(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 227134, 8531]*) (*NotebookOutlinePosition[ 265074, 9826]*) (* CellTagsIndexPosition[ 265030, 9822]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Corpo affine elastico vincolato", "Title"], Cell["v. 2.13 (9/7/2004) \[Copyright] A.Tatone [Universit\[AGrave] \ dell'Aquila]", "Text", CellFrame->True, FontSize->12, FontWeight->"Bold", Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Id", "Section"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"nbid", "=", StyleBox[\(NotebookInformation[SelectedNotebook[]]\), "MR"]}]], "Input"], Cell[BoxData[ \({"FileName" \[Rule] FrontEnd`FileName[{$RootDirectory, "home", "am", "wrk", "Corsi", "Scost", "esercizi", "5-el-affine", "5-6"}, "Block-213_5-6.nb", CharacterEncoding \[Rule] "ISO8859-1"], "FileModificationTime" \[Rule] 3.298345372`*^9, "WindowTitle" \[Rule] "/home/am/wrk/Corsi/Scost/esercizi/5-el-affine/5-6/Block-213_5-6.nb", "MemoryModificationTime" \[Rule] 3.298345974677`*^9}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(nbid\[LeftDoubleBracket]1, 2, 2\[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \("Block-213_5-6.nb"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \($System\)], "Input"], Cell[BoxData[ \("Linux"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \($Version\)], "Input"], Cell[BoxData[ \("4.1 for Linux (November 2, 2000)"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Date[]\)], "Input"], Cell[BoxData[ \({2004, 7, 9, 9, 3, 8}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(nbdir = nbid\[LeftDoubleBracket]1, 2, 1\[RightDoubleBracket] // ToFileName\)], "Input"], Cell[BoxData[ \("/home/am/wrk/Corsi/Scost/esercizi/5-el-affine/5-6/"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("/home/am"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[nbdir]\)], "Input"], Cell[BoxData[ \("/home/am/wrk/Corsi/Scost/esercizi/5-el-affine/5-6"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[Solve::"\"];\)\)}], "Input"], Cell["Prodotto tensoriale", "Text"], Cell[BoxData[ \(prt[u_, v_] := Transpose[{v}] . {u}\)], "Input"], Cell["Prodotto scalare", "Text"], Cell[BoxData[ \(prs[u_, v_] := Flatten[u] . Flatten[v]\)], "Input"], Cell["Traccia", "Text"], Cell[BoxData[ \(tr[m_] := m\_\(\(\[LeftDoubleBracket]\)\(1, 1\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(2, 2\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(3, 3\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell["Gradiente dello spostamento", "Text"], Cell[BoxData[ \(\(mH = Array[ug[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["Rotazione infinitesima", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"m\[Theta]", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(+\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell["Spostamento", "Text"], Cell[BoxData[ \(u[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := u0 + mH . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(u0 := {u01, u02, u03}\)], "Input"], Cell["Deformazione", "Text"], Cell[BoxData[ \(\[Phi][{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := {\[Zeta]1, \[Zeta]2, \ \[Zeta]3} + u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}]\)], "Input"], Cell["Gradiente dell'atto di moto", "Text"], Cell[BoxData[ \(\(mG = Array[g[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell["Atto di moto affine", "Text"], Cell[BoxData[ \(w[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := w0 + mG . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(w0 := {w01, w02, w03}\)], "Input"], Cell["Vettori base", "Text"], Cell[BoxData[{ \(\(e1 = {1, 0, 0};\)\), "\[IndentingNewLine]", \(\(e2 = {0, 1, 0};\)\), "\[IndentingNewLine]", \(\(e3 = {0, 0, 1};\)\)}], "Input"], Cell["Matrice della identit\[AGrave]", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(mI = {e1, e2, e3}\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell["Relazioni tra i moduli elastici", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(lam\[EAcute] = \(Solve[{Y == \(\(3 \[Lambda] + 2 \[Mu]\)\/\(\[Lambda] \ + \[Mu]\)\) \[Mu], \[Nu] == \[Lambda]\/\(2 \((\[Lambda] + \[Mu])\)\)}, {\ \[Lambda], \ \[Mu]}]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell[BoxData[ \({\[Lambda] \[Rule] \(-\(\(Y\ \[Nu]\)\/\(\((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\)\), \[Mu] \[Rule] Y\/\(2\ \((1 + \[Nu])\)\)}\)], "Output"] }, Open ]], Cell["Tensione", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"mT", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Origine delle coordinate e polo", "Section"], Cell["\<\ Coordinate del centro del parallelepipedo (fissare queste coordinate \ equivale alla scelta dell'origine)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(xC = {0, 0, 0}\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell["\<\ Polo (da scegliere) (\[EGrave] meglio usare una espressione del tipo xC + \ ... poich\[EGrave] risulta indipendente dalla scelta dell'origine)\ \>", "Text"], Cell[BoxData[ \(x0 := xC - \(L2\/2\) e2 - \(L1\/2\) e1\)], "Input"], Cell["Volume del solido", "Text"], Cell[BoxData[ \(\(vol := L1\ L2\ L3\ /2;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Lunghezze spigoli", "Section"], Cell["Eventuali valori o relazioni", "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Parametrizzazione delle facce", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1m = xC - \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1p = xC + \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3m = xC - \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3p = xC + \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2m = xC - \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2p = xC + \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione degli spigoli", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2p = xC + \(L1\/2\) e1 + \(L2\/2\) e2\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2m = xC + \(L1\/2\) e1 - \(L2\/2\) e2\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2p = xC - \(L1\/2\) e1 + \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2m = xC - \(L1\/2\) e1 - \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo2p3p = xC + \(L2\/2\) e2 + \(L3\/2\) e3\ + \ \[Zeta]1\ e1\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo2p3m = xC + \(L2\/2\) e2 - \(L3\/2\) e3\ + \ \[Zeta]1\ e1\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo2m3p = xC - \(L2\/2\) e2 + \(L3\/2\) e3\ + \ \[Zeta]1\ e1\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo2m3m = xC - \(L2\/2\) e2 - \(L3\/2\) e3\ + \ \[Zeta]1\ e1\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo3p1p = xC + \(L3\/2\) e3 + \(L1\/2\) e1\ + \ \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo3p1m = xC + \(L3\/2\) e3 - \(L1\/2\) e1\ + \ \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo3m1p = xC - \(L3\/2\) e3 + \(L1\/2\) e1\ + \ \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo3m1m = xC - \(L3\/2\) e3 - \(L1\/2\) e1\ + \ \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell["Sinonimi", "SmallText"], Cell[BoxData[{ \(spigolo2p1p := spigolo1p2p; spigolo2m1p := spigolo1p2m; spigolo2p1m := spigolo1m2p; spigolo2m1m := spigolo1m2m;\), "\[IndentingNewLine]", \(spigolo3p2p := spigolo2p3p; spigolo3m2p := spigolo2p3m; spigolo3p2m := spigolo2m3p; spigolo3m2m := spigolo2m3m;\), "\[IndentingNewLine]", \(spigolo1p3p := spigolo3p1p; spigolo1m3p := spigolo3p1m; spigolo1p3m := spigolo3m1p; spigolo1m3m := spigolo3m1m;\[IndentingNewLine]\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Contorno della forma del corpo", "Section"], Cell["Tutto il parallelepipedo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(corpo = {spigolo1p2p, spigolo1p2m, spigolo1m2p, spigolo1m2m, \[IndentingNewLine]spigolo2p3p, spigolo2p3m, spigolo2m3p, spigolo2m3m, \[IndentingNewLine]spigolo3p1p, spigolo3p1m, spigolo3m1p, spigolo3m1m} /. {\[Zeta]1 \[Rule] \[Xi]\ L1, \[Zeta]2 \[Rule] \[Xi]\ \ L2, \[Zeta]3 \[Rule] \[Xi]\ L3}\)], "Input"], Cell[BoxData[ \({{L1\/2, L2\/2, L3\ \[Xi]}, {L1\/2, \(-\(L2\/2\)\), L3\ \[Xi]}, {\(-\(L1\/2\)\), L2\/2, L3\ \[Xi]}, {\(-\(L1\/2\)\), \(-\(L2\/2\)\), L3\ \[Xi]}, {L1\ \[Xi], L2\/2, L3\/2}, {L1\ \[Xi], L2\/2, \(-\(L3\/2\)\)}, {L1\ \[Xi], \(-\(L2\/2\)\), L3\/2}, {L1\ \[Xi], \(-\(L2\/2\)\), \(-\(L3\/2\)\)}, {L1\/2, L2\ \[Xi], L3\/2}, {\(-\(L1\/2\)\), L2\ \[Xi], L3\/2}, {L1\/2, L2\ \[Xi], \(-\(L3\/2\)\)}, {\(-\(L1\/2\)\), L2\ \[Xi], \(-\(L3\/2\)\)}}\)], "Output"] }, Open ]], Cell["Altri spigoli", "SmallText"], Cell[BoxData[ \(spigolo3pd := xC + \(L3\/2\) e3 + \((\(-e1\) + e2)\) \[Xi]\)], "Input"], Cell[BoxData[ \(spigolo3md := xC - \(L3\/2\) e3 + \((\(-e1\) + e2)\) \[Xi]\)], "Input"], Cell["Parte del parallelepipedo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(corpo = {spigolo3pd, spigolo3md, spigolo1p2m, spigolo1m2p, spigolo1m2m, \[IndentingNewLine]spigolo2m3p, spigolo2m3m, \[IndentingNewLine]spigolo3p1m, spigolo3m1m} /. {\[Zeta]1 \[Rule] \[Xi]\ L1, \[Zeta]2 \[Rule] \[Xi]\ \ L2, \[Zeta]3 \[Rule] \[Xi]\ L3}\)], "Input"], Cell[BoxData[ \({{\(-\[Xi]\), \[Xi], L3\/2}, {\(-\[Xi]\), \[Xi], \(-\(L3\/2\)\)}, {L1\/2, \(-\(L2\/2\)\), L3\ \[Xi]}, {\(-\(L1\/2\)\), L2\/2, L3\ \[Xi]}, {\(-\(L1\/2\)\), \(-\(L2\/2\)\), L3\ \[Xi]}, {L1\ \[Xi], \(-\(L2\/2\)\), L3\/2}, {L1\ \[Xi], \(-\(L2\/2\)\), \(-\(L3\/2\)\)}, {\(-\(L1\/2\)\), L2\ \[Xi], L3\/2}, {\(-\(L1\/2\)\), L2\ \[Xi], \(-\(L3\/2\)\)}}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli", "Section"], Cell[CellGroupData[{ Cell["Inizializzazione", "Subsection"], Cell[BoxData[ \(\(vincoli = {};\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Spigolo a destra in basso", "Subsection"], Cell[BoxData[ \(\(n = \(-Sin[\[Pi]\/4]\) e1 + Cos[\[Pi]\/4] e2;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo1 = Complement[ CoefficientList[\((u[spigolo1p2m] . n\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({\(-\(u01\/\@2\)\) + u02\/\@2 - \(L1\ ug[1, 1]\)\/\@2 + \(L1\ ug[2, 1]\)\/\@2, \(-\(ug[1, 3]\/\@2\)\) + ug[2, 3]\/\@2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo1]\)], "Input"], Cell[BoxData[ \({\(-\(u01\/\@2\)\) + u02\/\@2 - \(L1\ ug[1, 1]\)\/\@2 + \(L1\ ug[2, 1]\)\/\@2, \(-\(ug[1, 3]\/\@2\)\) + ug[2, 3]\/\@2}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spigolo a sinistra in basso", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo2 = Complement[ CoefficientList[\((u[spigolo1m2m] . e1\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u01, ug[1, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo3 = Complement[ CoefficientList[\((u[spigolo1m2m] . e2\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u02, ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo2, vincolo3]\)], "Input"], Cell[BoxData[ \({\(-\(u01\/\@2\)\) + u02\/\@2 - \(L1\ ug[1, 1]\)\/\@2 + \(L1\ ug[2, 1]\)\/\@2, \(-\(ug[1, 3]\/\@2\)\) + ug[2, 3]\/\@2, u01, ug[1, 3], u02, ug[2, 3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Lista dei vincoli su spostamenti e atti di moto", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(-\(u01\/\@2\)\) + u02\/\@2 - \(L1\ ug[1, 1]\)\/\@2 + \(L1\ ug[2, 1]\)\/\@2, \(-\(ug[1, 3]\/\@2\)\) + ug[2, 3]\/\@2, u01, ug[1, 3], u02, ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[vincoli]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0\)], "Input"], Cell[BoxData[ \({u01, u02, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Flatten[Join[u0, mH]]\)], "Input"], Cell[BoxData[ \({u01, u02, u03, ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 1], ug[2, 2], ug[2, 3], ug[3, 1], ug[3, 2], ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[Map[\((# == 0)\) &, vincoli], Flatten[Join[mH, u0]]]\)], "Input"], Cell[BoxData[ \({{ug[1, 1] \[Rule] ug[2, 1], u01 \[Rule] 0, u02 \[Rule] 0, ug[1, 3] \[Rule] 0, ug[2, 3] \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uvinc = %[\([1]\)]\)], "Input"], Cell[BoxData[ \({ug[1, 1] \[Rule] ug[2, 1], u01 \[Rule] 0, u02 \[Rule] 0, ug[1, 3] \[Rule] 0, ug[2, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[uvinc]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(wvinc = \(uvinc /. ug \[Rule] g\) /. {u01 \[Rule] w01, u02 \[Rule] w02, u03 \[Rule] w03}\)], "Input"], Cell[BoxData[ \({g[1, 1] \[Rule] g[2, 1], w01 \[Rule] 0, w02 \[Rule] 0, g[1, 3] \[Rule] 0, g[2, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mH /. uvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[2, 1]\), \(ug[1, 2]\), "0"}, {\(ug[2, 1]\), \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mG //. wvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(g[2, 1]\), \(g[1, 2]\), "0"}, {\(g[2, 1]\), \(g[2, 2]\), "0"}, {\(g[3, 1]\), \(g[3, 2]\), \(g[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w0 //. wvinc\)], "Input"], Cell[BoxData[ \({0, 0, w03}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Risultante e momento delle forze attive", "Section"], Cell[BoxData[ \(b := p\ e1\)], "Input"], Cell[BoxData[ \(\(mMa = \[Integral]\_\(-\(L2\/2\)\)\%\(L2\/2\)\(\[Integral]\_\(-\(L3\/2\ \)\)\%\(L3\/2\)\((prt[\((faccia1m - x0)\), b])\) \[DifferentialD]\[Zeta]2 \ \[DifferentialD]\[Zeta]3\);\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(1\/vol\) mMa // Simplify\) // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(\(L2\ p\)\/L1\), "0"}, {"0", "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa = \ \[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\(\[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\ b \[DifferentialD]\[Zeta]1 \[DifferentialD]\[Zeta]3\)\)], "Input"], Cell[BoxData[ \({L1\ L3\ p, 0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tensione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(wpar = Join[Flatten[mG], w0]\)], "Input"], Cell[BoxData[ \({g[1, 1], g[1, 2], g[1, 3], g[2, 1], g[2, 2], g[2, 3], g[3, 1], g[3, 2], g[3, 3], w01, w02, w03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mT]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0] //. wvinc\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0]\)], "Input"], Cell[BoxData[ \(L1\ L3\ p\ w01\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc // Simplify\)], "Input"], Cell[BoxData[ \(\(L2\ p\ g[1, 2] - L1\ \((g[1, 2]\ \[Sigma][1, 2] + g[2, 1]\ \ \((\[Sigma][1, 1] + \[Sigma][1, 2])\) + g[3, 1]\ \[Sigma][1, 3] + g[2, 2]\ \ \[Sigma][2, 2] + g[3, 2]\ \[Sigma][2, 3] + g[3, 3]\ \[Sigma][3, \ 3])\)\)\/L1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ Coefficient[\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc, wpar], {0}] // Simplify\)], "Input"], Cell[BoxData[ \({\(L2\ p\)\/L1 - \[Sigma][1, 2], \(-\[Sigma][1, 1]\) - \[Sigma][1, 2], \(-\[Sigma][1, 3]\), \(-\[Sigma][2, 2]\), \(-\[Sigma][2, 3]\), \(-\[Sigma][3, 3]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(tens = \(Solve[Map[\((# \[Equal] 0)\)\ &, %], \ Union[Flatten[mT]]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({\[Sigma][1, 1] \[Rule] \(-\(\(L2\ p\)\/L1\)\), \[Sigma][1, 2] \[Rule] \(L2\ p\)\/L1, \[Sigma][1, 3] \[Rule] 0, \[Sigma][2, 2] \[Rule] 0, \[Sigma][2, 3] \[Rule] 0, \[Sigma][3, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mT /. tens // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/L1\)\), \(\(L2\ p\)\/L1\), "0"}, {\(\(L2\ p\)\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Deformazione infinitesima", "Section"], Cell[CellGroupData[{ Cell["Dilatazione infinitesima (dalla funzione di risposta)", "Subsection"], Cell[BoxData[ \(\(mE = \(1\/\(2 \[Mu]\)\) \((mT - \(\[Lambda]\/\(3 \[Lambda] + 2 \[Mu]\)\) tr[mT] mI)\) //. tens // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE // Factor]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\(L2\ p\)\/\(2\ L1\ \[Mu]\)\), "0"}, {\(\(L2\ p\)\/\(2\ L1\ \[Mu]\)\), \(\(L2\ p\ \[Lambda]\)\/\(2\ L1\ \ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Lambda]\)\/\(2\ L1\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Condizioni di vincolo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[2, 1]\), \(ug[1, 2]\), "0"}, {\(ug[2, 1]\), \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE + m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\(L2\ p\)\/\(2\ L1\ \[Mu]\) - \[Theta][ 3]\), \(\[Theta][2]\)}, {\(\(L2\ p\)\/\(2\ L1\ \[Mu]\) + \[Theta][ 3]\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\), \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][ 1]\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\((mE + m\[Theta] - mH)\) /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\) - ug[2, 1]\), \(\(L2\ p\)\/\(2\ L1\ \[Mu]\) - ug[1, 2] - \[Theta][3]\), \(\[Theta][2]\)}, {\(\(L2\ p\)\/\(2\ L1\ \[Mu]\) - ug[2, 1] + \[Theta][ 3]\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ \ L1\ \[Mu]\^2\) - ug[2, 2]\), \(-\[Theta][1]\)}, {\(\(-ug[3, 1]\) - \[Theta][2]\), \(\(-ug[3, 2]\) + \[Theta][ 1]\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ \ L1\ \[Mu]\^2\) - ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["\<\ Descrittori dei campi di spostamento affini vincolati e componenti dalla \ tensione non determinate dalle equazioni di bilancio\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(var = Intersection[Variables[\((mE + m\[Theta] - mH)\) /. uvinc], Join[Flatten[mH], Flatten[mE], Flatten[m\[Theta]], Flatten[mT], u0]]\)], "Input"], Cell[BoxData[ \({ug[1, 2], ug[2, 1], ug[2, 2], ug[3, 1], ug[3, 2], ug[3, 3], \[Theta][1], \[Theta][2], \[Theta][3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(sol = \(Solve[Map[\((# \[Equal] 0)\) &, Flatten[\((mE + m\[Theta] - mH)\ \)] /. uvinc], var]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({ug[1, 2] \[Rule] \(-\(\(\(-4\)\ L2\ p\ \[Lambda] - 3\ L2\ p\ \[Mu]\)\/\(L1\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), ug[2, 1] \[Rule] \(-\(\(L2\ p\ \[Lambda] + L2\ p\ \[Mu]\)\/\(L1\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), ug[2, 2] \[Rule] \(L2\ p\ \[Lambda]\)\/\(2\ L1\ \[Mu]\ \((3\ \[Lambda] \ + 2\ \[Mu])\)\), ug[3, 1] \[Rule] 0, ug[3, 2] \[Rule] 0, ug[3, 3] \[Rule] \(L2\ p\ \[Lambda]\)\/\(2\ L1\ \[Mu]\ \((3\ \[Lambda] \ + 2\ \[Mu])\)\), \[Theta][1] \[Rule] 0, \[Theta][2] \[Rule] 0, \[Theta][ 3] \[Rule] \(-\(\(5\ L2\ p\ \[Lambda] + 4\ L2\ p\ \[Mu]\)\/\(2\ L1\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\)}\)], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mH /. uvinc\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\(4\ L2\ p\ \[Lambda] + 3\ L2\ p\ \[Mu]\)\/\(3\ L1\ \[Lambda]\ \[Mu] + 2\ L1\ \[Mu]\^2\)\), "0"}, {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(\(L2\ p\)\/\(2\ L1\ \[Mu]\)\), "0"}, {\(\(L2\ p\)\/\(2\ L1\ \[Mu]\)\), \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta] /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { "0", \(\(5\ L2\ p\ \[Lambda] + 4\ L2\ p\ \[Mu]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\)\), "0"}, {\(\(5\ L2\ p\ \[Lambda] + 4\ L2\ p\ \[Mu]\)\/\(\(-6\)\ L1\ \[Lambda]\ \[Mu] - 4\ L1\ \[Mu]\^2\)\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u0 /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mH /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/\(L1\ Y\)\)\), \(\(L2\ p\ \((3 + 2\ \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {\(-\(\(L2\ p\)\/\(L1\ Y\)\)\), \(\(L2\ p\ \[Nu]\)\/\(L1\ Y\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Nu]\)\/\(L1\ Y\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mE /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/\(L1\ Y\)\)\), \(\(L2\ p\ \((1 + \ \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {\(\(L2\ p\ \((1 + \[Nu])\)\)\/\(L1\ Y\)\), \(\(L2\ p\ \ \[Nu]\)\/\(L1\ Y\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Nu]\)\/\(L1\ Y\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mT /. tens\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/L1\)\), \(\(L2\ p\)\/L1\), "0"}, {\(\(L2\ p\)\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mT /. tens\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/L1\)\), \(\(L2\ p\)\/L1\), "0"}, {\(\(L2\ p\)\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Visualizzazione", "Section"], Cell[CellGroupData[{ Cell["Eliminazione spostamento rigido", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({\(L2\ p\ \((\(-L1\) - 2\ \[Zeta]1 + 6\ \[Zeta]2 + 4\ \[Zeta]2\ \[Nu] + \ L2\ \((3 + 2\ \[Nu])\))\)\)\/\(2\ L1\ Y\), \(-\(\(L2\ p\ \((L1 + 2\ \[Zeta]1 - \((L2 + 2\ \[Zeta]2)\)\ \[Nu])\)\)\/\(2\ L1\ Y\)\)\), u03 + \(L2\ p\ \[Zeta]3\ \[Nu]\)\/\(L1\ Y\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(u[x0] /. uvinc\) /. sol // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(mH /. uvinc\) /. sol // Simplify\)], "Input"], Cell[BoxData[ \({{\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \[Lambda] \ + 2\ \[Mu])\)\)\)\), \(4\ L2\ p\ \[Lambda] + 3\ L2\ p\ \[Mu]\)\/\(3\ L1\ \ \[Lambda]\ \[Mu] + 2\ L1\ \[Mu]\^2\), 0}, {\(-\(\(L2\ p\ \((\[Lambda] + \[Mu])\)\)\/\(L1\ \[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(L2\ p\ \[Lambda]\)\/\(6\ L1\ \ \[Lambda]\ \[Mu] + 4\ L1\ \[Mu]\^2\), 0}, {0, 0, \(L2\ p\ \[Lambda]\)\/\(6\ L1\ \[Lambda]\ \[Mu] + 4\ L1\ \ \[Mu]\^2\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[\(\(\({u[x0], mH} /. uvinc\) /. sol // Flatten\) // Simplify\) // Variables, {L1, L2, L3, \[ScriptCapitalL], p, q, \[Lambda], \[Mu]}]\)], "Input"], Cell[BoxData[ \({u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(urig = Map[# \[Rule] 0\ &, %]\)], "Input"], Cell[BoxData[ \({u03 \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di visualizzazione", "Subsection"], Cell[BoxData[ \(projection[n_] := Drop[If[n \[Equal] 3 || n \[Equal] 2, #, {#\[LeftDoubleBracket]1\[RightDoubleBracket], \(-#\ \[LeftDoubleBracket]3\[RightDoubleBracket]\), #\[LeftDoubleBracket]2\ \[RightDoubleBracket]}], {n}] &\)], "Input"], Cell[BoxData[ \(\(proj[n_] := Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[ScriptCapitalL] = 1, \[Nu] = 0.3, Y = 20}, Block[{x0Q = projection[n] /@ corpo, xQ = Simplify[\(\(\(projection[n] /@ \(\[Phi] /@ \ corpo\) /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. urig\) /. \[InvisibleSpace]lam\[EAcute]]}, plt0 = ParametricPlot[ Evaluate[x0Q], {\[Xi], \(-\(1\/2\)\), 1\/2}, PlotStyle \[Rule] {Hue[0.2]}, AspectRatio \[Rule] Automatic, Axes \[Rule] False, DisplayFunction \[Rule] Identity]; plt1 = ParametricPlot[Evaluate[xQ], {\[Xi], \(-\(1\/2\)\), 1\/2}, PlotStyle \[Rule] {Hue[0.9]}, AspectRatio \[Rule] Automatic, Axes \[Rule] False, DisplayFunction \[Rule] Identity]]; Show[plt0, plt1, DisplayFunction \[Rule] $DisplayFunction]];\)\)], "Input"], Cell[BoxData[ \(\(wframe := Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[ScriptCapitalL] = 1, \[Nu] = 0.3, Y = 20}, Block[{x0Q = corpo, xQ = Simplify[\(\(\(\[Phi] /@ \ corpo /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. urig\) /. \[InvisibleSpace]lam\[EAcute]]}, plt0 = ParametricPlot3D[ Evaluate[x0Q], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False, Boxed \[Rule] False, DisplayFunction \[Rule] Identity]; plt1 = ParametricPlot3D[ Evaluate[xQ], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False, Boxed \[Rule] False, DisplayFunction \[Rule] Identity]]; Show[plt0, plt1, DisplayFunction \[Rule] $DisplayFunction]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(wframe;\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09613 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0610098 1.1782 -6.38053e-17 1.1782 [ [ 0 0 0 0 ] [ 1 1.09613 