(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 81840, 2170]*) (*NotebookOutlinePosition[ 82501, 2193]*) (* CellTagsIndexPosition[ 82457, 2189]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Corpo affine elastico vincolato", "Title"], Cell[TextData[StyleBox["v. 2.08 (23/6/2003) \[Copyright] A. Tatone \ [Universit\[AGrave] dell'Aquila]", FontFamily->"Arial", FontWeight->"Bold"]], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[Solve::"\"];\)\)}], "Input"], Cell["Prodotto tensoriale", "Text"], Cell[BoxData[ \(prt[u_, v_] := Transpose[{v}] . {u}\)], "Input"], Cell["Prodotto scalare", "Text"], Cell[BoxData[ \(prs[u_, v_] := Flatten[u] . Flatten[v]\)], "Input"], Cell["Traccia", "Text"], Cell[BoxData[ \(tr[m_] := m\_\(\(\[LeftDoubleBracket]\)\(1, 1\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(2, 2\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(3, 3\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell["Gradiente dello spostamento", "Text"], Cell[BoxData[ \(\(mH = Array[ug[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["Rotazione infinitesima", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"m\[Theta]", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(+\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell["Spostamento", "Text"], Cell[BoxData[ \(u[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := u0 + mH . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(u0 := {u01, u02, u03}\)], "Input"], Cell["Deformazione", "Text"], Cell[BoxData[ \(\[Phi][{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := {\[Zeta]1, \[Zeta]2, \ \[Zeta]3} + u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}]\)], "Input"], Cell["Gradiente dell'atto di moto", "Text"], Cell[BoxData[ \(\(mG = Array[g[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell["Atto di moto affine", "Text"], Cell[BoxData[ \(w[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := w0 + mG . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(w0 := {w01, w02, w03}\)], "Input"], Cell["Vettori base", "Text"], Cell[BoxData[{ \(\(e1 = {1, 0, 0};\)\), "\[IndentingNewLine]", \(\(e2 = {0, 1, 0};\)\), "\[IndentingNewLine]", \(\(e3 = {0, 0, 1};\)\)}], "Input"], Cell["Matrice della identit\[AGrave]", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(mI = {e1, e2, e3}\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell["Relazioni tra i moduli elastici", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(lam\[EAcute] = \(Solve[{Y == \(\(3 \[Lambda] + 2 \[Mu]\)\/\(\[Lambda] \ + \[Mu]\)\) \[Mu], \[Nu] == \[Lambda]\/\(2 \((\[Lambda] + \[Mu])\)\)}, {\ \[Lambda], \ \[Mu]}]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell[BoxData[ \({\[Lambda] \[Rule] \(-\(\(Y\ \[Nu]\)\/\(\((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\)\), \[Mu] \[Rule] Y\/\(2\ \((1 + \[Nu])\)\)}\)], "Output"] }, Open ]], Cell["Volume del parallelepipedo", "Text"], Cell[BoxData[ \(\(vol := L1\ L2\ L3;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Origine delle coordinate e polo", "Section"], Cell["\<\ Coordinate del centro del parallelepipedo (da fissare) (equivale alla scelta \ dell'origine)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(xC = {0, 0, 0}\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell["\<\ Polo (da scegliere) (\[EGrave] meglio usare una espressione del tipo xC + \ ... poich\[EGrave] risulta indipendente dalla scelta dell'origine)\ \>", "Text"], Cell[BoxData[ \(x0 := xC - L1\/2\ e1 - L2\/2\ e2\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Lunghezze spigoli", "Section"], Cell["Eventuali valori o relazioni", "Text"] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione delle facce", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1m = xC - \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1p = xC + \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3m = xC - \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3p = xC + \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2m = xC - \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2p = xC + \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione degli spigoli", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2m = xC - \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2p = xC + \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2p = xC - \(L1\/2\) e1 + \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2m = xC - \(L1\/2\) e1 - \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli", "Section"], Cell[CellGroupData[{ Cell["Inizializzazione", "Subsection"], Cell[BoxData[ \(\(vincoli = {};\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Spigolo a sinistra", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo1 = Complement[ CoefficientList[\((u[spigolo1m2m] . \((e1)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u01, ug[1, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo1]\)], "Input"], Cell[BoxData[ \({u01, ug[1, 3]}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Faccia inferiore", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo2 = Complement[ CoefficientList[\((u[faccia2m] . \((e2)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo2]\)], "Input"], Cell[BoxData[ \({u01, ug[1, 3], ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Lista dei vincoli su spostamenti e atti di moto", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({u01, ug[1, 3], ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[vincoli]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0\)], "Input"], Cell[BoxData[ \({u01, u02, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Flatten[Join[u0, mH]]\)], "Input"], Cell[BoxData[ \({u01, u02, u03, ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 1], ug[2, 2], ug[2, 3], ug[3, 1], ug[3, 2], ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[Map[\((# == 0)\) &, vincoli], Flatten[Join[mH, u0]]]\)], "Input"], Cell[BoxData[ \({{u02 \[Rule] 0, ug[1, 3] \[Rule] 0, ug[2, 3] \[Rule] 0, u01 \[Rule] 0, ug[2, 1] \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uvinc = %[\([1]\)]\)], "Input"], Cell[BoxData[ \({u02 \[Rule] 0, ug[1, 3] \[Rule] 0, ug[2, 3] \[Rule] 0, u01 \[Rule] 0, ug[2, 1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[uvinc]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(wvinc = \(uvinc /. ug \[Rule] g\) /. {u01 \[Rule] w01, u02 \[Rule] w02, u03 \[Rule] w03}\)], "Input"], Cell[BoxData[ \({w02 \[Rule] 0, g[1, 3] \[Rule] 0, g[2, 3] \[Rule] 0, w01 \[Rule] 0, g[2, 1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mH /. uvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), "0"}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mG //. wvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(g[1, 1]\), \(g[1, 2]\), "0"}, {"0", \(g[2, 2]\), "0"}, {\(g[3, 1]\), \(g[3, 2]\), \(g[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w0 //. wvinc\)], "Input"], Cell[BoxData[ \({0, 0, w03}\)], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Risultante e momento delle forze attive", "Section"], Cell[BoxData[ \(\(mMa = \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\((prt[\((spigolo1m2p - x0)\), q\ e1])\) \[DifferentialD]\[Zeta]3 + \[Integral]\ \_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\((prt[\((\ faccia2p - x0)\), \(-p\)\ e2])\) \[DifferentialD]\[Zeta]1 \ \[DifferentialD]\[Zeta]3\);\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(1\/vol\) mMa // Simplify\) // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/L1\), "0"}, {\(-\(\(L1\ p\)\/\(2\ L2\)\)\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa = \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\((q\ e1)\) \[DifferentialD]\ \[Zeta]3 + \ \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\ \((\(-p\)\ e2)\) \[DifferentialD]\[Zeta]1 \[DifferentialD]\[Zeta]3\)\)], \ "Input"], Cell[BoxData[ \({L3\ q, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tensione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(wpar = Join[Flatten[mG], w0]\)], "Input"], Cell[BoxData[ \({g[1, 1], g[1, 2], g[1, 3], g[2, 1], g[2, 2], g[2, 3], g[3, 1], g[3, 2], g[3, 3], w01, w02, w03}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mT", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mT]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0] //. wvinc\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0]\)], "Input"], Cell[BoxData[ \(L3\ q\ w01 - L1\ L3\ p\ w02\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc\)], "Input"], Cell[BoxData[ \(\(L2\ L3\ q\ g[1, 2] - L1\ L2\ L3\ p\ g[2, 2]\)\/\(L1\ L2\ L3\) - g[1, 1]\ \[Sigma][1, 1] - g[1, 2]\ \[Sigma][1, 2] - g[3, 1]\ \[Sigma][1, 3] - g[2, 2]\ \[Sigma][2, 2] - g[3, 2]\ \[Sigma][2, 3] - g[3, 3]\ \[Sigma][3, 3]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ Coefficient[\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc, wpar], {0}] // Simplify\)], "Input"], Cell[BoxData[ \({\(-\[Sigma][1, 1]\), q\/L1 - \[Sigma][1, 2], \(-\[Sigma][1, 3]\), \(-p\) - \[Sigma][2, 2], \(-\[Sigma][2, 3]\), \(-\[Sigma][3, 3]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(tens = \(Solve[Map[\((# \[Equal] 0)\)\ &, %], \ Union[Flatten[mT]]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({\[Sigma][1, 1] \[Rule] 0, \[Sigma][1, 2] \[Rule] q\/L1, \[Sigma][1, 3] \[Rule] 0, \[Sigma][2, 2] \[Rule] \(-p\), \[Sigma][2, 3] \[Rule] 0, \[Sigma][3, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mT /. tens // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/L1\), "0"}, {\(q\/L1\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dilatazione infinitesima e rotazione infinitesima", "Section"], Cell[CellGroupData[{ Cell["Dalla tensione", "Subsection"], Cell[BoxData[ \(\(mE = \(1\/\(2 \[Mu]\)\) \((mT - \(\[Lambda]\/\(3 \[Lambda] + 2 \[Mu]\)\) tr[mT] mI)\) //. tens // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE // Factor]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\), \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(q\/\(2\ L1\ \[Mu]\)\), \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dalle condizioni di vincolo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), "0"}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE + m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(q\/\(2\ L1\ \[Mu]\) - \[Theta][ 3]\), \(\[Theta][2]\)}, {\(q\/\(2\ L1\ \[Mu]\) + \[Theta][ 3]\), \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][ 1]\), \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\((mE + m\[Theta] - mH)\) /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\) - ug[1, 1]\), \(q\/\(2\ L1\ \[Mu]\) - ug[1, 2] - \[Theta][3]\), \(\[Theta][2]\)}, {\(q\/\(2\ L1\ \[Mu]\) + \[Theta][ 3]\), \(\(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\) - ug[2, 2]\), \(-\[Theta][1]\)}, {\(\(-ug[3, 1]\) - \[Theta][2]\), \(\(-ug[3, 2]\) + \[Theta][ 1]\), \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \ \[Mu]\^2\) - ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(var = Intersection[Variables[\((mE + m\[Theta] - mH)\) /. uvinc], Join[Flatten[mH], Flatten[mE], Flatten[m\[Theta]], Flatten[mT], u0]]\)], "Input"], Cell[BoxData[ \({ug[1, 1], ug[1, 2], ug[2, 2], ug[3, 1], ug[3, 2], ug[3, 3], \[Theta][1], \[Theta][2], \[Theta][3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(sol = \(Solve[Map[\((# \[Equal] 0)\) &, Flatten[\((mE + m\[Theta] - mH)\ \)] /. uvinc], var]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({ug[1, 