
Traction on the Retina Induced by Saccadic

Eye Movements in the Presence of Posterior

Vitreous Detachment

Colangeli E., Repetto R., Tatone A. and Testa A.

Grenoble, 24th October 2007



Table of contents

1 Physiology of the human eye

2 The mathematical model

3 Numerical Simulations

4 Future developments



Physiology of the human eye



The vitreous body: structure and composition

The mature vitreous body has got a
transparent, gel-like consistence

It contains:

99% water

0,9% low molecular weight
solutes

0,1% macromolecules such as
collagen and HA

few hyalocytes (vitreous cells)



Aging of the vitreous

With aging, substantial alterations take place
in the vitreous body and it undergoes a process of

Liquefaction

Hyaluronic acid may dissociate from collagen fibrils and
be redistributed from the gel to the liquid vitreous
forming pools (synchysis);

Collagen fibrils are no more separated by HA hydrated
molecules and aggregate together into fibers (syneresis).



With age, there is a weakening of the vitreo-retinal adhesion,
mostly due to biochemical alterations at the interface.

The decrease of vitreo-retinal adhesion, in conjunction with
liquefaction of the vitreous body, leads to

POSTERIOR VITREOUS DETACHMENT
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Posterior Vitreous Detachment (PVD)

It typically has no clinical consequences and
leaves the sight abilities unchanged;



At the adhesion points between the cortex and the retina,
during eye movements vitreous fibers may exert so high

tractions as to generate tears on the retina.

Fluid vitreous may then flow into the sub-retinal space,
thus triggering a rhegmatogenous retinal detachment.
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...How to best evaluate the presence

or absence of vitreous traction and

how to quantitate the degree of vitreous

traction is presently not known...

(J.Sebag, The Vitreous, 1989)



The mathematical model

We account for a 2D plain strain problem and we consider a
configuration of the rigid vitreous chamber after PVD.
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The Balance Principle of Working

For a Cauchy-continuum in any shape D∫
D

b ·w dV +

∫
∂D

t ·w dA−
∫

D

T · ∇w dV = 0 ,

for any test velocity field w.

Bulk force b measured by unit volume on D;

Surface force t exerted on the body through its boundary ∂D;

Cauchy stress tensor T.



It can be restated by pulling-back all fields to a fixed paragon
shape D∫

D
b · w dV +

∫
∂D

t · w dA−
∫
D

S · ∇w dV = 0 ,

for any test velocity field w.

Piola-Kirchhoff stress tensor S := T F−T det F;

Deformation gradient F.



Looking at this composite continuum as a whole, we require∫
D

b·w dV +

∫
∂?D

t·w dA−
∫

D

T·∇w dV−
∫

I

t∗·[[w]] dA = 0 ,

for any test velocity field w allowed to be discontinuous at I.

t∗ is the interface stress.



It is convenient to write the balance principles
for fluid and solid parts separately.



The Solid

The gel-like vitreous is modeled as a homogeneous, isotropic,
non-linear hyperelastic incompressible solid.

The Balance Principle for the solid yields∫
Ds

bs ·ws dV+

∫
∂?Ds

ts ·ws dA +

∫
I

ts ·ws dA−
∫

Ds

Ts ·∇ws dV = 0

for any test velocity field ws on Ds .

The incompressibility condition (enforced in the weak form) is∫
Ds

(det F− 1) p̃s dV = 0 ,
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The Fluid

The liquefied vitreous is modeled as a Newtonian
incompressible fluid. The Balance Principle for the fluid states∫

Df

bf ·wf dV+

∫
∂?Df

tf ·wf dA +

∫
I

tf ·wf dA−
∫

Df

Tf ·∇wf dV = 0

for any test velocity field wf on the actual shape Df .

The incompressibility condition (enforced in the weak form) is
given by ∫

Df

(div vf ) p̃f dV = 0

The response function provides

Tf = −pf I + 2µ sym∇vf .
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Interface

The interface condition consists in the continuity of the
velocity field across I∫

I

(vf − u̇s) · t̃
∗
dA = 0 ,

where u̇s is the solid velocity field on Ds .

