(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 71111, 2063]*) (*NotebookOutlinePosition[ 71772, 2086]*) (* CellTagsIndexPosition[ 71728, 2082]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Corpo affine elastico vincolato", "Title"], Cell[TextData[StyleBox["v. 2.08 (23/6/2003) \[Copyright] A. Tatone \ [Universit\[AGrave] dell'Aquila]", FontFamily->"Arial", FontWeight->"Bold"]], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[Solve::"\"];\)\)}], "Input"], Cell["Prodotto tensoriale", "Text"], Cell[BoxData[ \(prt[u_, v_] := Transpose[{v}] . {u}\)], "Input"], Cell["Prodotto scalare", "Text"], Cell[BoxData[ \(prs[u_, v_] := Flatten[u] . Flatten[v]\)], "Input"], Cell["Traccia", "Text"], Cell[BoxData[ \(tr[m_] := m\_\(\(\[LeftDoubleBracket]\)\(1, 1\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(2, 2\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(3, 3\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell["Gradiente dello spostamento", "Text"], Cell[BoxData[ \(\(mH = Array[ug[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["Rotazione infinitesima", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"m\[Theta]", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(+\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell["Spostamento", "Text"], Cell[BoxData[ \(u[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := u0 + mH . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(u0 := {u01, u02, u03}\)], "Input"], Cell["Deformazione", "Text"], Cell[BoxData[ \(\[Phi][{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := {\[Zeta]1, \[Zeta]2, \ \[Zeta]3} + u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}]\)], "Input"], Cell["Gradiente dell'atto di moto", "Text"], Cell[BoxData[ \(\(mG = Array[g[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell["Atto di moto affine", "Text"], Cell[BoxData[ \(w[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := w0 + mG . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(w0 := {w01, w02, w03}\)], "Input"], Cell["Vettori base", "Text"], Cell[BoxData[{ \(\(e1 = {1, 0, 0};\)\), "\[IndentingNewLine]", \(\(e2 = {0, 1, 0};\)\), "\[IndentingNewLine]", \(\(e3 = {0, 0, 1};\)\)}], "Input"], Cell["Matrice della identit\[AGrave]", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(mI = {e1, e2, e3}\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell["Relazioni tra i moduli elastici", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(lam\[EAcute] = \(Solve[{Y == \(\(3 \[Lambda] + 2 \[Mu]\)\/\(\[Lambda] \ + \[Mu]\)\) \[Mu], \[Nu] == \[Lambda]\/\(2 \((\[Lambda] + \[Mu])\)\)}, {\ \[Lambda], \ \[Mu]}]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell[BoxData[ \({\[Lambda] \[Rule] \(-\(\(Y\ \[Nu]\)\/\(\((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\)\), \[Mu] \[Rule] Y\/\(2\ \((1 + \[Nu])\)\)}\)], "Output"] }, Open ]], Cell["Volume del parallelepipedo", "Text"], Cell[BoxData[ \(\(vol := L1\ L2\ L3;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Origine delle coordinate e polo", "Section"], Cell["\<\ Coordinate del centro del parallelepipedo (da fissare) (equivale alla scelta \ dell'origine)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(xC = {0, 0\ , 0}\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell["\<\ Polo (da scegliere) (\[EGrave] meglio usare una espressione del tipo xC + \ ... poich\[EGrave] risulta indipendente dalla scelta dell'origine)\ \>", "Text"], Cell[BoxData[ \(x0 := xC - L2\/2\ e2\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Lunghezze spigoli", "Section"], Cell["Eventuali valori o relazioni", "Text"] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione delle facce", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1m = xC - \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1p = xC + \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3m = xC - \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3p = xC + \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2m = xC - \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2p = xC + \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione degli spigoli", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2m = xC - \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2p = xC + \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2p = xC - \(L1\/2\) e1 + \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2m = xC - \(L1\/2\) e1 - \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli", "Section"], Cell[CellGroupData[{ Cell["Inizializzazione", "Subsection"], Cell[BoxData[ \(\(vincoli = {};\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Vincoli sulle facce", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo1m = Complement[ CoefficientList[\((u[faccia1m] . \((e1)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[1, 2], u01 - 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo1p = Complement[ CoefficientList[\((u[faccia1p] . \((e1)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[1, 2], u01 + 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo2m = Complement[ CoefficientList[\((u[faccia2m] . \((e2)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u02, ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo3m = Complement[ CoefficientList[\((u[faccia3m] . \((e3)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] - 1\/2\ L3\ ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo3p = Complement[ CoefficientList[\((u[faccia3p] . \((e3)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] + 1\/2\ L3\ ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincolo1m, vincolo1p, vincolo2m, vincolo3m, vincolo3p]\)], "Input"], Cell[BoxData[ \({ug[1, 2], u01 - 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3], ug[1, 2], u01 + 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3], u02, ug[2, 1], ug[2, 3], ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] - 1\/2\ L3\ ug[3, 3], ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] + 1\/2\ L3\ ug[3, 3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Lista dei vincoli su spostamenti e atti di moto", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({ug[1, 2], u01 - 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3], ug[1, 2], u01 + 1\/2\ L1\ ug[1, 1] + 1\/2\ L2\ ug[1, 2], ug[1, 3], u02, ug[2, 1], ug[2, 3], ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] - 1\/2\ L3\ ug[3, 3], ug[3, 1], ug[3, 2], u03 + 1\/2\ L2\ ug[3, 2] + 1\/2\ L3\ ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[vincoli]\)], "Input"], Cell[BoxData[ \(15\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0\)], "Input"], Cell[BoxData[ \({u01, u02, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Flatten[Join[u0, mH]]\)], "Input"], Cell[BoxData[ \({u01, u02, u03, ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 1], ug[2, 2], ug[2, 3], ug[3, 1], ug[3, 2], ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[Map[\((# == 0)\) &, vincoli], Flatten[Join[u0, mH]]]\)], "Input"], Cell[BoxData[ \({{u02 \[Rule] 0, ug[2, 1] \[Rule] 0, ug[2, 3] \[Rule] 0, u01 \[Rule] 0, u03 \[Rule] 0, ug[1, 1] \[Rule] 0, ug[1, 3] \[Rule] 0, ug[3, 3] \[Rule] 0, ug[3, 1] \[Rule] 0, ug[1, 2] \[Rule] 0, ug[3, 2] \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uvinc = %[\([1]\)]\)], "Input"], Cell[BoxData[ \({u02 \[Rule] 0, ug[2, 1] \[Rule] 0, ug[2, 3] \[Rule] 0, u01 \[Rule] 0, u03 \[Rule] 0, ug[1, 1] \[Rule] 0, ug[1, 3] \[Rule] 0, ug[3, 3] \[Rule] 0, ug[3, 1] \[Rule] 0, ug[1, 2] \[Rule] 0, ug[3, 2] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[uvinc]\)], "Input"], Cell[BoxData[ \(11\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(wvinc = \(uvinc /. ug \[Rule] g\) /. {u01 \[Rule] w01, u02 \[Rule] w02, u03 \[Rule] w03}\)], "Input"], Cell[BoxData[ \({w02 \[Rule] 0, g[2, 1] \[Rule] 0, g[2, 3] \[Rule] 0, w01 \[Rule] 0, w03 \[Rule] 0, g[1, 1] \[Rule] 0, g[1, 3] \[Rule] 0, g[3, 3] \[Rule] 0, g[3, 1] \[Rule] 0, g[1, 2] \[Rule] 0, g[3, 2] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mH /. uvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(ug[2, 2]\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mG //. wvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(g[2, 2]\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w0 //. wvinc\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Risultante e momento delle forze attive", "Section"], Cell[BoxData[ \(\(mMa = \ \[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\((\[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\ \)\((prt[\((faccia2p - x0)\), \(-p\)\ e2])\) \[DifferentialD]\[Zeta]3)\) \ \[DifferentialD]\[Zeta]1;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(1\/vol\) mMa // Simplify\) // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa = \[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\((\[Integral]\_\(-\(L3\/2\)\ \)\%\(L3\/2\)\((\(-p\)\ e2)\) \[DifferentialD]\[Zeta]3)\) \[DifferentialD]\ \[Zeta]1\)], "Input"], Cell[BoxData[ \({0, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tensione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(wpar = Join[Flatten[mG], w0]\)], "Input"], Cell[BoxData[ \({g[1, 1], g[1, 2], g[1, 3], g[2, 1], g[2, 2], g[2, 3], g[3, 1], g[3, 2], g[3, 3], w01, w02, w03}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mT", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mT]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0] //. wvinc\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0]\)], "Input"], Cell[BoxData[ \(\(-L1\)\ L3\ p\ w02\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc\)], "Input"], Cell[BoxData[ \(\(-p\)\ g[2, 2] - g[2, 2]\ \[Sigma][2, 2]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ Coefficient[\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc, wpar], {0}] // Simplify\)], "Input"], Cell[BoxData[ \({\(-p\) - \[Sigma][2, 2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(tens = \(Solve[Map[\((# \[Equal] 0)\)\ &, %], \ Union[Flatten[mT]]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({\[Sigma][2, 2] \[Rule] \(-p\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mT /. tens // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(-p\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dilatazione infinitesima e rotazione infinitesima", "Section"], Cell[CellGroupData[{ Cell["Dalla tensione", "Subsection"], Cell[BoxData[ \(\(mE = \(1\/\(2 \[Mu]\)\) \((mT - \(\[Lambda]\/\(3 \[Lambda] + 2 \[Mu]\)\) tr[mT] mI)\) //. tens // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE // Factor]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda] + 2\ \[Lambda]\ \[Sigma][1, 1] + 2\ \[Mu]\ \[Sigma][1, 1] - \[Lambda]\ \[Sigma][3, 3]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\), \(\[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(\[Sigma][1, 3]\/\(2\ \[Mu]\)\)}, {\(\[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(-\(\(2\ p\ \[Lambda] + 2\ p\ \[Mu] + \[Lambda]\ \[Sigma][1, 1] + \[Lambda]\ \[Sigma][3, 3]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\[Sigma][2, 3]\/\(2\ \[Mu]\)\)}, {\(\[Sigma][1, 3]\/\(2\ \[Mu]\)\), \(\[Sigma][2, 3]\/\(2\ \[Mu]\)\), \(\(p\ \[Lambda] - \[Lambda]\ \ \[Sigma][1, 1] + 2\ \[Lambda]\ \[Sigma][3, 3] + 2\ \[Mu]\ \[Sigma][3, 3]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dalle condizioni di vincolo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(ug[2, 2]\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE + m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda] + 2\ \[Lambda]\ \[Sigma][1, 1] + 2\ \[Mu]\ \[Sigma][1, 1] - \[Lambda]\ \[Sigma][3, 3]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(\(-\[Theta][ 3]\) + \[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(\[Theta][ 2] + \[Sigma][1, 3]\/\(2\ \[Mu]\)\)}, {\(\[Theta][ 3] + \[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(\(2\ p\ \[Lambda] + 2\ p\ \[Mu] + \[Lambda]\ \[Sigma][1, 1] + \[Lambda]\ \[Sigma][3, 3]\)\/\(\(-6\)\ \[Lambda]\ \[Mu] - 4\ \[Mu]\^2\)\), \(\(-\[Theta][ 1]\) + \[Sigma][2, 3]\/\(2\ \[Mu]\)\)}, {\(\(-\[Theta][2]\) + \[Sigma][1, 3]\/\(2\ \[Mu]\)\), \(\[Theta][ 1] + \[Sigma][2, 3]\/\(2\ \[Mu]\)\), \(\(p\ \[Lambda] - \ \[Lambda]\ \[Sigma][1, 1] + 2\ \[Lambda]\ \[Sigma][3, 3] + 2\ \[Mu]\ \[Sigma][3, 3]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\((mE + m\[Theta] - mH)\) /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda] + 2\ \[Lambda]\ \[Sigma][1, 1] + 2\ \[Mu]\ \[Sigma][1, 1] - \[Lambda]\ \[Sigma][3, 3]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(\(-\[Theta][ 3]\) + \[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(\[Theta][ 2] + \[Sigma][1, 3]\/\(2\ \[Mu]\)\)}, {\(\[Theta][ 