1] \[Rule] \(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \ \[Mu])\)\), ug[1, 2] \[Rule] q\/\(L1\ \[Mu]\), ug[2, 2] \[Rule] \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), ug[3, 1] \[Rule] 0, ug[3, 2] \[Rule] 0, ug[3, 3] \[Rule] \(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \ \[Mu])\)\), \[Theta][1] \[Rule] 0, \[Theta][2] \[Rule] 0, \[Theta][3] \[Rule] \(-\(q\/\(2\ L1\ \[Mu]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mH /. uvinc\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(q\/\(L1\ \[Mu]\)\), "0"}, { "0", \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(q\/\(2\ L1\ \[Mu]\)\), \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta] /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(-\(q\/\(2\ L1\ \[Mu]\)\)\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u0 /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mH /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Nu]\)\/Y\), \(\(2\ q\ \((1 + \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {"0", \(-\(p\/Y\)\), "0"}, {"0", "0", \(\(p\ \[Nu]\)\/Y\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mE /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Nu]\)\/Y\), \(\(q\ \((1 + \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {\(\(q\ \((1 + \[Nu])\)\)\/\(L1\ Y\)\), \(-\(p\/Y\)\), "0"}, {"0", "0", \(\(p\ \[Nu]\)\/Y\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mT /. tens\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/L1\), "0"}, {\(q\/L1\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Visualizzazione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({\(L1\ p\ \((L1 + 2\ \[Zeta]1)\)\ \[Nu] + 2\ L2\ q\ \((1 + \[Nu])\) + 4\ \ q\ \[Zeta]2\ \((1 + \[Nu])\)\)\/\(2\ L1\ Y\), \(-\(\(p\ \((L2 + 2\ \[Zeta]2)\)\)\/\(2\ Y\)\)\), u03 + \(p\ \[Zeta]3\ \[Nu]\)\/Y}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[x0] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(x0\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uval = {u03 \[Rule] 0}\)], "Input"], Cell[BoxData[ \({u03 \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e3", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, lato1 = xC - \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato2 = xC + \(L1\/2\) e1 + \[Xi]\ L2\ e2, lato3 = xC + \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato4 = xC - \(L1\/2\) e1 + \[Xi]\ L2\ e2}, Block[{x0Q = \((Take[#1, 2] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Take[#1, 2] &)\) /@ {\[Phi][lato1], \[Phi][ lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .87336 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.439696 0.831774 0.436681 0.831774 [ [ 0 0 0 0 ] [ 1 .87336 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .87336 L 0 .87336 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .02079 m .05806 .02079 L .09541 .02079 L .13049 .02079 L .16422 .02079 L .20013 .02079 L .2347 .02079 L .27144 .02079 L .30684 .02079 L .34089 .02079 L .37711 .02079 L .412 .02079 L .44554 .02079 L .48125 .02079 L .51562 .02079 L .55216 .02079 L .58736 .02079 L .62122 .02079 L .65725 .02079 L .69194 .02079 L .7288 .02079 L .76432 .02079 L .79849 .02079 L .83484 .02079 L .86806 .02079 L s .86806 .02079 m .87245 .05285 L .87723 .08781 L .88172 .12064 L .88604 .15222 L .89064 .18583 L .89507 .21818 L .89978 .25257 L .90431 .2857 L .90867 .31757 L .91331 .35147 L .91778 .38412 L .92207 .41551 L .92665 .44894 L .93105 .48111 L .93573 .51531 L .94024 .54826 L .94458 .57995 L .94919 .61367 L .95363 .64614 L .95835 .68064 L .9629 .71388 L .96728 .74587 L .97194 .77989 L .97619 .81098 L s .13194 .81098 m .16619 .81098 L .20354 .81098 L .23862 .81098 L .27235 .81098 L .30826 .81098 L .34283 .81098 L .37957 .81098 L .41497 .81098 L .44902 .81098 L .48525 .81098 L .52013 .81098 L .55367 .81098 L .58938 .81098 L .62375 .81098 L .66029 .81098 L .6955 .81098 L .72935 .81098 L .76538 .81098 L .80007 .81098 L .83693 .81098 L .87245 .81098 L .90662 .81098 L .94297 .81098 L .97619 .81098 L s .02381 .02079 m .0282 .05285 L .03298 .08781 L .03747 .12064 L .04179 .15222 L .04639 .18583 L .05082 .21818 L .05553 .25257 L .06006 .2857 L .06442 .31757 L .06906 .35147 L .07353 .38412 L .07782 .41551 L .0824 .44894 L .0868 .48111 L .09148 .51531 L .09599 .54826 L .10033 .57995 L .10494 .61367 L .10938 .64614 L .1141 .68064 L .11865 .71388 L .12303 .74587 L .12769 .77989 L .13194 .81098 L s .02381 .02079 m .05755 .02079 L .09435 .02079 L .12891 .02079 L .16215 .02079 L .19753 .02079 L .23158 .02079 L .26778 .02079 L .30265 .02079 L .3362 .02079 L .37189 .02079 L .40626 .02079 L .4393 .02079 L .47449 .02079 L .50835 .02079 L .54436 .02079 L .57904 .02079 L .61239 .02079 L .64789 .02079 L .68207 .02079 L .71838 .02079 L .75337 .02079 L .78704 .02079 L .82285 .02079 L .85558 .02079 L s .85558 .02079 m .85558 .05454 L .85558 .09134 L .85558 .1259 L .85558 .15913 L .85558 .19451 L .85558 .22857 L .85558 .26476 L .85558 .29964 L .85558 .33319 L .85558 .36888 L .85558 .40325 L .85558 .43629 L .85558 .47148 L .85558 .50534 L .85558 .54134 L .85558 .57602 L .85558 .60938 L .85558 .64488 L .85558 .67905 L .85558 .71537 L .85558 .75036 L .85558 .78403 L .85558 .81984 L .85558 .85257 L s .02381 .85257 m .05755 .85257 L .09435 .85257 L .12891 .85257 L .16215 .85257 L .19753 .85257 L .23158 .85257 L .26778 .85257 L .30265 .85257 L .3362 .85257 L .37189 .85257 L .40626 .85257 L .4393 .85257 L .47449 .85257 L .50835 .85257 L .54436 .85257 L .57904 .85257 L .61239 .85257 L .64789 .85257 L .68207 .85257 L .71838 .85257 L .75337 .85257 L .78704 .85257 L .82285 .85257 L .85558 .85257 L s .02381 .02079 m .02381 .05454 L .02381 .09134 L .02381 .1259 L .02381 .15913 L .02381 .19451 L .02381 .22857 L .02381 .26476 L .02381 .29964 L .02381 .33319 L .02381 .36888 L .02381 .40325 L .02381 .43629 L .02381 .47148 L .02381 .50534 L .02381 .54134 L .02381 .57602 L .02381 .60938 L .02381 .64488 L .02381 .67905 L .02381 .71537 L .02381 .75036 L .02381 .78403 L .02381 .81984 L .02381 .85257 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 251.