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09613 L 0 1.09613 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .42917 .59237 m .429 .59797 L s .42567 .58877 m .42917 .59237 L s .43165 .58682 m .42917 .59237 L s .429 .59797 m .42883 .60358 L s .42214 .58516 m .42567 .58877 L s .43415 .58123 m .43165 .58682 L s .42883 .60358 m .42866 .60922 L s .41861 .58153 m .42214 .58516 L s .42866 .60922 m .42849 .61487 L s .41506 .57789 m .41861 .58153 L s .43667 .57561 m .43415 .58123 L s .42849 .61487 m .42831 .62055 L s .41149 .57423 m .41506 .57789 L s .42831 .62055 m .42814 .62624 L s .4392 .56995 m .43667 .57561 L s .42814 .62624 m .42797 .63196 L s .40791 .57056 m .41149 .57423 L s .51371 .56706 m .51368 .57276 L s .50918 .56367 m .51371 .56706 L s .51486 .56158 m .51371 .56706 L s .42797 .63196 m .42779 .63769 L s .40431 .56687 m .40791 .57056 L s .44174 .56425 m .4392 .56995 L s .51368 .57276 m .51366 .57849 L s .50463 .56027 m .50918 .56367 L s .42779 .63769 m .42762 .64345 L s .4007 .56317 m .40431 .56687 L s .51601 .55607 m .51486 .56158 L s .51366 .57849 m .51363 .58423 L s .50007 .55686 m .50463 .56027 L s .42762 .64345 m .42744 .64922 L s .4443 .55852 m .44174 .56425 L s .39708 .55945 m .4007 .56317 L s .51363 .58423 m .51361 .58999 L s .42744 .64922 m .42726 .65502 L s .49549 .55343 m .50007 .55686 L s .51717 .55052 m .51601 .55607 L s .39343 .55572 m .39708 .55945 L s .51361 .58999 m .51358 .59578 L s .42726 .65502 m .42709 .66083 L s .44688 .55275 m .4443 .55852 L s .49089 .54999 m .49549 .55343 L s .51358 .59578 m .51355 .60158 L s .42709 .66083 m .42691 .66667 L s .38978 .55197 m .39343 .55572 L s .51834 .54494 m .51717 .55052 L s .48627 .54654 m .49089 .54999 L s .51355 .60158 m .51353 .60741 L s .44948 .54694 m .44688 .55275 L s .42691 .66667 m .42673 .67252 L s .3861 .5482 m .38978 .55197 L s .48164 .54307 m .48627 .54654 L s .51353 .60741 m .5135 .61326 L s .51952 .53932 m .51834 .54494 L s .42673 .67252 m .42655 .6784 L s .38242 .54442 m .3861 .5482 L s .47698 .53959 m .48164 .54307 L s .45209 .54109 m .44948 .54694 L s .5135 .61326 m .51348 .61913 L s .42655 .6784 m .42637 .6843 L s .47231 .5361 m .47698 .53959 L s .37871 .54062 m .38242 .54442 L s .52071 .53367 m .51952 .53932 L s .51348 .61913 m .51345 .62502 L s .42637 .6843 m .42619 .69022 L s .45472 .53521 m .45209 .54109 L s .46762 .53259 m .47231 .5361 L s .37499 .5368 m .37871 .54062 L s .51345 .62502 m .51342 .63093 L s .42619 .69022 m .42601 .69616 L s .5219 .52798 m .52071 .53367 L s .46291 .52907 m .46762 .53259 L s .51342 .63093 m .5134 .63686 L s .42601 .69616 m .42583 .70212 L s .37126 .53297 m .37499 .5368 L s .45737 .52929 m .45472 .53521 L s .45819 .52553 m .46291 .52907 L s .5134 .63686 m .51337 .64281 L s .42583 .70212 m .42565 .7081 L s .3675 .52913 m .37126 .53297 L s .5231 .52226 m .5219 .52798 L s .51337 .64281 m .51334 .64879 L s .45344 .52198 m .45819 .52553 L s .42565 .7081 m .42546 .7141 L s .46004 .52332 m .45737 .52929 L s .36374 .52526 m .3675 .52913 L s .51334 .64879 m .51332 .65478 L s .5243 .5165 m .5231 .52226 L s .42546 .7141 m .42528 .72013 L s .44868 .51842 m .45344 .52198 L s .35995 .52138 m .36374 .52526 L s .51332 .65478 m .51329 .6608 L s .42528 .72013 m .42509 .72618 L s .44389 .51484 m .44868 .51842 L s .46272 .51732 m .46004 .52332 L s .52552 .5107 m .5243 .5165 L s .35615 .51748 m .35995 .52138 L s .42509 .72618 m .42491 .73224 L s .51329 .6608 m .51326 .66684 L s .43909 .51125 m .44389 .51484 L s .42491 .73224 m .42472 .73834 L s .35234 .51357 m .35615 .51748 L s .51326 .66684 m .51324 .67291 L s .46542 .51128 m .46272 .51732 L s .43427 .50765 m .43909 .51125 L s .52674 .50487 m .52552 .5107 L s .42472 .73834 m .42454 .74445 L s .51324 .67291 m .51321 .67899 L s .3485 .50964 m .35234 .51357 L s .42943 .50403 m .43427 .50765 L s .46814 .5052 m .46542 .51128 L s .42454 .74445 m .42435 .75058 L s .51321 .67899 m .51318 .6851 L s .52797 .49899 m .52674 .50487 L s .34465 .50569 m .3485 .50964 L s .42457 .50039 m .42943 .50403 L s .42435 .75058 m .42416 .75674 L s .51318 .6851 m .51315 .69123 L s .34079 .50173 m .34465 .50569 L s .4197 .49675 m .42457 .50039 L s .47088 .49907 m .46814 .5052 L s .42416 .75674 m .42397 .76292 L s .51315 .69123 m .51313 .69738 L s .52921 .49308 m .52797 .49899 L s .4148 .49308 m .4197 .49675 L s .3369 .49774 m .34079 .50173 L s .42397 .76292 m .42379 .76912 L s .51313 .69738 m .5131 .70356 L s .47363 .49291 m .47088 .49907 L s .53046 .48714 m .52921 .49308 L s .40988 .4894 m .4148 .49308 L s .42379 .76912 m .4236 .77534 L s .333 .49374 m .3369 .49774 L s .5131 .70356 m .51307 .70975 L s .40494 .48571 m .40988 .4894 L s .4236 .77534 m .42341 .78159 L s .51307 .70975 m .51304 .71597 L s .32909 .48973 m .333 .49374 L s .47641 .4867 m .47363 .49291 L s .53171 .48115 m .53046 .48714 L s .42341 .78159 m .42321 .78786 L s .39998 .482 m .40494 .48571 L s .51304 .71597 m .51302 .72222 L s .32515 .48569 m .32909 .48973 L s .42321 .78786 m .42302 .79415 L s .51302 .72222 m .51299 .72848 L s .39501 .47828 m .39998 .482 L s .4792 .48045 m .47641 .4867 L s .53297 .47512 m .53171 .48115 L s .3212 .48164 m .32515 .48569 L s .42302 .79415 m .42283 .80047 L s .51299 .72848 m .51296 .73477 L s .39001 .47455 m .39501 .47828 L s .31723 .47757 m .3212 .48164 L s .42283 .80047 m .42264 .8068 L s .48201 .47416 m .4792 .48045 L s .51296 .73477 m .51293 .74109 L s .53425 .46906 m .53297 .47512 L s .38499 .47079 m .39001 .47455 L s .42264 .8068 m .42244 .81317 L s .31324 .47348 m .31723 .47757 L s .51293 .74109 m .5129 .74743 L s .37996 .46702 m .38499 .47079 L s .42244 .81317 m .42225 .81955 L s .48484 .46783 m .48201 .47416 L s .53552 .46295 m .53425 .46906 L s .30924 .46937 m .31324 .47348 L s .5129 .74743 m .51288 .75379 L s .3749 .46324 m .37996 .46702 L s .42225 .81955 m .42205 .82596 L s .51288 .75379 m .51285 .76017 L s .30522 .46525 m .30924 .46937 L s .36982 .45944 m .3749 .46324 L s .53681 .45681 m .53552 .46295 L s .48769 .46145 m .48484 .46783 L s .42205 .82596 m .42186 .83239 L s .51285 .76017 m .51282 .76658 L s .30118 .4611 m .30522 .46525 L s .36472 .45563 m .36982 .45944 L s .42186 .83239 m .42166 .83885 L s .51282 .76658 m .51279 .77301 L s .53811 .45062 m .53681 .45681 L s .49056 .45503 m .48769 .46145 L s .29712 .45694 m .30118 .4611 L s .3596 .4518 m .36472 .45563 L s .42166 .83885 m .42146 .84533 L s .51279 .77301 m .51276 .77947 L s .42146 .84533 m .42126 .85183 L s .29304 .45276 m .29712 .45694 L s .35446 .44795 m .3596 .4518 L s .51276 .77947 m .51273 .78595 L s .53941 .44439 m .53811 .45062 L s .49345 .44856 m .49056 .45503 L s .42126 .85183 m .42106 .85836 L s .34929 .44409 m .35446 .44795 L s .28895 .44856 m .29304 .45276 L s .51273 .78595 m .5127 .79246 L s .42106 .85836 m .42086 .86492 L s .54073 .43813 m .53941 .44439 L s .34411 .44022 m .34929 .44409 L s .5127 .79246 m .51267 .79899 L s .28483 .44435 m .28895 .44856 L s .49636 .44205 m .49345 .44856 L s .42086 .86492 m .42066 .87149 L s .33891 .43632 m .34411 .44022 L s .51267 .79899 m .51264 .80554 L s .2807 .44011 m .28483 .44435 L s .54205 .43181 m .54073 .43813 L s .42066 .87149 m .42046 .8781 L s .4993 .4355 m .49636 .44205 L s .51264 .80554 m .51261 .81212 L s .33368 .43241 m .33891 .43632 L s .27655 .43585 m .2807 .44011 L s .42046 .8781 m .42026 .88472 L s .51261 .81212 m .51259 .81873 L s .32843 .42849 m .33368 .43241 L s .54338 .42546 m .54205 .43181 L s .42026 .88472 m .42006 .89138 L s .27238 .43158 m .27655 .43585 L s .50225 .4289 m .4993 .4355 L s .51259 .81873 m .51256 .82536 L s .32316 .42455 m .32843 .42849 L s .42006 .89138 m .41985 .89805 L s .2682 .42728 m .27238 .43158 L s .51256 .82536 m .51253 .83202 L s .54472 .41907 m .54338 .42546 L s .31787 .42059 m .32316 .42455 L s .50522 .42225 m .50225 .4289 L s .41985 .89805 m .41965 .90475 L s .26399 .42297 m .2682 .42728 L s .51253 .83202 m .5125 .8387 L s .31255 .41662 m .31787 .42059 L s .41965 .90475 m .41945 .91148 L s .54607 .41263 m .54472 .41907 L s .5125 .8387 m .51247 .84541 L s .25976 .41864 m .26399 .42297 L s .50821 .41555 m .50522 .42225 L s .30722 .41262 m .31255 .41662 L s .41945 .91148 m .41924 .91824 L s .51247 .84541 m .51244 .85214 L s .25552 .41428 m .25976 .41864 L s .41924 .91824 m .41903 .92501 L s .54743 .40615 m .54607 .41263 L s .30186 .40862 m .30722 .41262 L s .51244 .85214 m .51241 .8589 L s .51122 .40881 m .50821 .41555 L s .41903 .92501 m .41883 .93182 L s .25126 .40991 m .25552 .41428 L s .29648 .40459 m .30186 .40862 L s .51241 .8589 m .51238 .86568 L s .5488 .39962 m .54743 .40615 L s .41883 .93182 m .41862 .93865 L s .24697 .40552 m .25126 .40991 L s .29108 .40055 m .29648 .40459 L s .51238 .86568 m .51234 .87249 L s .51426 .40202 m .51122 .40881 L s .41862 .93865 m .41841 .94551 L s .28565 .39649 m .29108 .40055 L s .24267 .4011 m .24697 .40552 L s .51234 .87249 m .51231 .87933 L s .55017 .39305 m .5488 .39962 L s .41841 .94551 m .4182 .95239 L s .51731 .39519 m .51426 .40202 L s .2802 .39242 m .28565 .39649 L s .51231 .87933 m .51228 .8862 L s .23835 .39667 m .24267 .4011 L s .4182 .95239 m .41799 .9593 L s .55156 .38644 m .55017 .39305 L s .27473 .38833 m .2802 .39242 L s .51228 .8862 m .51225 .89309 L s .234 .39222 m .23835 .39667 L s .41799 .9593 m .41778 .96623 L s .52039 .3883 m .51731 .39519 L s .51225 .89309 m .51222 .90001 L s .26923 .38422 m .27473 .38833 L s .41778 .96623 m .41756 .9732 L s .22964 .38774 m .234 .39222 L s .55295 .37977 m .55156 .38644 L s .51222 .90001 m .51219 .90695 L s .26371 .38009 m .26923 .38422 L s .41756 .9732 m .41735 .98018 L s .52349 .38137 m .52039 .3883 L s .22526 .38325 m .22964 .38774 L s .51219 .90695 m .51216 .91392 L s .25817 .37594 m .26371 .38009 L s .55436 .37307 m .55295 .37977 L s .41735 .98018 m .41714 .9872 L s .22085 .37873 m .22526 .38325 L s .51216 .91392 m .51213 .92092 L s .52661 .37438 m .52349 .38137 L s .25261 .37178 m .25817 .37594 L s .41714 .9872 m .41692 .99424 L s .21643 .37419 m .22085 .37873 L s .51213 .92092 m .5121 .92795 L s .55577 .36632 m .55436 .37307 L s .41692 .99424 m .41671 1.00132 L s .24702 .3676 m .25261 .37178 L s .5121 .92795 m .51207 .93501 L s .52976 .36735 m .52661 .37438 L s .21198 .36963 m .21643 .37419 L s .41671 1.00132 m .41649 1.00841 L s .2414 .3634 m .24702 .3676 L s .5572 .35952 m .55577 .36632 L s .51207 .93501 m .51203 .94209 L s .41649 1.00841 m .41627 1.01554 L s .20752 .36505 m .21198 .36963 L s .23577 .35919 m .2414 .3634 L s .53293 .36026 m .52976 .36735 L s .51203 .94209 m .512 .9492 L s .41627 1.01554 m .41606 1.02269 L s .20303 .36045 m .20752 .36505 L s .55863 .35267 m .5572 .35952 L s .2301 .35495 m .23577 .35919 L s .512 .9492 m .51197 .95634 L s .41606 1.02269 m .41584 1.02987 L s .19852 .35583 m .20303 .36045 L s .22442 .3507 m .2301 .35495 L s .53612 .35312 m .53293 .36026 L s .51197 .95634 m .51194 .96351 L s .41584 1.02987 m .41562 1.03708 L s .56008 .34578 m .55863 .35267 L s .21871 .34643 m .22442 .3507 L s .19399 .35119 m .19852 .35583 L s .51194 .96351 m .51191 .9707 L s .41562 1.03708 m .4154 1.04432 L s .53933 .34593 m .53612 .35312 L s .21297 .34214 m .21871 .34643 L s .51191 .9707 m .51187 .97793 L s .56153 .33883 m .56008 .34578 L s .18944 .34652 m .19399 .35119 L s .4154 1.04432 m .41517 1.05159 L s .20721 .33783 m .21297 .34214 L s .51187 .97793 m .51184 .98518 L s .41517 1.05159 m .41495 1.05888 L s .18487 .34183 m .18944 .34652 L s .54257 .33869 m .53933 .34593 L s .563 .33184 m .56153 .33883 L s .51184 .98518 m .51181 .99246 L s .20143 .3335 m .20721 .33783 L s .41495 1.05888 m .41473 1.06621 L s .18028 .33712 m .18487 .34183 L s .51181 .99246 m .51178 .99978 L s .19562 .32916 m .20143 .3335 L s .54583 .3314 m .54257 .33869 L s .41067 1.06321 m .41473 1.06621 L s .41752 1.06158 m .41473 1.06621 L s .56447 .3248 m .563 .33184 L s .17566 .33239 m .18028 .33712 L s .51178 .99978 m .51174 1.00712 L s .18978 .32479 m .19562 .32916 L s .4066 1.0602 m .41067 1.06321 L s .17103 .32763 m .17566 .33239 L s .51174 1.00712 m .51171 1.01449 L s .54911 .32405 m .54583 .3314 L s .42033 1.05692 m .41752 1.06158 L s .56596 .31771 m .56447 .3248 L s .18392 .32041 m .18978 .32479 L s .40251 1.05717 m .4066 1.0602 L s .16637 .32285 m .17103 .32763 L s .51171 1.01449 m .51168 1.02189 L s .17803 .31601 m .18392 .32041 L s .39839 1.05413 m .40251 1.05717 L s .55242 .31665 m .54911 .32405 L s .42317 1.05222 m .42033 1.05692 L s .51168 1.02189 m .51164 1.02932 L s .56746 .31057 m .56596 .31771 L s .16168 .31805 m .16637 .32285 L s .17212 .31159 m .17803 .31601 L s .39426 1.05107 m .39839 1.05413 L s .51164 1.02932 m .51161 1.03678 L s .15698 .31323 m .16168 .31805 L s .16618 .30714 m .17212 .31159 L s .55575 .30919 m .55242 .31665 L s .42602 1.04749 m .42317 1.05222 L s .56896 .30338 m .56746 .31057 L s .51161 1.03678 m .51158 1.04427 L s .39011 1.048 m .39426 1.05107 L s .15225 .30838 m .15698 .31323 L s .16022 .30268 m .16618 .30714 L s .51158 1.04427 m .51154 1.05179 L s .38593 1.04491 m .39011 1.048 L s .55911 .30168 m .55575 .30919 L s .4289 1.04272 m .42602 1.04749 L s .57048 .29613 m .56896 .30338 L s .1475 .30351 m .15225 .30838 L s .15422 .2982 m .16022 .30268 L s .50633 1.04897 m .51154 1.05179 L s .51286 1.04722 m .51154 1.05179 L s .38174 1.04181 m .38593 1.04491 L s .14821 .2937 m .15422 .2982 L s .14273 .29862 m .1475 .30351 L s .50109 1.04613 m .50633 1.04897 L s .57201 .28884 m .57048 .29613 L s .5625 .29411 m .55911 .30168 L s .4318 1.03792 m .4289 1.04272 L s .37753 1.0387 m .38174 1.04181 L s .51418 1.04262 m .51286 1.04722 L s .14216 .28918 m .14821 .2937 L s .13794 .2937 m .14273 .29862 L s .49582 1.04328 m .50109 1.04613 L s .37329 1.03557 m .37753 1.0387 L s .13609 .28464 m .14216 .28918 L s .57355 .28149 m .57201 .28884 L s .5659 .28648 m .5625 .29411 L s .43471 1.03308 m .4318 1.03792 L s .49054 1.04041 m .49582 1.04328 L s .13312 .28876 m .13794 .2937 L s .51551 1.03798 m .51418 1.04262 L s .36904 1.03242 m .37329 1.03557 L s .12999 .28008 m .13609 .28464 L s .48523 1.03753 m .49054 1.04041 L s .12828 .28379 m .13312 .28876 L s .5751 .27409 m .57355 .28149 L s .56934 .2788 m .5659 .28648 L s .43766 1.0282 m .43471 1.03308 L s .12387 .2755 m .12999 .28008 L s .36476 1.02926 m .36904 1.03242 L s .51686 1.03331 m .51551 1.03798 L s .47989 1.03465 m .48523 1.03753 L s .12341 .2788 m .12828 .28379 L s .12387 .2755 m .12994 .27267 L s .12387 .2755 m .12303 .28154 L s .36047 1.02608 m .36476 1.02926 L s .47453 1.03174 m .47989 1.03465 L s .57666 .26664 m .5751 .27409 L s .12341 .2788 m .13007 .27609 L s .12341 .2788 m .12259 .28477 L s .5728 .27106 m .56934 .2788 L s .44062 1.02329 m .43766 1.0282 L s .12994 .27267 m .13603 .26983 L s .51821 1.0286 m .51686 1.03331 L s .12303 .28154 m .12219 .28761 L s .13007 .27609 m .13674 .27337 L s .46915 1.02883 m .47453 1.03174 L s .13603 .26983 m .14214 .26698 L s .35615 1.02289 m .36047 1.02608 L s .12259 .28477 m .12176 .29077 L s .13674 .27337 m .14343 .27064 L s .12219 .28761 m .12135 .29371 L s .14214 .26698 m .14826 .26413 L s .57824 .25913 m .57666 .26664 L s .57629 .26326 m .5728 .27106 L s .4436 1.01834 m .44062 1.02329 L s .46374 1.0259 m .46915 1.02883 L s .14343 .27064 m .15014 .2679 L s .51957 1.02386 m .51821 1.0286 L s .12176 .29077 m .12093 .29678 L s .35181 1.01968 m .35615 1.02289 L s .14826 .26413 m .1544 .26127 L s .12135 .29371 m .12051 .29983 L s .15014 .2679 m .15687 .26516 L s .1544 .26127 m .16056 .2584 L s .45831 1.02296 m .46374 1.0259 L s .12093 .29678 m .12009 .30283 L s .34745 1.01646 m .35181 1.01968 L s .15687 .26516 m .16362 .26241 L s .57982 .25156 m .57824 .25913 L s .12051 .29983 m .11966 .30598 L s .16056 .2584 m .16674 .25553 L s .5798 .2554 m .57629 .26326 L s .44661 1.01335 m .4436 1.01834 L s .52094 1.01909 m .51957 1.02386 L s .16362 .26241 m .17038 .25966 L s .12009 .30283 m .11925 .3089 L s .45286 1.02 m .45831 1.02296 L s .16674 .25553 m .17293 .25264 L s .34307 1.01322 m .34745 1.01646 L s .11966 .30598 m .1188 .31215 L s .17038 .25966 m .17716 .25689 L s .17293 .25264 m .17914 .24975 L s .11925 .3089 m .11841 .31499 L s .58142 .24394 m .57982 .25156 L s .44738 1.01703 m .45286 1.02 L s .17716 .25689 m .18396 .25412 L s .52232 1.01428 m .52094 1.01909 L s .1188 .31215 m .11795 .31835 L s .17914 .24975 m .18537 .24685 L s .58334 .24748 m .5798 .2554 L s .44964 1.00833 m .44661 1.01335 L s .33867 1.00996 m .34307 1.01322 L s .18396 .25412 m .19078 .25134 L s .11841 .31499 m .11757 .32111 L s .18537 .24685 m .19161 .24394 L s .44187 1.01405 m .44738 1.01703 L s .19078 .25134 m .19762 .24855 L s .11795 .31835 m .11709 .32458 L s .33424 1.00669 m .33867 1.00996 L s .58303 .23627 m .58142 .24394 L s .19161 .24394 m .19787 .24102 L s .11757 .32111 m .11672 .32726 L s .19762 .24855 m .20447 .24576 L s .52372 1.00944 m .52232 1.01428 L s .43634 1.01105 m .44187 1.01405 L s .58691 .2395 m .58334 .24748 L s .4527 1.00326 m .44964 1.00833 L s .11709 .32458 m .11623 .33083 L s .19787 .24102 m .20415 .2381 L s .20447 .24576 m .21134 .24296 L s .11672 .32726 m .11587 .33343 L s .3298 1.0034 m .33424 1.00669 L s .20415 .2381 m .21045 .23516 L s .21134 .24296 m .21824 .24015 L s .43078 1.00804 m .43634 1.01105 L s .11623 .33083 m .11536 .33711 L s .58465 .22854 m .58303 .23627 L s .21045 .23516 m .21677 .23222 L s .11587 .33343 m .11501 .33962 L s .52512 1.00456 m .52372 1.00944 L s .21824 .24015 m .22515 .23733 L s .32533 1.0001 m .3298 1.0034 L s .5905 .23146 m .58691 .2395 L s .45578 .99816 m .4527 1.00326 L s .11536 .33711 m .11449 .34341 L s .4252 1.00502 m .43078 1.00804 L s .21677 .23222 m .2231 .22927 L s .22515 .23733 m .23208 .23451 L s .11501 .33962 m .11415 .34584 L s .2231 .22927 m .22945 .22631 L s .23208 .23451 m .23902 .23168 L s .32084 .99677 m .32533 1.0001 L s .58628 .22075 m .58465 .22854 L s .11449 .34341 m .11362 .34974 L s .4196 1.00198 m .4252 1.00502 L s .52653 .99964 m .52512 1.00456 L s .22945 .22631 m .23582 .22334 L s .11415 .34584 m .11329 .35209 L s .23902 .23168 m .24599 .22884 L s .59412 .22336 m .5905 .23146 L s .45888 .99302 m .45578 .99816 L s .31632 .99344 m .32084 .99677 L s .11362 .34974 m .11274 .3561 L s .23582 .22334 m .2422 .22037 L s .24599 .22884 m .25298 .22599 L s .41396 .99893 m .4196 1.00198 L s .11329 .35209 m .11243 .35836 L s .58792 .2129 m .58628 .22075 L s .2422 .22037 m .24861 .21739 L s .25298 .22599 m .25998 .22314 L s .11274 .3561 m .11186 .36249 L s .52795 .99469 m .52653 .99964 L s .31179 .99008 m .31632 .99344 L s .40831 .99587 m .41396 .99893 L s .59777 .21519 m .59412 .22336 L s .462 .98784 m .45888 .99302 L s .24861 .21739 m .25503 .21439 L s .11243 .35836 m .11156 .36466 L s .25998 .22314 m .267 .22027 L s .267 .22027 m .27405 .2174 L s .11186 .36249 m .11097 .3689 L s .25503 .21439 m .26147 .21139 L s .11156 .36466 m .11068 .37099 L s .40262 .99279 m .40831 .99587 L s .30723 .98671 m .31179 .99008 L s .58958 .20499 m .58792 .2129 L s .27405 .2174 m .28111 .21453 L s .26147 .21139 m .26793 .20838 L s .52939 .9897 m .52795 .99469 L s .11097 .3689 m .11008 .37534 L s .60145 .20696 m .59777 .21519 L s .46515 .98261 m .462 .98784 L s .28111 .21453 m .28819 .21164 L s .11068 .37099 m .10981 .37734 L s .26793 .20838 m .27441 .20537 L s .39691 .98969 m .40262 .99279 L s .30265 .98332 m .30723 .98671 L s .28819 .21164 m .29529 .20875 L s .11008 .37534 m .10919 .3818 L s .27441 .20537 m .28091 .20234 L s .59125 .19703 m .58958 .20499 L s .10981 .37734 m .10892 .38372 L s .53083 .98467 m .52939 .9897 L s .39117 .98659 m .39691 .98969 L s .29529 .20875 m .30241 .20584 L s .28091 .20234 m .28742 .19931 L s .29804 .97992 m .30265 .98332 L s .60516 .19867 m .60145 .20696 L s .46833 .97735 m .46515 .98261 L s .10919 .3818 m .10829 .3883 L s .30241 .20584 m .30955 .20293 L s .10892 .38372 m .10804 .39013 L s .28742 .19931 m .29395 .19626 L s .38541 .98346 m .39117 .98659 L s .30955 .20293 m .31671 .20002 L s .59293 .189 m .59125 .19703 L s .29341 .97649 m .29804 .97992 L s .10829 .3883 m .10739 .39482 L s .29395 .19626 m .30051 .19321 L s .53229 .9796 m .53083 .98467 L s .10804 .39013 m .10715 .39656 L s .31671 .20002 m .32389 .19709 L s .37962 .98033 m .38541 .98346 L s .30051 .19321 m .30708 .19015 L s .60889 .19031 m .60516 .19867 L s .47153 .97205 m .46833 .97735 L s .10739 .39482 m .10649 .40137 L s .28876 .97305 m .29341 .97649 L s .32389 .19709 m .33108 .19416 L s .10715 .39656 m .10626 .40302 L s .30708 .19015 m .31367 .18708 L s .59462 .18092 m .59293 .189 L s .33108 .19416 m .3383 .19122 L s .3738 .97718 m .37962 .98033 L s .10649 .40137 m .10558 .40795 L s .53375 .9745 m .53229 .9796 L s .31367 .18708 m .32027 .184 L s .10626 .40302 m .10536 .40951 L s .28408 .9696 m .28876 .97305 L s .3383 .19122 m .34554 .18827 L s .61266 .18188 m .60889 .19031 L s .47475 .9667 m .47153 .97205 L s .32027 .184 m .3269 .18091 L s .36796 .97401 m .3738 .97718 L s .10558 .40795 m .10467 .41455 L s .34554 .18827 m .3528 .18531 L s .10536 .40951 m .10447 .41602 L s .59633 .17277 m .59462 .18092 L s .3269 .18091 m .33355 .17782 L s .27938 .96612 m .28408 .9696 L s .3528 .18531 m .36008 .18234 L s .53523 .96936 m .53375 .9745 L s .36208 .97083 m .36796 .97401 L s .10467 .41455 m .10375 .42119 L s .33355 .17782 m .34021 .17471 L s .10447 .41602 m .10356 .42257 L s .36008 .18234 m .36737 .17937 L s .61646 .17339 m .61266 .18188 L s .478 .96131 m .47475 .9667 L s .27466 .96263 m .27938 .96612 L s .34021 .17471 m .3469 .1716 L s .36737 .17937 m .37469 .17638 L s .10375 .42119 m .10283 .42785 L s .35618 .96763 m .36208 .97083 L s .59805 .16456 m .59633 .17277 L s .10356 .42257 m .10265 .42914 L s .3469 .1716 m .3536 .16848 L s .53672 .96418 m .53523 .96936 L s .37469 .17638 m .38203 .17339 L s .26991 .95912 m .27466 .96263 L s .10283 .42785 m .10191 .43455 L s .3536 .16848 m .36033 .16534 L s .35026 .96442 m .35618 .96763 L s .10265 .42914 m .10174 .43574 L s .38203 .17339 m .38939 .17039 L s .62028 .16483 m .61646 .17339 L s .48128 .95588 m .478 .96131 L s .36033 .16534 m .36707 .1622 L s .59979 .15629 m .59805 .16456 L s .38939 .17039 m .39677 .16738 L s .26514 .95559 m .26991 .95912 L s .10191 .43455 m .10098 .44127 L s .10174 .43574 m .10083 .44236 L s .3443 .96119 m .35026 .96442 L s .53822 .95895 m .53672 .96418 L s .36707 .1622 m .37383 .15905 L s .39677 .16738 m .40417 .16437 L s .10098 .44127 m .10005 .44802 L s .37383 .15905 m .38062 .15589 L s .62414 .15621 m .62028 .16483 L s .48458 .95041 m .48128 .95588 L s .10083 .44236 m .09991 .44902 L s .40417 .16437 m .41159 .16134 L s .26034 .95204 m .26514 .95559 L s .33831 .95795 m .3443 .96119 L s .60153 .14796 m .59979 .15629 L s .38062 .15589 m .38742 .15272 L s .41159 .16134 m .41903 .15831 L s .10005 .44802 m .09911 .4548 L s .53973 .95369 m .53822 .95895 L s .09991 .44902 m .09899 .45571 L s .25552 .94847 m .26034 .95204 L s .3323 .9547 m .33831 .95795 L s .38742 .15272 m .39424 .14955 L s .41903 .15831 m .4265 .15527 L s .62803 .14751 m .62414 .15621 L s .48791 .94489 m .48458 .95041 L s .09911 .4548 m .09817 .46161 L s .39424 .14955 m .40108 .14636 L s .4265 .15527 m .43398 .15222 L s .09899 .45571 m .09806 .46242 L s .60329 .13956 m .60153 .14796 L s .32626 .95142 m .3323 .9547 L s .25067 .94489 m .25552 .94847 L s .40108 .14636 m .40794 .14316 L s .43398 .15222 m .44148 .14916 L s .54126 .94839 m .53973 .95369 L s .09817 .46161 m .09723 .46845 L s .09806 .46242 m .09713 .46916 L s .44148 .14916 m .44901 .14609 L s .40794 .14316 m .41483 .13996 L s .32019 .94814 m .32626 .95142 L s .63194 .13874 m .62803 .14751 L s .2458 .94129 m .25067 .94489 L s .49127 .93933 m .48791 .94489 L s .09723 .46845 m .09628 .47532 L s .44901 .14609 m .45656 .14302 L s .41483 .13996 m .42173 .13674 L s .09713 .46916 m .09619 .47593 L s .60507 .13109 m .60329 .13956 L s .54279 .94305 m .54126 .94839 L s .31409 .94483 m .32019 .94814 L s .45656 .14302 m .46413 .13993 L s .42173 .13674 m .42865 .13351 L s .2409 .93766 m .2458 .94129 L s .09628 .47532 m .09533 .48222 L s .09619 .47593 m .09526 .48274 L s .46413 .13993 m .47172 .13684 L s .42865 .13351 m .4356 .13028 L s .63589 .12991 m .63194 .13874 L s .49465 .93372 m .49127 .93933 L s .30796 .94151 m .31409 .94483 L s .60685 .12256 m .60507 .13109 L s .47172 .13684 m .47933 .13374 L s .09533 .48222 m .09437 .48916 L s .4356 .13028 m .44256 .12704 L s .09526 .48274 m .09431 .48957 L s .23598 .93402 m .2409 .93766 L s .54434 .93766 m .54279 .94305 L s .47933 .13374 m .48696 .13063 L s .44256 .12704 m .44954 .12378 L s .30181 .93818 m .30796 .94151 L s .09437 .48916 m .09341 .49612 L s .09431 .48957 m .09336 .49643 L s .48696 .13063 m .49461 .12751 L s .23103 .93036 m .23598 .93402 L s .63988 .121 m .63589 .12991 L s .49806 .92807 m .49465 .93372 L s .44954 .12378 m .45655 .12052 L s .60865 .11397 m .60685 .12256 L s .49461 .12751 m .50229 .12438 L s .29562 .93482 m .30181 .93818 L s .09341 .49612 m .09244 .50311 L s .5459 .93224 m .54434 .93766 L s .45655 .12052 m .46358 .11725 L s .09336 .49643 m .09241 .50332 L s .22605 .92668 m .23103 .93036 L s .50229 .12438 m .50999 .12124 L s .46358 .11725 m .47062 .11396 L s .2894 .93146 m .29562 .93482 L s .09244 .50311 m .09147 .51014 L s .09241 .50332 m .09146 .51024 L s .50999 .12124 m .51771 .11809 L s .64389 .11202 m .63988 .121 L s .5015 .92237 m .49806 .92807 L s .61047 .1053 m .60865 .11397 L s .47062 .11396 m .47769 .11067 L s .22105 .92298 m .22605 .92668 L s .51771 .11809 m .52545 .11494 L s .54747 .92677 m .5459 .93224 L s .09147 .51014 m .0905 .51719 L s .09146 .51024 m .0905 .51719 L s .28315 .92807 m .2894 .93146 L s .47769 .11067 m .48478 .10737 L s .52545 .11494 m .53321 .11177 L s .48478 .10737 m .49189 .10406 L s .21602 .91927 m .22105 .92298 L s .0905 .51719 m .08952 .52428 L s .0905 .51719 m .08953 .52417 L s .64794 .10296 m .64389 .11202 L s .50496 .91662 m .5015 .92237 L s .53321 .11177 m .541 .1086 L s .27688 .92467 m .28315 .92807 L s .6123 .09657 m .61047 .1053 L s .49189 .10406 m .49902 .10074 L s .54905 .92126 m .54747 .92677 L s .541 .1086 m .54881 .10542 L s .08953 .52417 m .08857 .53119 L s .21097 .91553 m .21602 .91927 L s .08952 .52428 m .08854 .5314 L s .49902 .10074 m .50617 .0974 L s .27057 .92125 m .27688 .92467 L s .54881 .10542 m .55664 .10223 L s .50617 .0974 m .51334 .09406 L s .65202 .09384 m .64794 .10296 L s .50846 .91083 m .50496 .91662 L s .61414 .08777 m .6123 .09657 L s .08857 .53119 m .08759 .53823 L s .55664 .10223 m .56449 .09903 L s .08854 .5314 m .08755 .53855 L s .20589 .91177 m .21097 .91553 L s .55065 .9157 m .54905 .92126 L s .26423 .91782 m .27057 .92125 L s .51334 .09406 m .52054 .09071 L s .56449 .09903 m .57237 .09582 L s .08759 .53823 m .08662 .54531 L s .08755 .53855 m .08656 .54573 L s .52054 .09071 m .52776 .08735 L s .57237 .09582 m .58027 .0926 L s .20078 .90799 m .20589 .91177 L s .25786 .91437 m .26423 .91782 L s .616 .0789 m .61414 .08777 L s .65613 .08463 m .65202 .09384 L s .51198 .90499 m .50846 .91083 L s .52776 .08735 m .535 .08398 L s .58027 .0926 m .58819 .08937 L s .08662 .54531 m .08564 .55241 L s .08656 .54573 m .08556 .55295 L s .55226 .9101 m .55065 .9157 L s .535 .08398 m .54226 .08059 L s .25146 .9109 m .25786 .91437 L s .58819 .08937 m .59613 .08613 L s .19564 .9042 m .20078 .90799 L s .08564 .55241 m .08465 .55955 L s .08556 .55295 m .08456 .5602 L s .54226 .08059 m .54954 .0772 L s .59613 .08613 m .6041 .08288 L s .61788 .06996 m .616 .0789 L s .66028 .07535 m .65613 .08463 L s .51553 .8991 m .51198 .90499 L s .24502 .90742 m .25146 .9109 L s .19048 .90038 m .19564 .9042 L s .54954 .0772 m .55684 .0738 L s .55388 .90446 m .55226 .9101 L s .6041 .08288 m .61209 .07963 L s .08465 .55955 m .08366 .56672 L s .08456 .5602 m .08356 .56748 L s .55684 .0738 m .56417 .07039 L s .61209 .07963 m .6201 .07636 L s .23856 .90391 m .24502 .90742 L s .08366 .56672 m .08267 .57393 L s .18529 .89654 m .19048 .90038 L s .08356 .56748 m .08255 .57479 L s .56417 .07039 m .57152 .06696 L s .6201 .07636 m .62814 .07308 L s .61976 .06095 m .61788 .06996 L s .66446 .066 m .66028 .07535 L s .51911 .89316 m .51553 .8991 L s .55552 .89877 m .55388 .90446 L s .23206 .9004 m .23856 .90391 L s .57152 .06696 m .57889 .06353 L s .62814 .07308 m .6362 .0698 L s .08267 .57393 m .08167 .58116 L s .08255 .57479 m .08153 .58214 L s .18007 .89268 m .18529 .89654 L s .6362 .0698 m .64429 .0665 L s .57889 .06353 m .58628 .06009 L s .22553 .89686 m .23206 .9004 L s .08167 .58116 m .08066 .58843 L s .62167 .05186 m .61976 .06095 L s .08153 .58214 m .08051 .58952 L s .64429 .0665 m .65239 .0632 L s .58628 .06009 m .5937 .05663 L s .66868 .05656 m .66446 .066 L s .52273 .88718 m .51911 .89316 L s .17482 .8888 m .18007 .89268 L s .55716 .89303 m .55552 .89877 L s .65239 .0632 m .66052 .05989 L s .5937 .05663 m .60113 .05317 L s .08066 .58843 m .07966 .59573 L s .21897 .8933 m .22553 .89686 L s .08051 .58952 m .07949 .59694 L s .66052 .05989 m .66868 .05656 L s .60113 .05317 m .6086 .04969 L s .16955 .8849 m .17482 .8888 L s .62359 .04271 m .62167 .05186 L s .07966 .59573 m .07864 .60306 L s .66868 .05656 m .669 .06268 L s .52637 .88114 m .52273 .88718 L s .21238 .88973 m .21897 .8933 L s .07949 .59694 m .07846 .60439 L s .55882 .88725 m .55716 .89303 L s .6086 .04969 m .61608 .0462 L s .16424 .88097 m .16955 .8849 L s .61608 .0462 m .62359 .04271 L s .07864 .60306 m .07763 .61043 L s .669 .06268 m .66932 .06882 L s .07846 .60439 m .07743 .61187 L s .20575 .88614 m .21238 .88973 L s .62359 .04271 m .62381 .0489 L s .53004 .87505 m .52637 .88114 L s .5605 .88143 m .55882 .88725 L s .07763 .61043 m .0766 .61783 L s .15891 .87703 m .16424 .88097 L s .66932 .06882 m .66964 .075 L s .07743 .61187 m .07639 .61939 L s .19909 .88254 m .20575 .88614 L s .62381 .0489 m .62403 .05513 L s .0766 .61783 m .07558 .62526 L s .66964 .075 m .66996 .0812 L s .15355 .87307 m .15891 .87703 L s .07639 .61939 m .07535 .62694 L s .1924 .87891 m .19909 .88254 L s .62403 .05513 m .62425 .06139 L s .56219 .87555 m .5605 .88143 L s .53374 .86891 m .53004 .87505 L s .07558 .62526 m .07455 .63273 L s .66996 .0812 m .67028 .08743 L s .07535 .62694 m .0743 .63453 L s .14816 .86908 m .15355 .87307 L s .18567 .87527 m .1924 .87891 L s .62425 .06139 m .62447 .06767 L s .07455 .63273 m .07351 .64023 L s .67028 .08743 m .67061 .09368 L s .0743 .63453 m .07325 .64215 L s .56389 .86963 m .56219 .87555 L s .14273 .86507 m .14816 .86908 L s .17891 .8716 m .18567 .87527 L s .62447 .06767 m .6247 .07399 L s .53748 .86272 m .53374 .86891 L s .07351 .64023 m .07247 .64777 L s .67061 .09368 m .67093 .09997 L s .07325 .64215 m .07219 .64981 L s .6247 .07399 m .62492 .08033 L s .17212 .86792 m .17891 .8716 L s .13728 .86104 m .14273 .86507 L s .07247 .64777 m .07143 .65534 L s .67093 .09997 m .67126 .10629 L s .07219 .64981 m .07113 .6575 L s .5656 .86366 m .56389 .86963 L s .54124 .85648 m .53748 .86272 L s .62492 .08033 m .62515 .0867 L s .16529 .86422 m .17212 .86792 L s .07143 .65534 m .07038 .66294 L s .1318 .85698 m .13728 .86104 L s .67126 .10629 m .67159 .11263 L s .07113 .6575 m .07006 .66523 L s .62515 .0867 m .62537 .0931 L s .15843 .86051 m .16529 .86422 L s .07038 .66294 m .06932 .67058 L s .67159 .11263 m .67192 .119 L s .56733 .85764 m .5656 .86366 L s .12629 .85291 m .1318 .85698 L s .07006 .66523 m .06899 .67299 L s .54504 .85018 m .54124 .85648 L s .62537 .0931 m .6256 .09954 L s .06932 .67058 m .06826 .67826 L s .15153 .85677 m .15843 .86051 L s .67192 .119 m .67225 .12541 L s .06899 .67299 m .06791 .6808 L s .12075 .84881 m .12629 .85291 L s .6256 .09954 m .62583 .106 L s .56908 .85157 m .56733 .85764 L s .06826 .67826 m .0672 .68597 L s .67225 .12541 m .67259 .13184 L s .14459 .85301 m .15153 .85677 L s .54887 .84383 m .54504 .85018 L s .06791 .6808 m .06683 .68864 L s .11518 .84469 m .12075 .84881 L s .62583 .106 m .62606 .11249 L s .0672 .68597 m .06613 .69371 L s .67259 .13184 m .67292 .1383 L s .13762 .84924 m .14459 .85301 L s .06683 .68864 m .06574 .69651 L s .57084 .84545 m .56908 .85157 L s .62606 .11249 m .62629 .11902 L s .10957 .84054 m .11518 .84469 L s .06613 .69371 m .06505 .7015 L s .55274 .83742 m .54887 .84383 L s .67292 .1383 m .67326 .14479 L s .13062 .84544 m .13762 .84924 L s .06574 .69651 m .06465 .70442 L s .62629 .11902 m .62652 .12557 L s .06505 .7015 m .06397 .70932 L s .10394 .83638 m .10957 .84054 L s .67326 .14479 m .6736 .15132 L s .06465 .70442 m .06355 .71237 L s .57261 .83928 m .57084 .84545 L s .12358 .84163 m .13062 .84544 L s .62652 .12557 m .62676 .13216 L s .55664 .83096 m .55274 .83742 L s .06397 .70932 m .06289 .71717 L s .6736 .15132 m .67394 .15787 L s .09827 .83219 m .10394 .83638 L s .06355 .71237 m .06245 .72036 L s .1165 .8378 m .12358 .84163 L s .62676 .13216 m .62699 .13877 L s .06289 .71717 m .0618 .72506 L s .67394 .15787 m .67428 .16445 L s .5744 .83306 m .57261 .83928 L s .09257 .82797 m .09827 .83219 L s .06245 .72036 m .06134 .72839 L s .10939 .83394 m .1165 .8378 L s .56057 .82444 m .55664 .83096 L s .62699 .13877 m .62723 .14542 L s .0618 .72506 m .06071 .73299 L s .67428 .16445 m .67462 .17107 L s .06134 .72839 m .06023 .73645 L s .08684 .82373 m .09257 .82797 L s .10224 .83007 m .10939 .83394 L s .62723 .14542 m .62746 .1521 L s .5762 .82678 m .5744 .83306 L s .06071 .73299 m .05961 .74096 L s .67462 .17107 m .67497 .17771 L s .06023 .73645 m .05911 .74456 L s .56453 .81787 m .56057 .82444 L s .08107 .81947 m .08684 .82373 L s .62746 .1521 m .6277 .15881 L s .09505 .82617 m .10224 .83007 L s .05961 .74096 m .0585 .74896 L s .67497 .17771 m .67531 .18439 L s .05911 .74456 m .05799 .7527 L s .57802 .82045 m .5762 .82678 L s .6277 .15881 m .62794 .16556 L s .08782 .82226 m .09505 .82617 L s .0585 .74896 m .05739 .75701 L s .07528 .81519 m .08107 .81947 L s .67531 .18439 m .67566 .1911 L s .56853 .81123 m .56453 .81787 L s .05799 .7527 m .05686 .76088 L s .62794 .16556 m .62818 .17233 L s .05739 .75701 m .05628 .76509 L s .08056 .81833 m .08782 .82226 L s .67566 .1911 m .67601 .19784 L s .06945 .81087 m .07528 .81519 L s .05686 .76088 m .05572 .7691 L s .57985 .81407 m .57802 .82045 L s .62818 .17233 m .62842 .17914 L s .05628 .76509 m .05515 .7732 L s .67601 .19784 m .67636 .20461 L s .07326 .81437 m .08056 .81833 L s .57257 .80454 m .56853 .81123 L s .06359 .80654 m .06945 .81087 L s .05572 .7691 m .05458 .77736 L s .62842 .17914 m .62866 .18599 L s .05515 .7732 m .05403 .78136 L s .67636 .20461 m .67672 .21142 L s .06592 .8104 m .07326 .81437 L s .5817 .80764 m .57985 .81407 L s .05458 .77736 m .05343 .78566 L s .05769 .80218 m .06359 .80654 L s .62866 .18599 m .62891 .19286 L s .05403 .78136 m .0529 .78956 L s .67672 .21142 m .67707 .21826 L s .57664 .79779 m .57257 .80454 L s .05854 .8064 m .06592 .8104 L s .05343 .78566 m .05228 .794 L s .05176 .79779 m .05769 .80218 L s .62891 .19286 m .62915 .19977 L s .0529 .78956 m .05176 .79779 L s .67707 .21826 m .67743 .22513 L s .58357 .80115 m .5817 .80764 L s .05113 .80238 m .05854 .8064 L s .05228 .794 m .05113 .80238 L s .62915 .19977 