In addition we deduce∫
I

ts ·ws dA = −
∫

I

t∗ ·ws dA ,∫
I

tf ·wf dA =

∫
I

t∗ ·wf dA .

Summing up terms on I∫
I

t∗ · (wf −ws) + (vf − u̇s) · t̃
∗
dA = 0 .
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Though the motion is confined inside a rigid container, the
interface between solid and fluid phases is deformable.

We use the ALE formulation to rewrite the balance principle
on Df by means of a virtual grid deformation γ mapping Df

into Df .

Dγ →D



Moving grid

The Moving Mesh Application Mode within Comsol allows us
to avoid explicitly the pulling-back of the balance principle to
Df , and extends γ from the boundary ∂?Df ∪ I to the interior
of the fluid domain.

- γ matches the deformation of
the solid on Ds , ∂?Ds and I;

- On the fluid side, γ matches
the motion of ∂?Df .



Boundary conditions

On the outermost boundary ∂?D we assign a saccadic motion
as a rotation leaving the center of the eye x0 fixed,

uγ = (R− I) (x− x0) .

A no-slip condition is imposed in the weak form on ∂?Df∫
∂?Df

(vf − u̇γ) · t̃f dA = 0 ,

while on ∂?Ds ∫
∂?Ds

(us − uγ) · t̃s dA = 0 .



Boundary conditions

On the outermost boundary ∂?D we assign a saccadic motion
as a rotation leaving the center of the eye x0 fixed,

uγ = (R− I) (x− x0) .

A no-slip condition is imposed in the weak form on ∂?Df∫
∂?Df

(vf − u̇γ) · t̃f dA = 0 ,

while on ∂?Ds ∫
∂?Ds

(us − uγ) · t̃s dA = 0 .



Boundary conditions

On the outermost boundary ∂?D we assign a saccadic motion
as a rotation leaving the center of the eye x0 fixed,

uγ = (R− I) (x− x0) .

A no-slip condition is imposed in the weak form on ∂?Df∫
∂?Df

(vf − u̇γ) · t̃f dA = 0 ,

while on ∂?Ds ∫
∂?Ds

(us − uγ) · t̃s dA = 0 .



Gel-like vitreous

The Mooney-Rivlin strain energy function for a plane
deformation is given by

W (F) = (c10 + c01) (I1 − 3) ,

where I1 = F·F is the first invariant of C:=FTF.

The response for the Piola-Kirchhoff stress tensor is

Ss = 2 (c10 + c01) F

Combining the material response (deviatoric) with the reactive
stress (spherical) we obtain the Cauchy stress tensor

Ts = −psI + 2 (c10 + c01) F FT .
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Numerical Simulations

A saccadic motion is a single rapid rotation of the eye
which is usually approximated by a 5-degree polynomial law.
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- Radius of the circular domain R = 0.012 m;

- Material constants for the solid c01 = c10 = 50 Pa;

- Fluid viscosity µ = 10−3 Pa s;

- Solid and fluid mass densities ρs = ρf = 1000 kg/m3.

Results displayed are for a saccade of amplitude
A = 10◦ and duration T = 0.045 s.







-200

-150

-100

-50

0

50

100

150

200

250

N
or

m
al

 t
ra

ct
io

n 
(P

a)

0 0.01 0.02 0.03 0.04 0.05 0.06
Arc-length

0.015
0.030
0.045



-100

-80

-60

-40

-20

0

20

40

60

80

Ta
ng

en
tia

l t
ra

ct
io

n 
(P

a)

0 0.01 0.02 0.03 0.04 0.05 0.06
Arc-length

0.015
0.030
0.045



-150

-100

-50

0

50

100

150

200

250

300

350

N
or

m
al

 t
ra

ct
io

n 
(P

a)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Time (s)



Future developments

Build a 3D model;

Evaluate the influence of adhesion points
on traction;

Perform a sensitivity analysis based on the
variation of physical parameters.
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