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg_oool00`000?ooooooo`03 oooo00<0003oooooool08_ooo`001_ooo`040000oooooooo0000joooo`030000oooooooo00?oool0 0`000?ooooooo`0Roooo0006oooo00@0003oooooool0003[oooo00<0003oooooool00oooo`030000 oooooooo02;oool000Koool010000?ooooooo`000>_oool00`000?ooooooo`03oooo00<0003ooooo ool08_ooo`001_ooo`040000oooooooo0000joooo`030000oooooooo00?oool00`000?ooooooo`0R oooo0006oooo00@0003oooooool0003[oooo00<0003oooooool00oooo`030000oooooooo02;oool0 00Koool010000?ooooooo`000>_oool00`000?ooooooo`03oooo00<0003oooooool08_ooo`001_oo o`040000oooooooo0000joooo`030000oooooooo00?oool00`000?ooooooo`0Roooo0006oooo00@0 003oooooool0003[oooo00<0003oooooool00oooo`030000oooooooo02;oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool01@000?oo ooooooooo`00003Zoooo00<0003oooooool01?ooo`030000oooooooo027oool000Koool00`000?oo ooooo`02oooo00<0003oooooool0ioooo`030000oooooooo00Goool00`000?ooooooo`0Poooo0006 oooo00<0003oooooool00_ooo`030000oooooooo0>Ooool00`000?ooooooo`05oooo00<0003ooooo ool08?ooo`001_ooo`030000oooooooo00;oool00`000?ooooooo`3Woooo00<0003oooooool01Ooo o`030000oooooooo023oool000Koool00`000?ooooooo`02oooo00<0003oooooool0ioooo`030000 oooooooo00Goool00`000?ooooooo`0Poooo0006oooo00<0003oooooool00oooo`030000oooooooo 0>Koool00`000?ooooooo`06oooo00<0003oooooool07oooo`001_ooo`030000oooooooo00?oool0 0`000?ooooooo`3Voooo00<0003oooooool01_ooo`030000oooooooo01ooool000Koool00`000?oo ooooo`03oooo00<0003oooooool0i_ooo`030000oooooooo00Koool00`000?ooooooo`0Ooooo0006 oooo00<0003oooooool00oooo`030000oooooooo0>Koool00`000?ooooooo`06oooo00<0003ooooo ool07oooo`001_ooo`030000oooooooo00?oool00`000?ooooooo`3Voooo00<0003oooooool01_oo o`030000oooooooo01ooool000Koool00`000?ooooooo`03oooo00<0003oooooool0i_ooo`030000 oooooooo00Koool00`000?ooooooo`0Ooooo0006oooo00<0003oooooool00oooo`030000oooooooo 0>Koool00`000?ooooooo`06oooo00<0003oooooool07oooo`001_ooo`030000oooooooo00Coool0 0`000?ooooooo`3Uoooo00<0003oooooool01oooo`030000oooooooo01koool000Koool00`000?oo ooooo`04oooo00<0003oooooool0iOooo`030000oooooooo00Ooool00`000?ooooooo`0Noooo0006 oooo00<0003oooooool01?ooo`030000oooooooo0>Goool00`000?ooooooo`07oooo00<0003ooooo ool07_ooo`001_ooo`030000oooooooo00Coool00`000?ooooooo`3Uoooo00<0003oooooool01ooo o`030000oooooooo01koool000Koool00`000?ooooooo`04oooo00<0003oooooool0iOooo`030000 oooooooo00Ooool00`000?ooooooo`0Noooo0006oooo00<0003oooooool01?ooo`030000oooooooo 0>Goool00`000?ooooooo`07oooo00<0003oooooool07_ooo`001_ooo`030000oooooooo00Coool0 0`000?ooooooo`3Uoooo00<0003oooooool01oooo`030000oooooooo01koool000Koool00`000?oo ooooo`04oooo00<0003oooooool0iOooo`030000oooooooo00Ooool00`000?ooooooo`0Noooo0006 oooo00<0003oooooool01?ooo`030000oooooooo0>Goool00`000?ooooooo`07oooo00<0003ooooo ool07_ooo`001_ooo`030000oooooooo00Coool00`000?ooooooo`3Uoooo00<0003oooooool01ooo o`030000oooooooo01koool000Koool00`000?ooooooo`05oooo00<0003oooooool0i?ooo`030000 oooooooo00Soool00`000?ooooooo`0Moooo0006oooo00<0003oooooool01Oooo`030000oooooooo 0>Coool00`000?ooooooo`08oooo00<0003oooooool07Oooo`001_ooo`030000oooooooo00Goool0 0`000?ooooooo`3Toooo00<0003oooooool02?ooo`030000oooooooo01goool000Koool00`000?oo ooooo`05oooo00<0003oooooool0i?ooo`030000oooooooo00Soool00`000?ooooooo`0Moooo0006 oooo00<0003oooooool01Oooo`030000oooooooo0>Coool00`000?ooooooo`08oooo00<0003ooooo ool07Oooo`001_ooo`030000oooooooo00Goool00`000?ooooooo`3Toooo00<0003oooooool02?oo o`030000oooooooo01goool000Koool00`000?ooooooo`05oooo00<0003oooooool0i?ooo`030000 oooooooo00Soool00`000?ooooooo`0Moooo0006oooo00<0003oooooool01_ooo`030000oooooooo 0>?oool00`000?ooooooo`09oooo00<0003oooooool07?ooo`001_ooo`030000oooooooo00Koool0 0`000?ooooooo`3Soooo00<0003oooooool02Oooo`030000oooooooo01coool000Koool00`000?oo ooooo`06oooo00<0003oooooool0hoooo`030000oooooooo00Woool00`000?ooooooo`0Loooo0006 oooo00<0003oooooool01_ooo`030000oooooooo0>?oool00`000?ooooooo`09oooo00<0003ooooo ool07?ooo`001_ooo`030000oooooooo00Ooool00`000?ooooooo`3Roooo00<0003oooooool02_oo o`030000oooooooo01_oool000Koool00`000?ooooooo`07oooo00<0003oooooool0h_ooo`030000 oooooooo00[oool00`000?ooooooo`0Koooo0006oooo00<0003oooooool01oooo`030000oooooooo 0>;oool00`000?ooooooo`0:oooo00<0003oooooool06oooo`001_ooo`030000oooooooo00Ooool0 0`000?ooooooo`3Roooo00<0003oooooool02_ooo`030000oooooooo01_oool000Koool00`000?oo ooooo`07oooo00<0003oooooool0h_ooo`030000oooooooo00[oool00`000?ooooooo`0Koooo0006 oooo00<0003oooooool01oooo`030000oooooooo0>;oool00`000?ooooooo`0:oooo00<0003ooooo ool06oooo`001_ooo`030000oooooooo00Ooool00`000?ooooooo`3Roooo00<0003oooooool02_oo o`030000oooooooo01_oool000Koool00`000?ooooooo`07oooo00<0003oooooool0h_ooo`030000 oooooooo00[oool00`000?ooooooo`0Koooo0006oooo00<0003oooooool02?ooo`030000oooooooo 0>7oool00`000?ooooooo`0;oooo00<0003oooooool06_ooo`001_ooo`030000oooooooo00Soool0 0`000?ooooooo`3Qoooo00<0003oooooool02oooo`030000oooooooo01[oool000Koool00`000?oo ooooo`08oooo00<0003oooooool0hOooo`030000oooooooo00_oool00`000?ooooooo`0Joooo0006 oooo00<0003oooooool02?ooo`030000oooooooo0>7oool00`000?ooooooo`0;oooo00<0003ooooo ool06_ooo`001_ooo`030000oooooooo00Soool00`000?ooooooo`3Qoooo00<0003oooooool02ooo o`030000oooooooo01[oool000Koool00`000?ooooooo`08oooo00<0003oooooool0hOooo`030000 oooooooo00_oool00`000?ooooooo`0Joooo0006oooo00<0003oooooool02?ooo`030000oooooooo 