m .6294 .20671 L s .05176 .79779 m .05949 .79541 L s .58075 .79098 m .57664 .79779 L s .67743 .22513 m .67779 .23203 L s .05113 .80238 m .05818 .7999 L s .05949 .79541 m .06724 .79301 L s .58545 .7946 m .58357 .80115 L s .6294 .20671 m .62965 .21369 L s .67779 .23203 m .67815 .23897 L s .05818 .7999 m .06525 .79741 L s .06724 .79301 m .07501 .79061 L s .5849 .78411 m .58075 .79098 L s .06525 .79741 m .07235 .79491 L s .07501 .79061 m .08281 .78821 L s .62965 .21369 m .62989 .2207 L s .67815 .23897 m .67851 .24594 L s .07235 .79491 m .07947 .7924 L s .08281 .78821 m .09063 .78579 L s .58735 .788 m .58545 .7946 L s .62989 .2207 m .63014 .22775 L s .67851 .24594 m .67887 .25294 L s .09063 .78579 m .09848 .78337 L s .07947 .7924 m .08661 .78989 L s .58908 .77718 m .5849 .78411 L s .09848 .78337 m .10635 .78093 L s .08661 .78989 m .09378 .78736 L s .63014 .22775 m .63039 .23483 L s .67887 .25294 m .67924 .25998 L s .58926 .78134 m .58735 .788 L s .10635 .78093 m .11425 .7785 L s .09378 .78736 m .10097 .78483 L s .63039 .23483 m .63065 .24194 L s .67924 .25998 m .6796 .26705 L s .11425 .7785 m .12217 .77605 L s .10097 .78483 m .10818 .78229 L s .5933 .77018 m .58908 .77718 L s .12217 .77605 m .13012 .7736 L s .10818 .78229 m .11542 .77974 L s .63065 .24194 m .6309 .24909 L s .6796 .26705 m .67997 .27415 L s .59119 .77462 m .58926 .78134 L s .13012 .7736 m .13809 .77113 L s .11542 .77974 m .12268 .77718 L s .6309 .24909 m .63115 .25627 L s .67997 .27415 m .68034 .28129 L s .13809 .77113 m .14608 .76866 L s .12268 .77718 m .12996 .77462 L s .59756 .76313 m .5933 .77018 L s .14608 .76866 m .15411 .76619 L s .59314 .76785 m .59119 .77462 L s .12996 .77462 m .13727 .77204 L s .63115 .25627 m .63141 .26349 L s .68034 .28129 m .68072 .28847 L s .15411 .76619 m .16216 .7637 L s .13727 .77204 m .14461 .76946 L s .63141 .26349 m .63167 .27075 L s .68072 .28847 m .68109 .29568 L s .16216 .7637 m .17023 .76121 L s .60185 .756 m .59756 .76313 L s .14461 .76946 m .15196 .76687 L s .17023 .76121 m .17833 .75871 L s .5951 .76101 m .59314 .76785 L s .15196 .76687 m .15935 .76427 L s .63167 .27075 m .63193 .27804 L s .68109 .29568 m .68147 .30293 L s .17833 .75871 m .18645 .7562 L s .15935 .76427 m .16675 .76166 L s .18645 .7562 m .19461 .75368 L s .68147 .30293 m .68184 .31021 L s .60619 .74882 m .60185 .756 L s .63193 .27804 m .63219 .28537 L s .16675 .76166 m .17418 .75905 L s .59708 .75412 m .5951 .76101 L s .19461 .75368 m .20278 .75115 L s .17418 .75905 m .18164 .75642 L s .68184 .31021 m .68222 .31753 L s .63219 .28537 m .63245 .29274 L s .20278 .75115 m .21099 .74862 L s .18164 .75642 m .18912 .75379 L s .61056 .74156 m .60619 .74882 L s .21099 .74862 m .21922 .74608 L s .68222 .31753 m .68261 .32488 L s .63245 .29274 m .63271 .30014 L s .59908 .74716 m .59708 .75412 L s .18912 .75379 m .19663 .75114 L s .21922 .74608 m .22747 .74353 L s .68261 .32488 m .68299 .33227 L s .19663 .75114 m .20416 .74849 L s .63271 .30014 m .63297 .30758 L s .22747 .74353 m .23576 .74097 L s .20416 .74849 m .21172 .74583 L s .61498 .73424 m .61056 .74156 L s .23576 .74097 m .24407 .7384 L s .68299 .33227 m .68337 .3397 L s .6011 .74015 m .59908 .74716 L s .63297 .30758 m .63324 .31506 L s .21172 .74583 m .2193 .74316 L s .24407 .7384 m .2524 .73583 L s .68337 .3397 m .68376 .34716 L s .2193 .74316 m .22691 .74048 L s .63324 .31506 m .6335 .32258 L s .2524 .73583 m .26077 .73325 L s .61944 .72685 m .61498 .73424 L s .22691 .74048 m .23454 .73779 L s .60313 .73307 m .6011 .74015 L s .26077 .73325 m .26916 .73066 L s .68376 .34716 m .68415 .35467 L s .6335 .32258 m .63377 .33013 L s .23454 .73779 m .2422 .73509 L s .26916 .73066 m .27758 .72806 L s .68415 .35467 m .68454 .36221 L s .2422 .73509 m .24989 .73239 L s .27758 .72806 m .28602 .72545 L s .63377 .33013 m .63404 .33772 L s .62393 .7194 m .61944 .72685 L s .60518 .72592 m .60313 .73307 L s .24989 .73239 m .2576 .72967 L s .28602 .72545 m .2945 .72283 L s .68454 .36221 m .68494 .36978 L s .63404 .33772 m .63431 .34536 L s .2945 .72283 m .303 .72021 L s .2576 .72967 m .26534 .72694 L s .68494 .36978 m .68533 .3774 L s .303 .72021 m .31153 .71757 L s .26534 .72694 m .27311 .72421 L s .63431 .34536 m .63458 .35303 L s .62847 .71187 m .62393 .7194 L s .60725 .71872 m .60518 .72592 L s .31153 .71757 m .32008 .71493 L s .27311 .72421 m .2809 .72147 L s .68533 .3774 m .68573 .38505 L s .63458 .35303 m .63486 .36074 L s .32008 .71493 m .32867 .71228 L s .2809 .72147 m .28871 .71871 L s .68573 .38505 m .68613 .39275 L s .32867 .71228 m .33728 .70962 L s .63306 .70427 m .62847 .71187 L s .60934 .71145 m .60725 .71872 L s .28871 .71871 m .29656 .71595 L s .63486 .36074 m .63513 .36848 L s .33728 .70962 m .34592 .70695 L s .29656 .71595 m .30443 .71318 L s .68613 .39275 m .68653 .40048 L s .63513 .36848 m .63541 .37627 L s .34592 .70695 m .35459 .70427 L s .30443 .71318 m .31233 .7104 L s .61145 .70411 m .60934 .71145 L s .35459 .70427 m .36329 .70159 L s .63768 .6966 m .63306 .70427 L s .68653 .40048 m .68693 .40825 L s .31233 .7104 m .32026 .70761 L s .63541 .37627 m .63568 .3841 L s .36329 .70159 m .37202 .69889 L s .32026 .70761 m .32821 .70481 L s .68693 .40825 m .68734 .41606 L s .63568 .3841 m .63596 .39197 L s .37202 .69889 m .38078 .69619 L s .32821 .70481 m .33619 .70199 L s .61358 .6967 m .61145 .70411 L s .64235 .68886 m .63768 .6966 L s .38078 .69619 m .38956 .69347 L s .68734 .41606 m .68774 .42391 L s .33619 .70199 m .3442 .69917 L s .63596 .39197 m .63624 .39988 L s .38956 .69347 m .39838 .69075 L s .3442 .69917 m .35224 .69634 L s .68774 .42391 m .68815 .4318 L s .39838 .69075 m .40722 .68802 L s .63624 .39988 m .63652 .40784 L s .61573 .68923 m .61358 .6967 L s .35224 .69634 m .3603 .6935 L s .64707 .68104 m .64235 .68886 L s .40722 .68802 m .41609 .68528 L s .68815 .4318 m .68857 .43973 L s .3603 .6935 m .36839 .69065 L s .63652 .40784 m .63681 .41583 L s .41609 .68528 m .425 .68253 L s .36839 .69065 m .37651 .68779 L s .68857 .43973 m .68898 .44771 L s .425 .68253 m .43393 .67977 L s .61789 .68169 m .61573 .68923 L s .63681 .41583 m .63709 .42387 L s .65183 .67315 m .64707 .68104 L s .37651 .68779 m .38466 .68492 L s .43393 .67977 m .44289 .677 L s .68898 .44771 m .6894 .45572 L s .38466 .68492 m .39284 .68205 L s .63709 .42387 m .63738 .43194 L s .44289 .677 m .45189 .67422 L s .39284 .68205 m .40105 .67916 L s .6894 .45572 m .68981 .46378 L s .62008 .67408 m .61789 .68169 L s .45189 .67422 m .46091 .67144 L s .63738 .43194 m .63767 .44007 L s .65663 .66519 m .65183 .67315 L s .40105 .67916 m .40928 .67626 L s .46091 .67144 m .46996 .66864 L s .68981 .46378 m .69023 .47187 L s .40928 .67626 m .41755 .67334 L s .63767 .44007 m .63796 .44823 L s .46996 .66864 m .47905 .66584 L s .62229 .66639 m .62008 .67408 L s .41755 .67334 m .42584 .67042 L s .69023 .47187 m .69066 .48001 L s .47905 .66584 m .48816 .66302 L s .66149 .65714 m .65663 .66519 L s .63796 .44823 m .63825 .45643 L s .42584 .67042 m .43416 .66749 L s .48816 .66302 m .49731 .6602 L s .69066 .48001 m .69108 .48819 L s .43416 .66749 m .44251 .66455 L s .63825 .45643 m .63854 .46469 L s .49731 .6602 m .50649 .65736 L s .62452 .65864 m .62229 .66639 L s .69108 .48819 m .69151 .49642 L s .50649 .65736 m .5157 .65452 L s .44251 .66455 m .4509 .6616 L s .66639 .64902 m .66149 .65714 L s .63854 .46469 m .63883 .47298 L s .5157 .65452 m .52494 .65167 L s .4509 .6616 m .45931 .65864 L s .69151 .49642 m .69194 .50469 L s .52494 .65167 m .53421 .6488 L s .62677 .65081 m .62452 .65864 L s .45931 .65864 m .46775 .65567 L s .63883 .47298 m .63913 .48132 L s .67133 .64082 m .66639 .64902 L s .53421 .6488 m .54351 .64593 L s .69194 .50469 m .69237 .513 L s .46775 .65567 m .47622 .65268 L s .63913 .48132 m .63943 .4897 L s .54351 .64593 m .55285 .64305 L s .47622 .65268 m .48472 .64969 L s .69237 .513 m .6928 .52135 L s .62904 .64291 m .62677 .65081 L s .55285 .64305 m .56221 .64015 L s .48472 .64969 m .49325 .64668 L s .63943 .4897 m .63972 .49813 L s .67633 .63254 m .67133 .64082 L s .56221 .64015 m .57161 .63725 L s .6928 .52135 m .69324 .52975 L s .49325 .64668 m .50182 .64367 L s .63972 .49813 m .64002 .5066 L s .57161 .63725 m .58104 .63434 L s .50182 .64367 m .51041 .64064 L s .63133 .63494 m .62904 .64291 L s .69324 .52975 m .69368 .5382 L s .58104 .63434 m .59051 .63142 L s .51041 .64064 m .51903 .6376 L s .64002 .5066 m .64033 .51512 L s .68137 .62418 m .67633 .63254 L s .59051 .63142 m .60001 .62848 L s .69368 .5382 m .69412 .54669 L s .51903 .6376 m .52769 .63456 L s .64033 .51512 m .64063 .52368 L s .60001 .62848 m .60954 .62554 L s .63364 .62689 m .63133 .63494 L s .52769 .63456 m .53638 .6315 L s .69412 .54669 m .69456 .55522 L s .60954 .62554 m .6191 .62259 L s .68647 .61573 m .68137 .62418 L s .53638 .6315 m .5451 .62843 L s .64063 .52368 m .64093 .5323 L s .6191 .62259 m .62869 .61962 L s .69456 .55522 m .695 .5638 L s .5451 .62843 m .55384 .62535 L s .62869 .61962 m .63832 .61665 L s .63598 .61876 m .63364 .62689 L s .64093 .5323 m .64124 .54095 L s .55384 .62535 m .56263 .62225 L s .695 .5638 m .69545 .57243 L s .63832 .61665 m .64799 .61366 L s .69161 .6072 m .68647 .61573 L s .56263 .62225 m .57144 .61915 L s .64124 .54095 m .64155 .54966 L s .64799 .61366 m .65768 .61067 L s .69545 .57243 m .6959 .5811 L s .57144 .61915 m .58029 .61604 L s .63833 .61056 m .63598 .61876 L s .65768 .61067 m .66741 .60767 L s .64155 .54966 m .64186 .55841 L s .58029 .61604 m .58916 .61291 L s .6959 .5811 m .69635 .58982 L s .66741 .60767 m .67718 .60465 L s .69681 .59859 m .69161 .6072 L s .58916 .61291 m .59807 .60977 L s .64186 .55841 m .64217 .56721 L s .67718 .60465 m .68698 .60162 L s .69635 .58982 m .69681 .59859 L s .64071 .60227 m .63833 .61056 L s .59807 .60977 m .60702 .60662 L s .68698 .60162 m .69681 .59859 L s .64217 .56721 m .64249 .57606 L s .60702 .60662 m .61599 .60346 L s .61599 .60346 m .625 .60029 L s .64249 .57606 m .6428 .58496 L s .64312 .59391 m .64071 .60227 L s .625 .60029 m .63404 .5971 L s .6428 .58496 m .64312 .59391 L s .63404 .5971 m .64312 .59391 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{256.625, 281.