xiZiRib+Z + p0++3*R**3) + JWSpOccZrRrLr( - 3*ala+2 - 5+ 
alxa3+R - bxal*aZ*R*h - Z*a3++2+Ra*Z -’ S*aSsaZ+R++Zch - 3 
.a2*+2)/(W*3 + 3WWWZrpOiR + 3+A*pO++Z+R**2 + pO**S*R 
~(3) + 3*p0**3+R*+Z*L*( .- al*+2 - 2*ai*a3+R - 2 
xalxaZ*R+h - l 3*rZ+R+92 - Zca3+taZcR*+Z*h - l 2**2)/(&+13 

t 3xA+xZrpOSR + 3iAipO**ZxR**Z + pOx*3+R1*3) ; 

The symbolp0 stands for A<. while h = T&L. The symbols 
at, ~2, a3 are constants appearing in the first-order solu- 
tion, while dl, d2, d3, d4 are constants appearing in the 
second-order solution. The expressions for them, as well 
as the expression for A,, are the intermediate results of 
the symbolic procedure. It is convenient to think of them 
as identifiers which take a numerical value, simply by eval- 
uating the corresponding expressions. 