0>7oool00`000?ooooooo`0;oooo00<0003oooooool06_ooo`001_ooo`030000oooooooo00Soool0 0`000?ooooooo`3Qoooo00<0003oooooool02oooo`030000oooooooo01[oool000Koool00`000?oo ooooo`08oooo00<0003oooooool0hOooo`030000oooooooo00_oool00`000?ooooooo`0Joooo0006 oooo00<0003oooooool02Oooo`030000oooooooo0>3oool00`000?ooooooo`03oool00`000?ooooooo`03oool00`000?ooooooo`03oool00`000?ooooooo`0=oooo00<0003oooooool06?ooo`001_ooo`030000oooooooo00[oool0 0`000?ooooooo`3Ooooo00<0003oooooool03Oooo`030000oooooooo01Soool000Koool00`000?oo ooooo`0:oooo00<0003oooooool0goooo`030000oooooooo00goool00`000?ooooooo`0Hoooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0=ooool00`000?ooooooo`0>oooo00<0003ooooo ool05oooo`001_ooo`030000oooooooo00[oool00`000?ooooooo`3Ooooo00<0003oooooool03_oo o`030000oooooooo01Ooool000Koool00`000?ooooooo`0:oooo00<0003oooooool0goooo`030000 oooooooo00koool00`000?ooooooo`0Goooo0006oooo00<0003oooooool02_ooo`030000oooooooo 0=ooool00`000?ooooooo`0>oooo00<0003oooooool05oooo`001_ooo`030000oooooooo00[oool0 0`000?ooooooo`3Ooooo00<0003oooooool03_ooo`030000oooooooo01Ooool000Koool00`000?oo ooooo`0;oooo00<0003oooooool0g_ooo`030000oooooooo00koool00`000?ooooooo`0Goooo0006 oooo00<0003oooooool02oooo`030000oooooooo0=koool00`000?ooooooo`0>oooo00<0003ooooo ool05oooo`001_ooo`030000oooooooo00_oool00`000?ooooooo`3Noooo00<0003oooooool03ooo o`030000oooooooo01Koool000Koool00`000?ooooooo`0;oooo00<0003oooooool0g_ooo`030000 oooooooo00ooool00`000?ooooooo`0Foooo0006oooo00<0003oooooool03?ooo`030000oooooooo 0=goool00`000?ooooooo`0?oooo00<0003oooooool05_ooo`001_ooo`030000oooooooo00coool0 0`000?ooooooo`3Moooo00<0003oooooool03oooo`030000oooooooo01Koool000Koool00`000?oo ooooo`0oooo00<0003oooooool0foooo`030000 oooooooo017oool00`000?ooooooo`0Doooo0006oooo00<0003oooooool03_ooo`030000oooooooo 0=_oool00`000?ooooooo`0Aoooo00<0003oooooool05?ooo`001_ooo`030000oooooooo00koool0 0`000?ooooooo`3Koooo00<0003oooooool04Oooo`030000oooooooo01Coool000Koool00`000?oo ooooo`0>oooo00<0003oooooool0foooo`030000oooooooo017oool00`000?ooooooo`0Doooo0006 oooo00<0003oooooool03_ooo`030000oooooooo0=_oool00`000?ooooooo`0Aoooo00<0003ooooo ool05?ooo`001_ooo`030000oooooooo00koool00`000?ooooooo`3Koooo00<0003oooooool04Ooo o`030000oooooooo01Coool000Koool00`000?ooooooo`0>oooo00<0003oooooool0foooo`030000 oooooooo017oool00`000?ooooooo`0Doooo0006oooo00<0003oooooool03_ooo`030000oooooooo 0=_oool00`000?ooooooo`0Boooo00<0003oooooool04oooo`001_ooo`030000oooooooo00koool0 0`000?ooooooo`3Koooo00<0003oooooool04_ooo`030000oooooooo01?oool000Koool00`000?oo ooooo`0?oooo00<0003oooooool0f_ooo`030000oooooooo01;oool00`000?ooooooo`0Coooo0006 oooo00<0003oooooool03oooo`030000oooooooo0=[oool00`000?ooooooo`0Boooo00<0003ooooo ool04oooo`001_ooo`030000oooooooo00ooool00`000?ooooooo`3Joooo00<0003oooooool04ooo o`030000oooooooo01;oool000Koool00`000?ooooooo`0?oooo00<0003oooooool0f_ooo`030000 oooooooo01?oool00`000?ooooooo`0Boooo0006oooo00<0003oooooool03oooo`030000oooooooo 0=[oool00`000?ooooooo`0Coooo00<0003oooooool04_ooo`001_ooo`030000oooooooo00ooool0 0`000?ooooooo`3Joooo00<0003oooooool04oooo`030000oooooooo01;oool000Koool00`000?oo ooooo`0?oooo00<0003oooooool0f_ooo`030000oooooooo01?oool00`000?ooooooo`0Boooo0006 oooo00<0003oooooool04?ooo`030000oooooooo0=Woool00`000?ooooooo`0Coooo00<0003ooooo ool04_ooo`001_ooo`030000oooooooo013oool00`000?ooooooo`3Ioooo00<0003oooooool04ooo o`030000oooooooo01;oool000Koool00`000?ooooooo`0@oooo00<0003oooooool0fOooo`030000 oooooooo01?oool00`000?ooooooo`0Boooo0006oooo00<0003oooooool04?ooo`030000oooooooo 0=Woool00`000?ooooooo`0Doooo00<0003oooooool04Oooo`001_ooo`030000oooooooo013oool0 0`000?ooooooo`3Ioooo00<0003oooooool05?ooo`030000oooooooo017oool000Koool00`000?oo ooooo`0Aoooo00<0003oooooool0f?ooo`030000oooooooo01Coool00`000?ooooooo`0Aoooo0006 oooo00<0003oooooool04Oooo`030000oooooooo0=Soool00`000?ooooooo`0Doooo00<0003ooooo ool04Oooo`001_ooo`030000oooooooo017oool00`000?ooooooo`3Hoooo00<0003oooooool05?oo o`030000oooooooo017oool000Koool00`000?ooooooo`0Aoooo00<0003oooooool0f?ooo`030000 oooooooo01Coool00`000?ooooooo`0Aoooo0006oooo00<0003oooooool04Oooo`030000oooooooo 0=Soool00`000?ooooooo`0Doooo00<0003oooooool04Oooo`001_ooo`030000oooooooo017oool0 0`000?ooooooo`3Hoooo00<0003oooooool05?ooo`030000oooooooo017oool000Koool00`000?oo ooooo`0Aoooo00<0003oooooool0f?ooo`030000oooooooo01Coool00`000?ooooooo`0Aoooo0006 oooo00<0003oooooool04_ooo`030000oooooooo0=Ooool00`000?ooooooo`0Eoooo00<0003ooooo ool04?ooo`001_ooo`030000oooooooo01;oool00`000?ooooooo`3Goooo00<0003oooooool05Ooo o`030000oooooooo013oool000Koool00`000?ooooooo`0Boooo00<0003oooooool0eoooo`030000 oooooooo01Goool00`000?ooooooo`0@oooo0006oooo00<0003oooooool04_ooo`030000oooooooo 0=Ooool00`000?ooooooo`0Eoooo00<0003oooooool04?ooo`001_ooo`030000oooooooo01;oool0 0`000?ooooooo`3Goooo00<0003oooooool05Oooo`030000oooooooo013oool000Koool00`000?oo ooooo`0Boooo00<0003oooooool0eoooo`030000oooooooo01Goool00`000?ooooooo`0@oooo0006 oooo00<0003oooooool04_ooo`030000oooooooo0=Ooool00`000?ooooooo`0Eoooo00<0003ooooo ool04?ooo`001_ooo`030000oooooooo01;oool00`000?ooooooo`3Goooo00<0003oooooool05_oo o`030000oooooooo00ooool000Koool00`000?ooooooo`0Boooo00<0003oooooool0eoooo`030000 oooooooo01Koool00`000?ooooooo`0?oooo0006oooo00<0003oooooool04oooo`030000oooooooo 0=Koool00`000?ooooooo`0Foooo00<0003oooooool03oooo`001_ooo`030000oooooooo01?oool0 0`000?ooooooo`3Foooo00<0003oooooool05_ooo`030000oooooooo00ooool000Koool00`000?oo ooooo`0Coooo00<0003oooooool0e_ooo`030000oooooooo01Ooool00`000?ooooooo`0>oooo0006 oooo00<0003oooooool04oooo`030000oooooooo0=Koool00`000?ooooooo`0Goooo00<0003ooooo ool03_ooo`001_ooo`030000oooooooo01?oool00`000?ooooooo`3Foooo00<0003oooooool05ooo o`030000oooooooo00koool000Koool00`000?ooooooo`0Coooo00<0003oooooool0e_ooo`030000 oooooooo01Ooool00`000?ooooooo`0>oooo0006oooo00<0003oooooool04oooo`030000oooooooo 