Fattorizzazione di Householder

Si consideri una trasformazione lineare $A: \mathcal{U} \to \mathcal{V}$ tra due spazi vettoriali definiti su \mathbb{R} e aventi la stessa dimensione. Lo spazio \mathcal{V} sia inoltre dotato di prodotto interno.

Sia $\{b_1 \dots b_n\}$ una base di \mathcal{U} e $\{d_1 \dots d_n\}$ una base ortonormale di \mathcal{V} .

Si mostra come è possibile costruire una base di \mathcal{V} attraverso una successione di riflessioni dei vettori della base originaria in modo tale che la matrice di A risulti triangolare superiore.

Si consideri il vettore d_1 . Una riflessione R che trasformi tale vettore in un vettore parallelo a Ab_1 si può costruire nel seguente modo. Sia

$$R = I - 2P$$

tale che im P abbia dimensione 1. La proiezione ortogonale P è dunque definita da un vettore $w \in \operatorname{im} P$. Poiché R deve essere tale che

$$\exists \alpha \in \mathbb{R} \mid \alpha R d_1 = A b_1$$

risulta

$$\langle \alpha R d_1, \alpha R d_1 \rangle = \alpha^2 \langle R d_1, R d_1 \rangle = \alpha^2 = \langle A b_1, A b_1 \rangle = \sum_{i=1}^n a_{i1}^2$$
$$\alpha (I - 2P) d_1 = \alpha d_1 - 2\alpha P d_1 = A b_1$$

dove a_{i1} sono le componenti di Ab_1 .

Scegliendo in im P il vettore $w := -2\alpha P d_1$, questo risulta definito, a meno del segno di α , dalle relazioni

$$w = Ab_1 - \alpha d_1$$
$$\alpha^2 = \sum_{i=1}^n a_{i1}^2$$

Indicando con \mathbf{w} la n-pla delle componenti del vettore \mathbf{w} , la matrice della riflessione R risulta¹

$$\mathbf{R} = \mathbf{I} - 2\mathbf{P} = \mathbf{I} - \frac{2}{\langle w, w \rangle} \mathbf{w} \mathbf{w}^T = \mathbf{I} - \frac{1}{\alpha(\alpha - a_{11})} \mathbf{w} \mathbf{w}^T$$

La matrice \mathbf{R} così ottenuta definisce il cambiamento di base che porta il vettore d_1 ad essere parallelo al vettore Ab_1 .

La nuova matrice di A si ottiene moltiplicando \mathbf{R} per la matrice di A nella base precedente, essendo $\mathbf{R}^{-1} = \mathbf{R}^T = \mathbf{R}$.

Si consideri poi il sottospazio generato dal secondo e dai successivi vettori della base appena costruita e si ripeta la procedura già definita in \mathcal{V} .

Proseguendo si ottiene infine una matrice di A triangolare superiore.

La composizione Q di tutte le riflessioni eseguite è in generale una rotazione. Indicando con \mathbf{Q} e \mathbf{A} le matrici di Q e di A nella base iniziale, con \mathbf{U} la matrice (triangolare superiore) di A nella base finale, risulta

$$\mathbf{A} = \mathbf{Q}\mathbf{U}$$