Costruzione del nucleo e dell'immagine

Si consideri una trasformazione lineare $A:\mathcal{U}\to\mathcal{V}$ tra due spazi vettoriali definiti su \mathbb{R} e dotati di prodotto interno.

Sia $\{b_1 \dots b_n\}$ una base ortonormale di \mathcal{U} , $\{d_1 \dots d_m\}$ una base ortonormale di \mathcal{V} e **A** la corrispondente matrice di A.

Si mostra come sia possibile costruire delle basi ortonormali per im A e (im A) $^{\perp}$ utilizzando la fattorizzazione di Givens o la fattorizzazione di Householder.

- (1) Si modifichi la base di \mathcal{V} in modo che Ab_1 risulti parallelo al primo vettore della base.
- (2) Si modifichi poi la base appena costruita in modo che Ab_2 risulti essere un vettore del sottospazio generato dai primi due vettori della base. Se accade che Ab_2 risulta parallelo al primo vettore della base, si modifichi la base di \mathcal{U} spostando b_2 all'ultimo posto e si ripeta la procedura con il nuovo vettore Ab_2 .
- (3) Si modifichi ancora la base di \mathcal{V} in modo che Ab_3 risulti essere un vettore del sottospazio generato dai primi tre vettori della base. Se accade che Ab_3 risulta essere un vettore del sottospazio generato dai primi due vettori della base, si modifichi la base di \mathcal{U} spostando b_3 all'ultimo posto e si ripeta la procedura con il nuovo vettore Ab_3 .
- (...) Si prosegua in modo da considerare ciascuno degli n vettori Ab_i una sola volta.

Indicando con \mathbf{P} la matrice che ha per colonne le componenti dei vettori della nuova base di \mathcal{U} , ottenuta riordinando i vettori della base originaria, e con \mathbf{Q} la matrice che ha per colonne le componenti dei vettori della nuova base di \mathcal{V} , risulta

$$AP = QU$$

essendo \mathbf{U} la matrice di A nelle nuove basi.

Si noti che la matrice \mathbf{U} è caratterizzata dal fatto che i suoi elementi u_{ij} sono tali che

$$i > j \implies u_{ij} = 0$$

e che esiste r tale che

$$i \le r \quad \Rightarrow \quad u_{ii} \ne 0$$

Se r < m allora risulta anche

$$i > r \quad \Rightarrow \quad \forall j \quad u_{ij} = 0$$

Si è pertanto individuata, tra i vettori Ab_i , una famiglia di r vettori indipendenti che genera im A.

Poiché tali vettori appartengono al sottospazio generato dai primi r vettori della nuova base di \mathcal{V} , anche questi sono una base di im A. I restanti (m-r) vettori della nuova base di \mathcal{V} , essendo ortogonali rispetto ai primi, generano (im A) $^{\perp} = \ker A^*$.

Si è dunque costruita la decomposizione

$$\mathcal{V} = \operatorname{im} A \oplus \ker A^*$$

attraverso la costruzione di una base ortonormale di im A, definita, rispetto alla base originaria, dalle prime r colonne di \mathbf{Q} , e di una base ortonormale di ker A^* , definita dalle restanti colonne di \mathbf{Q} .

Applicando la stessa procedura alla matrice di A^* , che risulta essere \mathbf{A}^T essendo le basi ortonormali, si costruisce la decomposizione

$$\mathcal{U} = \operatorname{im} A^* \oplus \ker A$$