0=Koool00`000?ooooooo`0Goooo00<0003oooooool03_ooo`001_ooo`030000oooooooo01Coool0 0`000?ooooooo`3Eoooo00<0003oooooool05oooo`030000oooooooo00koool000Koool00`000?oo ooooo`0Doooo00<0003oooooool0eOooo`030000oooooooo01Ooool00`000?ooooooo`0>oooo0006 oooo00<0003oooooool05?ooo`030000oooooooo0=Goool00`000?ooooooo`0Goooo00<0003ooooo ool03_ooo`001_ooo`030000oooooooo01Coool00`000?ooooooo`3Eoooo00<0003oooooool06?oo o`030000oooooooo00goool000Koool00`000?ooooooo`0Doooo00<0003oooooool0eOooo`030000 oooooooo01Soool00`000?ooooooo`0=oooo0006oooo00<0003oooooool05Oooo`030000oooooooo 0=Coool00`000?ooooooo`0Hoooo00<0003oooooool03Oooo`001_ooo`030000oooooooo01Goool0 0`000?ooooooo`3Doooo00<0003oooooool06?ooo`030000oooooooo00goool000Koool00`000?oo ooooo`0Eoooo00<0003oooooool0e?ooo`030000oooooooo01Soool00`000?ooooooo`0=oooo0006 oooo00<0003oooooool05Oooo`030000oooooooo0=Coool00`000?ooooooo`0Hoooo00<0003ooooo ool03Oooo`001_ooo`030000oooooooo01Goool00`000?ooooooo`3Doooo00<0003oooooool06?oo o`030000oooooooo00goool000Koool00`000?ooooooo`0Eoooo00<0003oooooool0e?ooo`030000 oooooooo01Soool00`000?ooooooo`0=oooo0006oooo00<0003oooooool05Oooo`030000oooooooo 0=Coool00`000?ooooooo`0Hoooo00<0003oooooool03Oooo`001_ooo`030000oooooooo01Koool0 0`000?ooooooo`3Coooo00<0003oooooool06Oooo`030000oooooooo00coool000Koool00`000?oo ooooo`0Foooo00<0003oooooool0doooo`030000oooooooo01Woool00`000?ooooooo`0oooo00<0003oooooool07_oo o`030000oooooooo00Ooool000Koool00`000?ooooooo`0Koooo00<0003oooooool0c_ooo`030000 oooooooo01koool00`000?ooooooo`07oooo0006oooo00<0003oooooool06oooo`030000oooooooo 0oooo00<0003oooooool07_ooo`030000oooooooo00Ooool000Koool00`000?oo ooooo`0Koooo00<0003oooooool0c_ooo`030000oooooooo01koool00`000?ooooooo`07oooo0006 oooo00<0003oooooool06oooo`030000oooooooo0oooo00<0003oooooool07_oo o`030000oooooooo00Ooool000Koool00`000?ooooooo`0Koooo00<0003oooooool0c_ooo`030000 oooooooo01ooool00`000?ooooooo`06oooo0006oooo00<0003oooooool06oooo`030000oooooooo 0coool00`000?ooooooo`0X oooo0006oooo00<0003oooooool0k?ooo`030000oooooooo02Soool000Koool00`000?ooooooo`3/ oooo00<0003oooooool0:?ooo`001_ooo`030000oooooooo0>coool00`000?ooooooo`0Xoooo0006 oooo00<0003oooooool0k?ooo`030000oooooooo02Soool000Koool00`000?ooooooo`3/oooo00<0 003oooooool0:?ooo`001_ooo`030000oooooooo0>coool00`000?ooooooo`0Xoooo0006oooo00<0 003oooooool0k?ooo`030000oooooooo02Soool000Koool00`000?ooooooo`3/oooo00<0003ooooo ool0:?ooo`001_ooo`030000oooooooo0>coool00`000?ooooooo`0Xoooo0006ooool00002[oool0 0?oooolQoooo003ooooo8Oooo`00ooooob7oool00?oooolQoooo003ooooo8Oooo`00\ \>"], ImageRangeCache->{{{0, 287}, {250.5, 0}} -> {-0.528995, -0.525, 0.0041916, \ 0.0041916}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e2", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, u03 = 0, lato1 = xC + \(L2\/2\) e2 + \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato2 = xC + \(L2\/2\) e2 - \(L1\/2\) e1 + L3\ \[Xi]\ e3, lato3 = xC + \(L2\/2\) e2 - \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato4 = xC + \(L2\/2\) e2 + \(L1\/2\) e1 + L3\ \[Xi]\ e3}, Block[{x0Q = \((Extract[#1, {{1}, {3}}] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Extract[#1, {{1}, {3}}] &)\) /@ {\[Phi][ lato1], \[Phi][lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .88646 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.439696 0.831774 0.443231 0.831774 [ [ 0 0 0 0 ] [ 1 .88646 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .88646 L 0 .88646 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .13194 .86536 m .16619 .86536 L .20354 .86536 L .23862 .86536 L .27235 .86536 L .30826 .86536 L .34283 .86536 L .37957 .86536 L .41497 .86536 L .44902 .86536 L .48525 .86536 L .52013 .86536 L .55367 .86536 L .58938 .86536 L .62375 .86536 L .66029 .86536 L .6955 .86536 L .72935 .86536 L .76538 .86536 L .80007 .86536 L .83693 .86536 L .87245 .86536 L .90662 .86536 L .94297 .86536 L .97619 .86536 L s .13194 .02111 m .13194 .05535 L .13194 .09271 L .13194 .12779 L .13194 .16152 L .13194 .19743 L .13194 .232 L .13194 .26874 L .13194 .30413 L .13194 .33818 L .13194 .37441 L .13194 .40929 L .13194 .44283 L .13194 .47855 L .13194 .51292 L .13194 .54946 L .13194 .58466 L .13194 .61852 L .13194 .65455 L .13194 .68924 L .13194 .7261 L .13194 .76161 L .13194 .79579 L .13194 .83214 L .13194 .86536 L s .13194 .02111 m .16619 .02111 L .20354 .02111 L .23862 .02111 L .27235 .02111 L .30826 .02111 L .34283 .02111 L .37957 .02111 L .41497 .02111 L .44902 .02111 L .48525 .02111 L .52013 .02111 L .55367 .02111 L .58938 .02111 L .62375 .02111 L .66029 .02111 L .6955 .02111 L .72935 .02111 L .76538 .02111 L .80007 .02111 L .83693 .02111 L .87245 .02111 L .90662 .02111 L .94297 .02111 L .97619 .02111 L s .97619 .02111 m .97619 .05535 L .97619 .09271 L .97619 .12779 L .97619 .16152 L .97619 .19743 L .97619 .232 L .97619 .26874 L .97619 .30413 L .97619 .33818 L .97619 .37441 L .97619 .40929 L .97619 .44283 L .97619 .47855 L .97619 .51292 L .97619 .54946 L .97619 .58466 L .97619 .61852 L .97619 .65455 L .97619 .68924 L .97619 .7261 L .97619 .76161 L .97619 .79579 L .97619 .83214 L .97619 .86536 L s .02381 .85912 m .05755 .85912 L .09435 .85912 L .12891 .85912 L .16215 .85912 L .19753 .85912 L .23158 .85912 L .26778 .85912 L .30265 .85912 L .3362 .85912 L .37189 .85912 L .40626 .85912 L .4393 .85912 L .47449 .85912 L .50835 .85912 L .54436 .85912 L .57904 .85912 L .61239 .85912 L .64789 .85912 L .68207 .85912 L .71838 .85912 L .75337 .85912 L .78704 .85912 L .82285 .85912 L .85558 .85912 L s .02381 .02734 m .02381 .06109 L .02381 .09789 L .02381 .13245 L .02381 .16568 L .02381 .20106 L .02381 .23512 L .02381 .27131 L .02381 .30619 L .02381 .33974 L .02381 .37543 L .02381 .4098 