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`D0000000<0oooo0000003oool01`3oool010000000 oooo0?ooo`00001D0?ooo`00Q`3oool2000000h0oooo0P0000030?ooo`040000003oool0oooo0000 00L0oooo00D000000?ooo`3oool0oooo0000001D0?ooo`00Q03oool3000000h0oooo0P0000050?oo o`040000003oool0oooo000000L0oooo00D000000?ooo`3oool0oooo0000001D0?ooo`00PP3oool2 000000l0oooo0P0000070?ooo`040000003oool0oooo000000H0oooo00<000000?ooo`3oool00P3o ool00`000000oooo0?ooo`1B0?ooo`00P03oool2000000l0oooo0P0000090?ooo`040000003oool0 oooo000000H0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`1B0?ooo`00OP3oool2 000000d0oooo1000000;0?ooo`040000003oool0oooo000000D0oooo00<000000?ooo`3oool00`3o ool00`000000oooo0?ooo`1B0?ooo`00O03oool2000000d0oooo0P00000?0?ooo`040000003oool0 oooo000000D0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1B0?ooo`00N`3oool0 0`000000oooo0?ooo`0;0?ooo`8000004@3oool010000000oooo0?ooo`0000050?ooo`030000003o ool0oooo00<0oooo00<000000?ooo`3oool0DP3oool007L0oooo1000000<0?ooo`8000004P3oool0 0`000000oooo0?ooo`020?ooo`050000003oool0oooo0?ooo`0000001P3oool00`000000oooo0?oo o`1B0?ooo`00M@3oool2000000`0oooo1000000D0?ooo`030000003oool0oooo0080oooo00D00000 0?ooo`3oool0oooo000000060?ooo`030000003oool0oooo0580oooo001c0?ooo`800000303oool2 000001P0oooo00<000000?ooo`3oool00P3oool010000000oooo0?ooo`0000070?ooo`030000003o ool0oooo0580oooo001b0?ooo`030000003oool0oooo00X0oooo0P00000J0?ooo`030000003oool0 oooo0080oooo00@000000?ooo`3oool000001`3oool00`000000oooo0?ooo`1B0?ooo`00L03oool2 000000/0oooo0P00000L0?ooo`030000003oool0oooo0080oooo00<000000?ooo`000000203oool0 0`000000oooo0?ooo`1B0?ooo`00K03oool4000000T0oooo1000000M0?ooo`030000003oool0oooo 00<0oooo00<000000?ooo`000000203oool00`000000oooo0?ooo`1B0?ooo`00J`3oool00`000000 oooo0?ooo`090?ooo`8000008@3oool00`000000oooo0?ooo`030?ooo`8000002@3oool00`000000 oooo0?ooo`1B0?ooo`00J@3oool2000000X0oooo0P00000S0?ooo`030000003oool0oooo00<0oooo 0P00000:0?ooo`030000003oool0oooo0540oooo001W0?ooo`8000002P3oool2000002D0oooo00<0 00000?ooo`3oool00`3oool2000000X0oooo00<000000?ooo`3oool0D@3oool006D0oooo0P000008 0?ooo`@000009P3oool00`000000oooo0?ooo`040?ooo`030000003oool0oooo00T0oooo00<00000 0?ooo`3oool0D@3oool00680oooo0`0000090?ooo`030000003oool0oooo02P0oooo00<000000?oo o`3oool0103oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo0540oooo001P0?ooo`80 00002P3oool2000002/0oooo00<000000?ooo`3oool00`3oool2000000/0oooo00<000000?ooo`3o ool0D@3oool005h0oooo0P00000:0?ooo`800000;@3oool00`000000oooo0?ooo`030?ooo`800000 2`3oool00`000000oooo0?ooo`1A0?ooo`00G@3oool00`000000oooo0?ooo`060?ooo`@00000;P3o ool00`000000oooo0?ooo`030?ooo`030000003oool0000000/0oooo00<000000?ooo`3oool0D@3o ool005T0oooo100000070?ooo`8000000?ooo`030000003oool0oooo00T0oooo00<0 00000?ooo`3oool0D03oool001l0oooo0P0000000`3oool000000?ooo`1]0?ooo`8000003P3oool0 0`000000oooo0?ooo`090?ooo`030000003oool0oooo0500oooo000O0?ooo`030000003oool00000 00<00000J`3oool00`000000oooo0000000>0?ooo`030000003oool0oooo00X0oooo00<000000?oo o`3oool0C`3oool001l0oooo00L000000?ooo`3oool0oooo0000003oool0000006T0oooo00@00000 0?ooo`3oool000003P3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04l0oooo000N 0?ooo`8000000`3oool010000000oooo0?ooo`00001X0?ooo`030000003oool0000000l0oooo00<0 00000?ooo`3oool02P3oool00`000000oooo0?ooo`1?0?ooo`007P3oool00`000000oooo0?ooo`03 0?ooo`040000003oool0oooo000006H0oooo00@000000?ooo`3oool000003`3oool00`000000oooo 0?ooo`0:0?ooo`030000003oool0oooo04l0oooo000N0?ooo`030000003oool0oooo00@0oooo00@0 00000?ooo`3oool00000I@3oool010000000oooo0?ooo`00000?0?ooo`030000003oool0oooo00X0 oooo00<000000?ooo`3oool0C`3oool001h0oooo00<000000?ooo`3oool01@3oool00`000000oooo 0?ooo`02000006<0oooo00@000000?ooo`3oool000003`3oool00`000000oooo0?ooo`0:0?ooo`03 0000003oool0oooo04l0oooo000N0?ooo`030000003oool0oooo00H0oooo0P0000020?ooo`800000 H@3oool010000000oooo0?ooo`00000?0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3o ool0C`3oool001h0oooo00<000000?ooo`3oool01`3oool00`000000oooo0?ooo`020?ooo`030000 003oool0oooo05d0oooo00@000000?ooo`3oool00000403oool00`000000oooo0?ooo`0:0?ooo`03 0000003oool0oooo04l0oooo000N0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool0 0P3oool2000005d0oooo00@000000?ooo`3oool00000403oool00`000000oooo0?ooo`0:0?ooo`03 0000003oool0oooo04l0oooo000M0?ooo`8000002`3oool00`000000oooo0?ooo`030?ooo`030000 003oool0oooo05T0oooo00D000000?ooo`3oool0oooo0000000@0?ooo`030000003oool0oooo00X0 oooo00<000000?ooo`3oool0C`3oool001d0oooo00<000000?ooo`3oool02`3oool00`000000oooo 0?ooo`030?ooo`800000F@3oool01@000000oooo0?ooo`3oool000000100oooo00<000000?ooo`3o ool02P3oool00`000000oooo0?ooo`1?0?ooo`007@3oool00`000000oooo0?ooo`0<0?ooo`030000 003oool0oooo00<0oooo00<000000?ooo`3oool0EP3oool01@000000oooo0?ooo`3oool000000180 oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`1?0?ooo`007@3oool00`000000oooo 0?ooo`0=0?ooo`800000103oool00`000000oooo0?ooo`1E0?ooo`050000003oool0oooo0?ooo`00 00004P3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo04l0oooo000M0?ooo`030000 003oool0oooo00h0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1C0?ooo`030000 003oool0oooo0080oooo00<000000?ooo`3oool0403oool00`000000oooo0?ooo`090?ooo`030000 003oool0oooo04l0oooo000M0?ooo`030000003oool0oooo00l0oooo00<000000?ooo`3oool00`3o ool2000005<0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`0@0?ooo`030000003o ool0oooo00T0oooo00<000000?ooo`3oool0C`3oool001d0oooo00<000000?ooo`3oool0403oool0 0`000000oooo0?ooo`040?ooo`030000003oool0oooo04l0oooo00<000000?ooo`3oool00`3oool0 0`000000oooo0?ooo`0@0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0C`3oool0 01`0oooo0P00000C0?ooo`030000003oool0oooo00@0oooo0P00001?0?ooo`030000003oool0oooo 0080oooo00<000000?ooo`3oool04@3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo 04l0oooo000L0?ooo`030000003oool0oooo01<0oooo00<000000?ooo`3oool01@3oool00`000000 oooo0?ooo`1<0?ooo`030000003oool0oooo0080oooo00<000000?ooo`3oool04@3oool00`000000 oooo0?ooo`090?ooo`030000003oool0oooo04l0oooo000L0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool01@3oool2000004/0oooo00<000000?ooo`3oool00`3oool00`000000oooo 0?ooo`0A0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0C`3oool001`0oooo00<0 00000?ooo`3oool05@3oool00`000000oooo0?ooo`060?ooo`030000003oool0oooo04P0oooo00<0 00000?ooo`3oool00`3oool00`000000oooo0?ooo`0A0?ooo`030000003oool0oooo00T0oooo00<0 00000?ooo`3oool0C`3oool001`0oooo00<000000?ooo`3oool05P3oool00`000000oooo0?ooo`06 0?ooo`800000A`3oool00`000000oooo0?ooo`040?ooo`030000003oool0oooo0140oooo00<00000 0?ooo`3oool02@3oool00`000000oooo0?ooo`1?0?ooo`00703oool00`000000oooo0?ooo`0G0?oo o`030000003oool0oooo00L0oooo00<000000?ooo`3oool0A03oool00`000000oooo0?ooo`040?oo o`030000003oool0oooo0140oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`1>0?oo o`00703oool00`000000oooo0?ooo`0H0?ooo`030000003oool0oooo00L0oooo00<000000?ooo`3o ool0@P3oool00`000000oooo0?ooo`040?ooo`030000003oool0oooo0180oooo00<000000?ooo`3o ool02P3oool00`000000oooo0?ooo`1>0?ooo`00703oool00`000000oooo0?ooo`0I0?ooo`030000 003oool0oooo00L0oooo0P0000120?ooo`030000003oool0oooo00@0oooo00<000000?ooo`3oool0 4P3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo000K0?ooo`030000003o ool0oooo01/0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`0n0?ooo`030000003o ool0oooo00D0oooo00<000000?ooo`3oool04P3oool00`000000oooo0?ooo`0:0?ooo`030000003o ool0oooo04h0oooo000K0?ooo`030000003oool0oooo01`0oooo00<000000?ooo`3oool0203oool0 0`000000oooo0?ooo`0m0?ooo`030000003oool0oooo00@0oooo00<000000?ooo`3oool04`3oool0 0`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo000K0?ooo`030000003oool0oooo 01`0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`0l0?ooo`030000003oool0oooo 00@0oooo00<000000?ooo`3oool04`3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo 04h0oooo000K0?ooo`030000003oool0oooo01d0oooo00<000000?ooo`3oool02@3oool00`000000 oooo0?ooo`0j0?ooo`030000003oool0oooo00D0oooo00<000000?ooo`3oool04`3oool00`000000 oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo000K0?ooo`030000003oool0oooo01h0oooo 00<000000?ooo`3oool02@3oool2000003X0oooo00<000000?ooo`3oool01@3oool00`000000oooo 0?ooo`0C0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0CP3oool001/0oooo00<0 00000?ooo`3oool07`3oool2000000/0oooo00<000000?ooo`3oool0=P3oool00`000000oooo0?oo o`060?ooo`030000003oool0oooo01<0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?oo o`1>0?ooo`006`3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo00T0oooo00<00000 0?ooo`3oool0=@3oool00`000000oooo0?ooo`050?ooo`030000003oool0oooo01@0oooo00<00000 0?ooo`3oool02P3oool00`000000oooo0?ooo`1>0?ooo`006P3oool00`000000oooo0?ooo`0S0?oo o`030000003oool0oooo00T0oooo0P00000d0?ooo`030000003oool0oooo00H0oooo00<000000?oo o`3oool0503oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo000J0?ooo`03 0000003oool0oooo02@0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`0`0?ooo`03 0000003oool0oooo00L0oooo00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0:0?ooo`03 0000003oool0oooo04h0oooo000J0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0 2P3oool00`000000oooo0?ooo`0_0?ooo`030000003oool0oooo00L0oooo00<000000?ooo`3oool0 503oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo000J0?ooo`030000003o ool0oooo02H0oooo00<000000?ooo`3oool02P3oool2000002l0oooo00<000000?ooo`3oool01`3o ool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0CP3o ool001X0oooo00<000000?ooo`3oool09`3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0 oooo02`0oooo00<000000?ooo`3oool01P3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0 oooo00X0oooo00<000000?ooo`3oool0CP3oool001X0oooo00<000000?ooo`3oool09`3oool00`00 0000oooo0?ooo`0<0?ooo`030000003oool0oooo02X0oooo00<000000?ooo`3oool01`3oool00`00 0000oooo0?ooo`0E0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0CP3oool001X0 oooo00<000000?ooo`3oool0:03oool00`000000oooo0?ooo`0<0?ooo`800000:P3oool00`000000 oooo0?ooo`070?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool02P3oool00`000000 oooo0?ooo`1>0?ooo`006P3oool00`000000oooo0?ooo`0Y0?ooo`030000003oool0oooo00d0oooo 00<000000?ooo`3oool09P3oool00`000000oooo0?ooo`080?ooo`030000003oool0oooo01D0oooo 00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`1>0?ooo`006@3oool00`000000oooo0?oo o`0[0?ooo`030000003oool0oooo00d0oooo00<000000?ooo`3oool0903oool00`000000oooo0?oo o`090?ooo`030000003oool0oooo01H0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?oo o`1=0?ooo`006@3oool00`000000oooo0?ooo`0/0?ooo`030000003oool0oooo00d0oooo0P00000T 0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool05`3oool00`000000oooo0?ooo`0: 0?ooo`030000003oool0oooo04d0oooo000I0?ooo`030000003oool0oooo02d0oooo00<000000?oo o`3oool03P3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo00P0oooo00<000000?oo o`3oool05`3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04d0oooo000I0?ooo`03 0000003oool0oooo02h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0P0?ooo`03 0000003oool0oooo00P0oooo00<000000?ooo`3oool05`3oool00`000000oooo0?ooo`0:0?ooo`03 0000003oool0oooo04d0oooo000I0?ooo`030000003oool0oooo02l0oooo00<000000?ooo`3oool0 3P3oool2000001l0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`0G0?ooo`030000 003oool0oooo00X0oooo00<000000?ooo`3oool0C@3oool001T0oooo00<000000?ooo`3oool0<03o ool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool02P3o ool00`000000oooo0?ooo`0G0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0C@3o ool001T0oooo00<000000?ooo`3oool0<@3oool200000100oooo00<000000?ooo`3oool06P3oool0 0`000000oooo0?ooo`090?ooo`030000003oool0oooo01P0oooo00<000000?ooo`3oool02P3oool0 0`000000oooo0?ooo`1=0?ooo`00603oool00`000000oooo0?ooo`0d0?ooo`030000003oool0oooo 00h0oooo0P00000I0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0603oool00`00 0000oooo0?ooo`0:0?ooo`030000003oool0oooo04d0oooo000H0?ooo`030000003oool0oooo03D0 oooo00<000000?ooo`3oool03`3oool00`000000oooo0?ooo`0F0?ooo`030000003oool0oooo00X0 oooo00<000000?ooo`3oool0603oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04d0 oooo000H0?ooo`030000003oool0oooo03H0oooo00<000000?ooo`3oool03`3oool00`000000oooo 0?ooo`0E0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0603oool00`000000oooo 0?ooo`0:0?ooo`030000003oool0oooo04d0oooo000H0?ooo`030000003oool0oooo03L0oooo00<0 00000?ooo`3oool03`3oool3000001<0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?oo o`0I0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0C@3oool001P0oooo00<00000 0?ooo`3oool0>03oool00`000000oooo0?ooo`0A0?ooo`030000003oool0oooo0100oooo00<00000 0?ooo`3oool02P3oool00`000000oooo0?ooo`0I0?ooo`030000003oool0oooo00X0oooo00<00000 0?ooo`3oool0C@3oool001P0oooo00<000000?ooo`3oool0>@3oool00`000000oooo0?ooo`0A0?oo o`030000003oool0oooo00h0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`0I0?oo o`030000003oool0oooo00X0oooo00<000000?ooo`3oool0C@3oool001P0oooo00<000000?ooo`3o ool0>P3oool00`000000oooo0?ooo`0A0?ooo`8000003P3oool00`000000oooo0?ooo`0;0?ooo`03 0000003oool0oooo01T0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`1=0?ooo`00 5`3oool00`000000oooo0?ooo`0k0?ooo`030000003oool0oooo01<0oooo00<000000?ooo`3oool0 2`3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo01T0oooo00<000000?ooo`3oool0 2P3oool00`000000oooo0?ooo`1=0?ooo`005`3oool00`000000oooo0?ooo`0l0?ooo`030000003o ool0oooo01<0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`0;0?ooo`030000003o ool0oooo01X0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`1=0?ooo`005`3oool0 