3] + \[Sigma][1, 2]\/\(2\ \[Mu]\)\), \(\(-ug[2, 2]\) + \(2\ p\ \[Lambda] + 2\ p\ \[Mu] + \[Lambda]\ \ \[Sigma][1, 1] + \[Lambda]\ \[Sigma][3, 3]\)\/\(\(-6\)\ \[Lambda]\ \[Mu] - 4\ \ \[Mu]\^2\)\), \(\(-\[Theta][1]\) + \[Sigma][2, 3]\/\(2\ \[Mu]\)\)}, {\(\(-\[Theta][2]\) + \[Sigma][1, 3]\/\(2\ \[Mu]\)\), \(\[Theta][ 1] + \[Sigma][2, 3]\/\(2\ \[Mu]\)\), \(\(p\ \[Lambda] - \ \[Lambda]\ \[Sigma][1, 1] + 2\ \[Lambda]\ \[Sigma][3, 3] + 2\ \[Mu]\ \[Sigma][3, 3]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(var = Intersection[Variables[\((mE + m\[Theta] - mH)\) /. uvinc], Join[Flatten[mH], Flatten[mE], Flatten[m\[Theta]], Flatten[mT], u0]]\)], "Input"], Cell[BoxData[ \({ug[2, 2], \[Theta][1], \[Theta][2], \[Theta][3], \[Sigma][1, 1], \[Sigma][1, 2], \[Sigma][1, 3], \[Sigma][2, 3], \[Sigma][3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(sol = \(Solve[Map[\((# \[Equal] 0)\) &, Flatten[\((mE + m\[Theta] - mH)\ \)] /. uvinc], var]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({ug[2, 2] \[Rule] \(-\(p\/\(\[Lambda] + 2\ \[Mu]\)\)\), \[Theta][ 1] \[Rule] 0, \[Theta][2] \[Rule] 0, \[Theta][3] \[Rule] 0, \[Sigma][1, 2] \[Rule] 0, \[Sigma][1, 3] \[Rule] 0, \[Sigma][2, 3] \[Rule] 0, \[Sigma][1, 1] \[Rule] \(-\(\(p\ \[Lambda]\)\/\(\[Lambda] + 2\ \[Mu]\)\)\), \[Sigma][3, 3] \[Rule] \(-\(\(p\ \[Lambda]\)\/\(\[Lambda] + 2\ \[Mu]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mH /. uvinc\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-\(p\/\(\[Lambda] + 2\ \[Mu]\)\)\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-\(p\/\(\[Lambda] + 2\ \[Mu]\)\)\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta] /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u0 /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mH /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, { "0", \(-\(\(p\ \((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\/\(Y\ \((\(-1\) + \[Nu])\)\)\)\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mE /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, { "0", \(-\(\(p\ \((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\/\(Y\ \((\(-1\) + \[Nu])\)\)\)\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mT /. tens\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Nu]\)\/\(\(-1\) + \[Nu]\)\), "0", "0"}, {"0", \(-p\), "0"}, {"0", "0", \(\(p\ \[Nu]\)\/\(\(-1\) + \[Nu]\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Visualizzazione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, \(-\(\(p\ \((L2 + 2\ \[Zeta]2)\)\ \((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\/\(2\ Y\ \((\(-1\) + \[Nu])\)\)\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[x0] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(x0\)], "Input"], Cell[BoxData[ \({0, \(-\(L2\/2\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uval = {}\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e3", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, lato1 = xC - \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato2 = xC + \(L1\/2\) e1 + \[Xi]\ L2\ e2, lato3 = xC + \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato4 = xC - \(L1\/2\) e1 + \[Xi]\ L2\ e2}, Block[{x0Q = \((Take[#1, 2] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Take[#1, 2] &)\) /@ {\[Phi][lato1], \[Phi][ lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.5 0.952381 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .02381 m .06244 .02381 L .10458 .02381 L .14415 .02381 L .18221 .02381 L .22272 .02381 L .26171 .02381 L .30316 .02381 L .34309 .02381 L .3815 .02381 L .42237 .02381 L .46172 .02381 L .49955 .02381 L .53984 .02381 L .57861 .02381 L .61984 .02381 L .65954 .02381 L .69774 .02381 L .73838 .02381 L .77751 .02381 L .81909 .02381 L .85916 .02381 L .89771 .02381 L .93871 .02381 L .97619 .02381 L s .97619 .02381 m .97619 .06101 L .97619 .10158 L .97619 .13968 L .97619 .17632 L .97619 .21533 L .97619 .25287 L .97619 .29278 L .97619 .33123 L .97619 .36821 L .97619 .40756 L .97619 .44545 L .97619 .48188 L .97619 .52067 L .97619 .558 L .97619 .5977 L .97619 .63593 L .97619 .67271 L .97619 .71184 L .97619 .74952 L .97619 .78956 L .97619 .82813 L .97619 .86525 L .97619 .90473 L .97619 .94082 L s .02381 .94082 m .06244 .94082 L .10458 .94082 L .14415 .94082 L .18221 .94082 L .22272 .94082 L .26171 .94082 L .30316 .94082 L .34309 .94082 L .3815 .94082 L .42237 .94082 L .46172 .94082 L .49955 .94082 L .53984 .94082 L .57861 .94082 L .61984 .94082 L .65954 .94082 L .69774 .94082 L .73838 .94082 L .77751 .94082 L .81909 .94082 L .85916 .94082 L .89771 .94082 L .93871 .94082 L .97619 .94082 L s .02381 .02381 m .02381 .06101 L .02381 .10158 L .02381 .13968 L .02381 .17632 L .02381 .21533 L .02381 .25287 L .02381 .29278 L .02381 .33123 L .02381 .36821 L .02381 .40756 L .02381 .44545 L .02381 .48188 L .02381 .52067 L .02381 .558 L .02381 .5977 L .02381 .63593 L .02381 .67271 L .02381 .71184 L .02381 .74952 L .02381 .78956 L .02381 .82813 L .02381 .86525 L .02381 .90473 L .02381 .94082 L s .02381 .02381 m .06244 .02381 L .10458 .02381 L .14415 .02381 L .18221 .02381 L .22272 .02381 L .26171 .02381 L .30316 .02381 L .34309 .02381 L .3815 .02381 L .42237 .02381 L .46172 .02381 L .49955 .02381 L .53984 .02381 L .57861 .02381 L .61984 .02381 L .65954 .02381 L .69774 .02381 L .73838 .02381 L .77751 .02381 L .81909 .02381 L .85916 .02381 L .89771 .02381 L .93871 .02381 L .97619 .02381 L s .97619 .02381 m .97619 .06244 L .97619 .10458 L .97619 .14415 L .97619 .18221 L .97619 .22272 L .97619 .26171 L .97619 .30316 L .97619 .34309 L .97619 .3815 L .97619 .42237 L .97619 .46172 L .97619 .49955 L .97619 .53984 L .97619 .57861 L .97619 .61984 L .97619 .65954 L .97619 .69774 L .97619 .73838 L .97619 .77751 L .97619 .81909 L .97619 .85916 L .97619 .89771 L .97619 .93871 L .97619 .97619 L s .02381 .97619 m .06244 .97619 L .10458 .97619 L .14415 .97619 L .18221 .97619 L .22272 .97619 L .26171 .97619 L .30316 .97619 L .34309 .97619 L .3815 .97619 L .42237 .97619 L .46172 .97619 L .49955 .97619 L .53984 .97619 L .57861 .97619 L .61984 .97619 L .65954 .97619 L .69774 .97619 L .73838 .97619 L .77751 .97619 L .81909 .97619 L .85916 .97619 L .89771 .97619 L .93871 .97619 L .97619 .97619 L s .02381 .02381 m .02381 .06244 L .02381 .10458 L .02381 .14415 L .02381 .18221 L .02381 .22272 L .02381 .26171 L .02381 .30316 L .02381 .34309 L .02381 .3815 L .02381 .42237 L .02381 .46172 L .02381 .49955 L .02381 .53984 L .02381 .57861 L .02381 .61984 L .02381 .65954 L .02381 .69774 L .02381 .73838 L .02381 .77751 L .02381 .81909 L .02381 .85916 L .02381 .89771 L .02381 .93871 L .02381 .97619 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {287, 0}} -> {-0.525005, -0.525005, \ 0.00365857, 0.00365857}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e2", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, u03 = 0, lato1 = xC + \(L2\/2\) e2 + \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato2 = xC + \(L2\/2\) e2 - \(L1\/2\) e1 + L3\ \[Xi]\ e3, lato3 = xC + \(L2\/2\) e2 - \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato4 = xC + \(L2\/2\) e2 + \(L1\/2\) e1 + L3\ \[Xi]\ e3}, Block[{x0Q = \((Extract[#1, {{1}, {3}}] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Extract[#1, {{1}, {3}}] &)\) /@ {\[Phi][ lato1], \[Phi][lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.5 0.952381 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .97619 m .06244 .97619 L .10458 .97619 L .14415 .97619 L .18221 .97619 L .22272 .97619 L .26171 .97619 L .30316 .97619 L .34309 .97619 L .3815 .97619 L .42237 .97619 L .46172 .97619 L .49955 .97619 L .53984 .97619 L .57861 .97619 L .61984 .97619 L .65954 .97619 L .69774 .97619 L .73838 .97619 L .77751 .97619 L .81909 .97619 L .85916 .97619 L .89771 .97619 L .93871 .97619 L .97619 .97619 L s .02381 .02381 m .02381 .06244 L .02381 .10458 L .02381 .14415 L .02381 .18221 L .02381 .22272 L .02381 .26171 L .02381 .30316 L .02381 .34309 L .02381 .3815 L .02381 .42237 L .02381 .46172 L .02381 .49955 L .02381 .53984 L .02381 .57861 L .02381 .61984 L .02381 .65954 L .02381 .69774 L .02381 .73838 L .02381 .77751 L .02381 .81909 L .02381 .85916 L .02381 .89771 L .02381 .93871 L .02381 .97619 L s .02381 .02381 m .06244 .02381 L .10458 .02381 L .14415 .02381 L .18221 .02381 L .22272 .02381 L .26171 .02381 L .30316 .02381 L .34309 .02381 L .3815 .02381 L .42237 .02381 L .46172 .02381 L .49955 .02381 L .53984 .02381 L .57861 .02381 L .61984 .02381 L .65954 .02381 L .69774 .02381 L .73838 .02381 L .77751 .02381 L .81909 .02381 L .85916 .02381 L .89771 .02381 L .93871 .02381 L .97619 .02381 L s .97619 .02381 m .97619 .06244 L .97619 .10458 L .97619 .14415 L .97619 .18221 L .97619 .22272 L .97619 .26171 L .97619 .30316 L .97619 .34309 L .97619 .3815 L .97619 .42237 L .97619 .46172 L .97619 .49955 L .97619 .53984 L .97619 .57861 L .97619 .61984 L .97619 .65954 L .97619 .69774 L .97619 .73838 L .97619 .77751 L .97619 .81909 L .97619 .85916 L .97619 .89771 L .97619 .93871 L .97619 .97619 L s .02381 .97619 m .06244 .97619 L .10458 .97619 L .14415 .97619 L .18221 .97619 L .22272 .97619 L .26171 .97619 L .30316 .97619 L .34309 .97619 L .3815 .97619 L .42237 .97619 L .46172 .97619 L .49955 .97619 L .53984 .97619 L .57861 .97619 L .61984 .97619 L .65954 .97619 L .69774 .97619 L .73838 .97619 L .77751 .97619 L .81909 .97619 L .85916 .97619 L .89771 .97619 L .93871 .97619 L .97619 .97619 L s .02381 .02381 m .02381 .06244 L .02381 .10458 L .02381 .14415 L .02381 .18221 L .02381 .22272 L .02381 .26171 L .02381 .30316 L .02381 .34309 L .02381 .3815 L .02381 .42237 L .02381 .46172 L .02381 .49955 L .02381 .53984 L .02381 .57861 L .02381 .61984 L .02381 .65954 L .02381 .69774 L .02381 .73838 L .02381 .77751 L .02381 .81909 L .02381 .85916 L .02381 .89771 L .02381 .93871 L .02381 .97619 L s .02381 .02381 m .06244 .02381 L .10458 .02381 L .14415 .02381 L .18221 .02381 L .22272 .02381 L .26171 .02381 L .30316 .02381 L .34309 .02381 L .3815 .02381 L .42237 .02381 L .46172 .02381 L .49955 .02381 L .53984 .02381 L .57861 .02381 L .61984 .02381 L .65954 .02381 L .69774 .02381 L .73838 .02381 L .77751 .02381 L .81909 .02381 L .85916 .02381 L .89771 .02381 L .93871 .02381 L .97619 .02381 L s .97619 .02381 m .97619 .06244 L .97619 .10458 L .97619 .14415 L .97619 .18221 L .97619 .22272 L .97619 .26171 L .97619 .30316 L .97619 .34309 L .97619 .3815 L .97619 .42237 L .97619 .46172 L .97619 .49955 L .97619 .53984 L .97619 .57861 L .97619 .61984 L .97619 .65954 L .97619 .69774 L .97619 .73838 L .97619 .77751 L .97619 .81909 L .97619 .85916 L .97619 .89771 L .97619 .93871 L .97619 .97619 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {287, 0}} -> {-0.525005, -0.525005, \ 0.00365857, 0.00365857}}] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Momento delle forze reattive", "Section"], Cell["Da moltiplicare per il volume", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(mT\ - mMa\/vol /. tens\) /. sol // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(p\ \[Lambda]\)\/\(\[Lambda] + 2\ \[Mu]\)\)\), "0", "0"}, {"0", "0", "0"}, {"0", "0", \(-\(\(p\ \[Lambda]\)\/\(\[Lambda] + 2\ \[Mu]\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa\)], "Input"], Cell[BoxData[ \({0, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{591, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 48, 0, 115, "Title"], Cell[1778, 54, 217, 5, 49, "Text"], Cell[CellGroupData[{ Cell[2020, 63, 35, 0, 59, "Section"], Cell[2058, 65, 192, 3, 70, "Input"], Cell[2253, 70, 35, 0, 33, "Text"], Cell[2291, 72, 68, 1, 30, "Input"], Cell[2362, 75, 32, 0, 33, "Text"], Cell[2397, 77, 71, 1, 30, "Input"], Cell[2471, 80, 23, 0, 33, "Text"], Cell[2497, 82, 268, 5, 30, "Input"], Cell[2768, 89, 43, 0, 33, "Text"], Cell[2814, 91, 72, 1, 30, "Input"], Cell[CellGroupData[{ Cell[2911, 96, 47, 1, 30, "Input"], Cell[2961, 99, 347, 8, 71, "Output"] }, Open ]], Cell[3323, 110, 38, 0, 33, "Text"], Cell[3364, 112, 330, 7, 57, "Input"], Cell[3697, 121, 27, 0, 33, "Text"], Cell[3727, 123, 131, 2, 30, "Input"], Cell[3861, 127, 54, 1, 30, "Input"], Cell[3918, 130, 28, 0, 33, "Text"], Cell[3949, 132, 146, 2, 30, "Input"], Cell[4098, 136, 43, 0, 33, "Text"], Cell[4144, 138, 71, 1, 30, "Input"], Cell[4218, 141, 35, 0, 33, "Text"], Cell[4256, 143, 131, 2, 30, "Input"], Cell[4390, 147, 54, 1, 30, "Input"], Cell[4447, 150, 28, 0, 33, "Text"], Cell[4478, 152, 160, 3, 70, "Input"], Cell[4641, 157, 46, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4712, 161, 50, 1, 30, "Input"], Cell[4765, 164, 67, 1, 29, "Output"] }, Open ]], Cell[4847, 168, 47, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4919, 172, 265, 5, 