L .02381 .44284 L .02381 .47803 L .02381 .51189 L .02381 .54789 L .02381 .58257 L .02381 .61593 L .02381 .65143 L .02381 .6856 L .02381 .72192 L .02381 .75691 L .02381 .79058 L .02381 .82639 L .02381 .85912 L s .02381 .02734 m .05755 .02734 L .09435 .02734 L .12891 .02734 L .16215 .02734 L .19753 .02734 L .23158 .02734 L .26778 .02734 L .30265 .02734 L .3362 .02734 L .37189 .02734 L .40626 .02734 L .4393 .02734 L .47449 .02734 L .50835 .02734 L .54436 .02734 L .57904 .02734 L .61239 .02734 L .64789 .02734 L .68207 .02734 L .71838 .02734 L .75337 .02734 L .78704 .02734 L .82285 .02734 L .85558 .02734 L s .85558 .02734 m .85558 .06109 L .85558 .09789 L .85558 .13245 L .85558 .16568 L .85558 .20106 L .85558 .23512 L .85558 .27131 L .85558 .30619 L .85558 .33974 L .85558 .37543 L .85558 .4098 L .85558 .44284 L .85558 .47803 L .85558 .51189 L .85558 .54789 L .85558 .58257 L .85558 .61593 L .85558 .65143 L .85558 .6856 L .85558 .72192 L .85558 .75691 L .85558 .79058 L .85558 .82639 L .85558 .85912 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 255.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {254.25, 0}} -> {-0.529018, -0.53288, \ 0.00419177, 0.00419177}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Momento delle forze reattive", "Section"], Cell["Da moltiplicare per il volume", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(mT\ - mMa\/vol /. tens\) /. sol // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {\(\(L1\ p\)\/\(2\ L2\) + q\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa\)], "Input"], Cell[BoxData[ \({L3\ q, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{739, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 48, 0, 115, "Title"], Cell[1778, 54, 217, 5, 49, "Text"], Cell[CellGroupData[{ Cell[2020, 63, 35, 0, 59, "Section"], Cell[2058, 65, 192, 3, 70, "Input"], Cell[2253, 70, 35, 0, 33, "Text"], Cell[2291, 72, 68, 1, 30, "Input"], Cell[2362, 75, 32, 0, 33, "Text"], Cell[2397, 77, 71, 1, 30, "Input"], Cell[2471, 80, 23, 0, 33, "Text"], Cell[2497, 82, 268, 5, 30, "Input"], Cell[2768, 89, 43, 0, 33, "Text"], Cell[2814, 91, 72, 1, 30, "Input"], Cell[CellGroupData[{ Cell[2911, 96, 47, 1, 30, "Input"], Cell[2961, 99, 347, 8, 70, "Output"] }, Open ]], Cell[3323, 110, 38, 0, 33, "Text"], Cell[3364, 112, 330, 7, 57, "Input"], Cell[3697, 121, 27, 0, 33, "Text"], Cell[3727, 123, 131, 2, 30, "Input"], Cell[3861, 127, 54, 1, 30, "Input"], Cell[3918, 130, 28, 0, 33, "Text"], Cell[3949, 132, 146, 2, 30, "Input"], Cell[4098, 136, 43, 0, 33, "Text"], Cell[4144, 138, 71, 1, 30, "Input"], Cell[4218, 141, 35, 0, 33, "Text"], Cell[4256, 143, 131, 2, 30, "Input"], Cell[4390, 147, 54, 1, 30, "Input"], Cell[4447, 150, 28, 0, 33, "Text"], Cell[4478, 152, 160, 3, 70, "Input"], Cell[4641, 157, 46, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4712, 161, 50, 1, 30, "Input"], Cell[4765, 164, 67, 1, 70, "Output"] }, Open ]], Cell[4847, 168, 47, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4919, 172, 265, 5, 47, "Input"], Cell[5187, 179, 192, 3, 70, "Output"] }, Open ]], Cell[5394, 185, 42, 0, 33, "Text"], Cell[5439, 187, 55, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[5531, 193, 50, 0, 39, "Section"], Cell[5584, 195, 116, 3, 33, "Text"], Cell[CellGroupData[{ Cell[5725, 202, 47, 1, 30, "Input"], Cell[5775, 205, 43, 1, 29, "Output"] }, Open ]], Cell[5833, 209, 169, 3, 52, "Text"], Cell[6005, 214, 65, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6107, 220, 36, 0, 39, "Section"], Cell[6146, 222, 44, 0, 33, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[6227, 227, 48, 0, 39, "Section"], Cell[CellGroupData[{ Cell[6300, 231, 102, 2, 42, "Input"], Cell[6405, 235, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6512, 241, 102, 2, 42, "Input"], Cell[6617, 245, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6715, 251, 102, 2, 42, "Input"], Cell[6820, 255, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6927, 261, 102, 2, 42, "Input"], Cell[7032, 265, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7130, 271, 102, 2, 42, "Input"], Cell[7235, 275, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7342, 281, 102, 2, 42, "Input"], Cell[7447, 285, 61, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[7557, 292, 50, 0, 39, "Section"], Cell[CellGroupData[{ Cell[7632, 296, 105, 2, 42, "Input"], Cell[7740, 300, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7844, 306, 105, 2, 42, "Input"], Cell[7952, 310, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8047, 316, 101, 2, 42, "Input"], Cell[8151, 320, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8255, 326, 101, 2, 42, "Input"], Cell[8359, 330, 76, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[8484, 337, 26, 0, 39, "Section"], Cell[CellGroupData[{ Cell[8535, 341, 38, 0, 47, "Subsection"], Cell[8576, 343, 50, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[8663, 349, 40, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[8728, 353, 219, 5, 90, "Input"], Cell[8950, 360, 49, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9036, 366, 66, 1, 30, "Input"], Cell[9105, 369, 49, 1, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[9203, 376, 38, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[9266, 380, 216, 5, 90, "Input"], Cell[9485, 387, 80, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9602, 393, 66, 1, 30, "Input"], Cell[9671, 396, 102, 2, 42, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[9822, 404, 69, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[9916, 408, 40, 1, 30, "Input"], Cell[9959, 411, 102, 2, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10098, 418, 48, 1, 30, "Input"], Cell[10149, 421, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10221, 427, 35, 1, 30, "Input"], Cell[10259, 430, 49, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10345, 436, 54, 1, 30, "Input"], Cell[10402, 439, 146, 2, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10585, 446, 91, 1, 30, "Input"], Cell[10679, 449, 135, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10851, 456, 51, 1, 30, "Input"], Cell[10905, 459, 131, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11073, 466, 46, 1, 30, "Input"], Cell[11122, 469, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11194, 475, 132, 2, 30, "Input"], Cell[11329, 479, 128, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11494, 486, 58, 1, 30, "Input"], Cell[11555, 489, 320, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11912, 502, 44, 1, 30, "Input"], Cell[11959, 505, 45, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12041, 511, 59, 1, 30, "Input"], Cell[12103, 514, 314, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12454, 527, 45, 1, 30, "Input"], Cell[12502, 530, 45, 1, 29, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[12608, 538, 58, 0, 39, "Section"], Cell[12669, 540, 376, 6, 52, "Input"], Cell[CellGroupData[{ Cell[13070, 550, 77, 1, 42, "Input"], Cell[13150, 553, 301, 8, 75, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13488, 566, 269, 5, 52, "Input"], Cell[13760, 573, 60, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[13869, 580, 27, 0, 39, "Section"], Cell[CellGroupData[{ Cell[13921, 584, 61, 1, 30, "Input"], Cell[13985, 587, 137, 2, 48, "Output"] }, Open ]], Cell[14137, 592, 382, 7, 57, "Input"], Cell[CellGroupData[{ Cell[14544, 603, 47, 1, 30, "Input"], Cell[14594, 606, 401, 8, 57, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15032, 619, 54, 1, 30, "Input"], Cell[15089, 622, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15161, 628, 44, 1, 30, "Input"], Cell[15208, 631, 61, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15306, 637, 109, 2, 42, "Input"], Cell[15418, 641, 274, 4, 62, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15729, 650, 176, 3, 64, "Input"], Cell[15908, 655, 185, 3, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16130, 663, 165, 3, 31, "Input"], Cell[16298, 668, 226, 4, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16561, 677, 57, 1, 30, "Input"], Cell[16621, 680, 281, 8, 73, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[16951, 694, 68, 0, 39, "Section"], Cell[CellGroupData[{ Cell[17044, 698, 36, 0, 47, "Subsection"], Cell[17083, 700, 185, 3, 44, "Input"], Cell[CellGroupData[{ Cell[17293, 707, 57, 1, 30, "Input"], Cell[17353, 710, 575, 12, 107, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17977, 728, 49, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[18051, 732, 47, 1, 30, "Input"], Cell[18101, 735, 347, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18485, 748, 56, 1, 30, "Input"], Cell[18544, 751, 320, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18901, 764, 44, 1, 30, "Input"], Cell[18948, 767, 45, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19030, 773, 54, 1, 30, "Input"], Cell[19087, 776, 341, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19465, 789, 59, 1, 30, "Input"], Cell[19527, 792, 673, 14, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20237, 811, 79, 1, 30, "Input"], Cell[20319, 814, 729, 14, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21085, 833, 194, 4, 50, "Input"], Cell[21282, 839, 140, 2, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21459, 846, 189, 3, 31, "Input"], Cell[21651, 851, 505, 8, 116, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22193, 864, 79, 1, 30, "Input"], Cell[22275, 867, 547, 13, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22859, 885, 66, 1, 30, "Input"], Cell[22928, 888, 555, 12, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23520, 905, 73, 1, 30, "Input"], Cell[23596, 908, 311, 8, 91, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23944, 921, 87, 1, 30, "Input"], Cell[24034, 924, 45, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24116, 930, 108, 2, 30, "Input"], Cell[24227, 934, 360, 9, 97, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24624, 948, 86, 1, 30, "Input"], Cell[24713, 951, 391, 9, 99, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25141, 965, 107, 2, 30, "Input"], Cell[25251, 969, 281, 8, 87, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[25593, 984, 34, 0, 39, "Section"], Cell[CellGroupData[{ Cell[25652, 988, 127, 2, 30, "Input"], Cell[25782, 992, 263, 4, 76, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26082, 1001, 90, 1, 30, "Input"], Cell[26175, 1004, 45, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26257, 1010, 35, 1, 30, "Input"], Cell[26295, 1013, 69, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26401, 1019, 55, 1, 30, "Input"], Cell[26459, 1022, 49, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26545, 1028, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[26615, 1032, 849, 14, 255, "Input"], Cell[27467, 1048, 25593, 520, 260, 3823, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[53109, 1574, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[53179, 1578, 961, 15, 363, "Input"], Cell[54143, 1595, 26962, 537, 264, 3825, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[81166, 2139, 47, 0, 39, "Section"], Cell[81216, 2141, 45, 0, 33, "Text"], Cell[CellGroupData[{ Cell[81286, 2145, 81, 1, 42, "Input"], Cell[81370, 2148, 295, 8, 67, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[81702, 2161, 35, 1, 30, "Input"], Cell[81740, 2164, 60, 1, 29, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)