47, "Input"], Cell[5187, 179, 192, 3, 44, "Output"] }, Open ]], Cell[5394, 185, 42, 0, 33, "Text"], Cell[5439, 187, 55, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[5531, 193, 50, 0, 39, "Section"], Cell[5584, 195, 116, 3, 33, "Text"], Cell[CellGroupData[{ Cell[5725, 202, 49, 1, 30, "Input"], Cell[5777, 205, 43, 1, 29, "Output"] }, Open ]], Cell[5835, 209, 169, 3, 52, "Text"], Cell[6007, 214, 53, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6097, 220, 36, 0, 39, "Section"], Cell[6136, 222, 44, 0, 33, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[6217, 227, 48, 0, 39, "Section"], Cell[CellGroupData[{ Cell[6290, 231, 102, 2, 42, "Input"], Cell[6395, 235, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6502, 241, 102, 2, 42, "Input"], Cell[6607, 245, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6705, 251, 102, 2, 42, "Input"], Cell[6810, 255, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6917, 261, 102, 2, 42, "Input"], Cell[7022, 265, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7120, 271, 102, 2, 42, "Input"], Cell[7225, 275, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7332, 281, 102, 2, 42, "Input"], Cell[7437, 285, 61, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[7547, 292, 50, 0, 39, "Section"], Cell[CellGroupData[{ Cell[7622, 296, 105, 2, 42, "Input"], Cell[7730, 300, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7834, 306, 105, 2, 42, "Input"], Cell[7942, 310, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8037, 316, 101, 2, 42, "Input"], Cell[8141, 320, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8245, 326, 101, 2, 42, "Input"], Cell[8349, 330, 76, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[8474, 337, 26, 0, 39, "Section"], Cell[CellGroupData[{ Cell[8525, 341, 38, 0, 47, "Subsection"], Cell[8566, 343, 50, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[8653, 349, 41, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[8719, 353, 217, 5, 90, "Input"], Cell[8939, 360, 108, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9084, 367, 217, 5, 90, "Input"], Cell[9304, 374, 108, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9449, 381, 217, 5, 90, "Input"], Cell[9669, 388, 59, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9765, 394, 217, 5, 90, "Input"], Cell[9985, 401, 108, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10130, 408, 217, 5, 90, "Input"], Cell[10350, 415, 108, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10495, 422, 109, 2, 50, "Input"], Cell[10607, 426, 355, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[11011, 437, 69, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[11105, 441, 40, 1, 30, "Input"], Cell[11148, 444, 355, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11540, 454, 48, 1, 30, "Input"], Cell[11591, 457, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11664, 463, 35, 1, 30, "Input"], Cell[11702, 466, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11788, 472, 54, 1, 30, "Input"], Cell[11845, 475, 146, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12028, 482, 91, 1, 30, "Input"], Cell[12122, 485, 268, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12427, 494, 51, 1, 30, "Input"], Cell[12481, 497, 260, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12778, 506, 46, 1, 30, "Input"], Cell[12827, 509, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12900, 515, 132, 2, 30, "Input"], Cell[13035, 519, 245, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13317, 527, 58, 1, 30, "Input"], Cell[13378, 530, 275, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13690, 543, 44, 1, 30, "Input"], Cell[13737, 546, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13817, 552, 59, 1, 30, "Input"], Cell[13879, 555, 274, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14190, 568, 45, 1, 30, "Input"], Cell[14238, 571, 43, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[14342, 579, 58, 0, 39, "Section"], Cell[14403, 581, 251, 5, 52, "Input"], Cell[CellGroupData[{ Cell[14679, 590, 77, 1, 42, "Input"], Cell[14759, 593, 269, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15065, 606, 190, 3, 52, "Input"], Cell[15258, 611, 56, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[15363, 618, 27, 0, 39, "Section"], Cell[CellGroupData[{ Cell[15415, 622, 61, 1, 30, "Input"], Cell[15479, 625, 137, 2, 48, "Output"] }, Open ]], Cell[15631, 630, 382, 7, 57, "Input"], Cell[CellGroupData[{ Cell[16038, 641, 47, 1, 30, "Input"], Cell[16088, 644, 401, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16526, 657, 54, 1, 30, "Input"], Cell[16583, 660, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16655, 666, 44, 1, 30, "Input"], Cell[16702, 669, 53, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16792, 675, 109, 2, 42, "Input"], Cell[16904, 679, 75, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17016, 685, 176, 3, 86, "Input"], Cell[17195, 690, 59, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17291, 696, 165, 3, 31, "Input"], Cell[17459, 701, 65, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17561, 707, 57, 1, 30, "Input"], Cell[17621, 710, 389, 8, 71, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[18059, 724, 68, 0, 39, "Section"], Cell[CellGroupData[{ Cell[18152, 728, 36, 0, 47, "Subsection"], Cell[18191, 730, 185, 3, 44, "Input"], Cell[CellGroupData[{ Cell[18401, 737, 57, 1, 30, "Input"], Cell[18461, 740, 1183, 22, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[19693, 768, 49, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[19767, 772, 47, 1, 30, "Input"], Cell[19817, 775, 347, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20201, 788, 56, 1, 30, "Input"], Cell[20260, 791, 275, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20572, 804, 44, 1, 30, "Input"], Cell[20619, 807, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20699, 813, 54, 1, 30, "Input"], Cell[20756, 816, 341, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21134, 829, 59, 1, 30, "Input"], Cell[21196, 832, 1259, 23, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22492, 860, 79, 1, 30, "Input"], Cell[22574, 863, 1187, 21, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23798, 889, 194, 4, 70, "Input"], Cell[23995, 895, 181, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24213, 903, 189, 3, 71, "Input"], Cell[24405, 908, 482, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24924, 922, 79, 1, 30, "Input"], Cell[25006, 925, 299, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25342, 938, 66, 1, 30, "Input"], Cell[25411, 941, 299, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25747, 954, 73, 1, 30, "Input"], Cell[25823, 957, 266, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26126, 970, 87, 1, 30, "Input"], Cell[26216, 973, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26296, 979, 108, 2, 30, "Input"], Cell[26407, 983, 405, 11, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26849, 999, 86, 1, 30, "Input"], Cell[26938, 1002, 405, 11, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27380, 1018, 107, 2, 30, "Input"], Cell[27490, 1022, 335, 8, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[27886, 1037, 34, 0, 39, "Section"], Cell[CellGroupData[{ Cell[27945, 1041, 127, 2, 30, "Input"], Cell[28075, 1045, 180, 3, 44, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28292, 1053, 90, 1, 30, "Input"], Cell[28385, 1056, 43, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28465, 1062, 35, 1, 30, "Input"], Cell[28503, 1065, 56, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28596, 1071, 42, 1, 30, "Input"], Cell[28641, 1074, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28714, 1080, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[28784, 1084, 849, 14, 255, "Input"], Cell[29636, 1100, 19779, 449, 296, 3799, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[49464, 1555, 45, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[49534, 1559, 961, 15, 309, "Input"], Cell[50498, 1576, 19815, 449, 296, 3803, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[70374, 2032, 47, 0, 39, "Section"], Cell[70424, 2034, 45, 0, 33, "Text"], Cell[CellGroupData[{ Cell[70494, 2038, 81, 1, 42, "Input"], Cell[70578, 2041, 362, 8, 95, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70977, 2054, 35, 1, 30, "Input"], Cell[71015, 2057, 56, 1, 29, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)