0`000000oooo0?ooo`0m0?ooo`030000003oool0oooo01<0oooo00<000000?ooo`3oool01`3oool0 0`000000oooo0?ooo`0<0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool02P3oool0 0`000000oooo0?ooo`1=0?ooo`005`3oool00`000000oooo0?ooo`0n0?ooo`030000003oool0oooo 01<0oooo0P0000070?ooo`030000003oool0oooo00`0oooo00<000000?ooo`3oool06P3oool00`00 0000oooo0?ooo`0:0?ooo`030000003oool0oooo04d0oooo000G0?ooo`030000003oool0oooo03l0 oooo00<000000?ooo`3oool0503oool00`000000oooo0?ooo`030?ooo`030000003oool0oooo00d0 oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo04d0 oooo000G0?ooo`030000003oool0oooo0400oooo00<000000?ooo`3oool0503oool00`000000oooo 0?ooo`020?ooo`030000003oool0oooo00d0oooo00<000000?ooo`3oool06P3oool00`000000oooo 0?ooo`0:0?ooo`030000003oool0oooo04d0oooo000G0?ooo`030000003oool0oooo0440oooo00<0 00000?ooo`3oool0503oool01@000000oooo0?ooo`3oool0000000l0oooo00<000000?ooo`3oool0 6P3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo04`0oooo000F0?ooo`030000003o ool0oooo04<0oooo00<000000?ooo`3oool0503oool00`000000oooo0000000?0?ooo`030000003o ool0oooo01/0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`1<0?ooo`005P3oool0 0`000000oooo0?ooo`130?ooo`030000003oool0oooo01D0oooo0P00000?0?ooo`030000003oool0 oooo01/0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`1<0?ooo`005P3oool00`00 0000oooo0?ooo`140?ooo`030000003oool0oooo01@0oooo00@000000?ooo`00000000003@3oool0 0`000000oooo0?ooo`0K0?ooo`030000003oool0oooo00/0oooo00<000000?ooo`3oool0C03oool0 01H0oooo00<000000?ooo`3oool0A@3oool2000001@0oooo00D000000?ooo`3oool0oooo0000000< 0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`1< 0?ooo`005P3oool00`000000oooo0?ooo`170?ooo`030000003oool0oooo0140oooo00<000000?oo o`3oool00P3oool00`000000oooo0?ooo`080?ooo`030000003oool0oooo01`0oooo00<000000?oo o`3oool02`3oool00`000000oooo0?ooo`1<0?ooo`005P3oool00`000000oooo0?ooo`180?ooo`03 0000003oool0oooo00l0oooo00<000000?ooo`3oool0103oool2000000P0oooo00<000000?ooo`3o ool0703oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo04`0oooo000F0?ooo`030000 003oool0oooo04T0oooo00<000000?ooo`3oool03@3oool00`000000oooo0?ooo`070?ooo`030000 003oool0oooo00D0oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0;0?ooo`030000 003oool0oooo04`0oooo000E0?ooo`800000C03oool00`000000oooo0?ooo`0<0?ooo`030000003o ool0oooo00P0oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`0L0?ooo`030000003o ool0oooo00/0oooo00<000000?ooo`3oool0C03oool001D0oooo00<000000?ooo`3oool0C03oool0 0`000000oooo0?ooo`0;0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool00P3oool0 0`000000oooo0?ooo`0M0?ooo`030000003oool0oooo00/0oooo00<000000?ooo`3oool0C03oool0 01D0oooo00<000000?ooo`3oool0C@3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo 00/0oooo0P0000020?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3oool02P3oool00`00 0000oooo0?ooo`1<0?ooo`005@3oool00`000000oooo0?ooo`1>0?ooo`030000003oool0oooo00P0 oooo00<000000?ooo`3oool03@3oool300000200oooo00<000000?ooo`3oool02P3oool00`000000 oooo0?ooo`1<0?ooo`005@3oool00`000000oooo0?ooo`1?0?ooo`030000003oool0oooo00H0oooo 00<000000?ooo`3oool0403oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo00X0oooo 00<000000?ooo`3oool0C03oool001D0oooo00<000000?ooo`3oool0D03oool00`000000oooo0?oo o`050?ooo`030000003oool0oooo0100oooo00<000000?ooo`3oool07P3oool00`000000oooo0?oo o`0:0?ooo`030000003oool0oooo04`0oooo000E0?ooo`030000003oool0oooo0540oooo00<00000 0?ooo`3oool00`3oool00`000000oooo0?ooo`0A0?ooo`030000003oool0oooo01h0oooo00<00000 0?ooo`3oool02P3oool00`000000oooo0?ooo`1<0?ooo`005@3oool00`000000oooo0?ooo`1B0?oo o`030000003oool0oooo0080oooo00<000000?ooo`3oool04@3oool00`000000oooo0?ooo`0N0?oo o`030000003oool0oooo00X0oooo00<000000?ooo`3oool0C03oool001@0oooo00<000000?ooo`3o ool0E03oool010000000oooo0?ooo`00000D0?ooo`030000003oool0oooo01h0oooo00<000000?oo o`3oool02P3oool00`000000oooo0?ooo`1<0?ooo`00503oool00`000000oooo0?ooo`1D0?ooo`04 0000003oool0oooo000001@0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0:0?oo o`030000003oool0oooo04`0oooo000D0?ooo`030000003oool0oooo05D0oooo00<000000?ooo`00 0000503oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo00/0oooo00<000000?ooo`3o ool0B`3oool001@0oooo00<000000?ooo`3oool0EP3oool00`000000oooo0?ooo`0C0?ooo`030000 003oool0oooo01d0oooo0P00000=0?ooo`030000003oool0oooo04/0oooo000D0?ooo`030000003o ool0oooo05H0oooo00<000000?ooo`3oool04`3oool00`000000oooo0?ooo`0K0?ooo`80000000<0 oooo0000003oool02`3oool2000004d0oooo000D0?ooo`030000003oool0oooo05H0oooo00<00000 0?ooo`3oool04`3oool00`000000oooo0?ooo`0H0?ooo`<000000P3oool00`000000oooo0?ooo`08 0?ooo`@00000CP3oool001@0oooo00<000000?ooo`3oool0EP3oool00`000000oooo0?ooo`0C0?oo o`030000003oool0oooo01@0oooo100000050?ooo`030000003oool0oooo00H0oooo0P0000020?oo o`030000003oool0oooo04d0oooo000C0?ooo`800000F03oool00`000000oooo0?ooo`0C0?ooo`03 0000003oool0oooo0140oooo0`0000090?ooo`040000003oool0oooo0?ooo`D00000103oool00`00 0000oooo0?ooo`1=0?ooo`004`3oool00`000000oooo0?ooo`1G0?ooo`030000003oool0oooo01<0 oooo00<000000?ooo`3oool03`3oool2000000`0oooo100000080?ooo`030000003oool0oooo04h0 oooo000C0?ooo`030000003oool0oooo05L0oooo00<000000?ooo`3oool04`3oool00`000000oooo 0?ooo`0=0?ooo`8000003@3oool2000000/0oooo00<000000?ooo`3oool0CP3oool001<0oooo00<0 00000?ooo`3oool0E`3oool00`000000oooo0?ooo`0C0?ooo`030000003oool0oooo00P0oooo1@00 000:0?ooo`H00000303oool00`000000oooo0?ooo`1>0?ooo`004`3oool00`000000oooo0?ooo`1G 0?ooo`030000003oool0oooo01<0oooo00<000000?ooo`3oool01P3oool2000000`0oooo0`000004 0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0C`3oool001<0oooo00<000000?oo o`3oool0E`3oool00`000000oooo0?ooo`0C0?ooo`030000003oool0oooo00@0oooo0P00000<0?oo o`8000001`3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo0500oooo000B0?ooo`80 0000F@3oool00`000000oooo0?ooo`0C0?ooo`030000003oool0000000@000002@3oool5000000T0 oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`1A0?ooo`004P3oool2000005T0oooo 00<000000?ooo`3oool04`3oool2000000`0oooo0P00000>0?ooo`030000003oool0oooo00P0oooo 00<000000?ooo`3oool0D@3oool00180oooo00<000000?ooo`3oool0F03oool00`000000oooo0?oo o`0A0?ooo`<000002P3oool300000100oooo00<000000?ooo`3oool01`3oool00`000000oooo0?oo o`1B0?ooo`004P3oool00`000000oooo0?ooo`1H0?ooo`030000003oool0oooo00l0oooo0P000002 0?ooo`030000003oool0oooo00<0oooo1@00000B0?ooo`030000003oool0oooo00P0oooo00<00000 0?ooo`3oool0DP3oool00180oooo00<000000?ooo`3oool0F03oool00`000000oooo0?ooo`0:0?oo o`D00000103oool010000000oooo0?ooo`3oool2000001L0oooo00<000000?ooo`3oool01`3oool0 0`000000oooo0?ooo`1C0?ooo`004P3oool00`000000oooo0?ooo`1H0?ooo`030000003oool0oooo 00P0oooo0P0000090?ooo`040000003oool00000000001T0oooo00<000000?ooo`3oool01`3oool0 0`000000oooo0?ooo`1C0?ooo`004P3oool00`000000oooo0?ooo`1H0?ooo`030000003oool0oooo 00H0oooo0P0000080?ooo`D000006`3oool00`000000oooo0?ooo`060?ooo`030000003oool0oooo 05@0oooo000B0?ooo`030000003oool0oooo05P0oooo00<000000?ooo`3oool00P3oool4000000P0 oooo0P0000030?ooo`030000003oool0oooo01T0oooo00<000000?ooo`3oool01P3oool00`000000 oooo0?ooo`1E0?ooo`004@3oool00`000000oooo0?ooo`1I0?ooo`030000003oool0oooo00800000 1`3oool5000000D0oooo00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`050?ooo`030000 003oool0oooo05H0oooo000A0?ooo`030000003oool0oooo05T0oooo0`0000070?ooo`8000002P3o ool00`000000oooo0?ooo`0I0?ooo`030000003oool0oooo00D0oooo00<000000?ooo`3oool0EP3o ool00140oooo00<000000?ooo`3oool0E@3oool5000000H0oooo0`00000<0?ooo`030000003oool0 oooo01T0oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`1G0?ooo`004@3oool00`00 0000oooo0?ooo`1C0?ooo`800000103oool00`000000oooo0?ooo`04000000l0oooo00<000000?oo o`3oool0603oool00`000000oooo0?ooo`050?ooo`030000003oool0oooo05L0oooo000A0?ooo`03 0000003oool0oooo0540oooo0P0000060?ooo`<000004`3oool00`000000oooo0?ooo`0H0?ooo`03 0000003oool0oooo00@0oooo00<000000?ooo`3oool0F03oool00140oooo00<000000?ooo`3oool0 C@3oool4000000@0oooo1000000F0?ooo`030000003oool0oooo01L0oooo00<000000?ooo`3oool0 1@3oool00`000000oooo0?ooo`1H0?ooo`004@3oool00`000000oooo0?ooo`1;0?ooo`8000001P3o ool2000000<0oooo00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0G0?ooo`030000003o ool0oooo00@0oooo00<000000?ooo`3oool0F@3oool00140oooo00<000000?ooo`3oool0B@3oool2 000000D0oooo0`0000050?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool05`3oool0 0`000000oooo0?ooo`040?ooo`030000003oool0oooo05T0oooo000@0?ooo`030000003oool0oooo 04H0oooo100000030?ooo`@00000203oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo 01H0oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`1J0?ooo`00403oool00`000000 oooo0?ooo`130?ooo`<000001@3oool2000000`0oooo00<000000?ooo`3oool0503oool00`000000 oooo0?ooo`0F0?ooo`030000003oool0oooo00<0oooo00<000000?ooo`3oool0F`3oool00100oooo 00<000000?ooo`3oool0?`3oool4000000<0oooo1@00000>0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05P3oool00`000000oooo0?ooo`020?ooo`030000003oool0oooo05`0oooo 000@0?ooo`030000003oool0oooo03d0oooo0P0000050?ooo`8000004`3oool00`000000oooo0?oo o`0D0?ooo`030000003oool0oooo01H0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?oo o`1L0?ooo`00403oool00`000000oooo0?ooo`0k0?ooo`8000000`3oool4000001D0oooo00<00000 0?ooo`3oool0503oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo0080oooo00<00000 0?ooo`3oool0G@3oool00100oooo00<000000?ooo`3oool0=`3oool400000080oooo0`00000I0?oo o`030000003oool0oooo01@0oooo00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`020?oo o`030000003oool0oooo05d0oooo000?0?ooo`800000=`3oool200000080oooo1000000L0?ooo`03 0000003oool0oooo01@0oooo00<000000?ooo`3oool05@3oool01@000000oooo0?ooo`3oool00000 0600oooo000?0?ooo`800000<`3oool400000080oooo0P00000P0?ooo`030000003oool0oooo01@0 oooo00<000000?ooo`3oool05@3oool01@000000oooo0?ooo`3oool000000600oooo000?0?ooo`03 0000003oool0oooo0300oooo0P0000000`3oool000000000000300000280oooo00<000000?ooo`3o ool0503oool00`000000oooo0?ooo`0D0?ooo`050000003oool0oooo0?ooo`000000H@3oool000l0 oooo00<000000?ooo`3oool0;03oool4000000030?ooo`000000000002L0oooo00<000000?ooo`3o ool0503oool00`000000oooo0?ooo`0D0?ooo`050000003oool0oooo0?ooo`000000H@3oool000l0 oooo00<000000?ooo`3oool0:P3oool2000000030?ooo`000000000000800000:@3oool00`000000 oooo0?ooo`0D0?ooo`030000003oool0oooo01@0oooo00@000000?ooo`3oool00000HP3oool000l0 oooo00<000000?ooo`3oool0:@3oool010000000oooo00000000000]0?ooo`030000003oool0oooo 01@0oooo00<000000?ooo`3oool04`3oool01@000000oooo0?ooo`3oool000000680oooo000?0?oo o`030000003oool0oooo02D0oooo1P00000_0?ooo`030000003oool0oooo01@0oooo00<000000?oo o`3oool04`3oool010000000oooo0?ooo`00001S0?ooo`003`3oool00`000000oooo0?ooo`0S0?oo o`@00000<`3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo01<0oooo00<000000?oo o`000000I03oool000h0oooo0P00000Q0?ooo`H00000=@3oool00`000000oooo0?ooo`0D0?ooo`03 0000003oool0oooo01<0oooo0P00001U0?ooo`003P3oool00`000000oooo0?ooo`0N0?ooo`<00000 >P3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo0180oooo00<000000?ooo`000000 I@3oool000h0oooo00<000000?ooo`3oool06P3oool5000003`0oooo00<000000?ooo`3oool0503o ool00`000000oooo0?ooo`0B0?ooo`800000IP3oool000h0oooo00<000000?ooo`3oool05`3oool4 00000400oooo00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0B0?ooo`030000003oool0 oooo06D0oooo000>0?ooo`030000003oool0oooo01@0oooo100000130?ooo`030000003oool0oooo 01@0oooo00<000000?ooo`3oool04P3oool00`000000oooo0?ooo`1U0?ooo`003P3oool00`000000 oooo0?ooo`0A0?ooo`@00000AP3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo0140 oooo00<000000?ooo`3oool0IP3oool000h0oooo00<000000?ooo`3oool03`3oool4000004P0oooo 00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0A0?ooo`030000003oool0oooo06H0oooo 000=0?ooo`8000003@3oool4000004`0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0@0?ooo`800000J03oool000d0oooo00<000000?ooo`3oool02P3oool4000004h0oooo00<00000 0?ooo`3oool0503oool00`000000oooo0?ooo`0@0?ooo`030000003oool0oooo06L0oooo000=0?oo o`030000003oool0oooo00H0oooo1000001B0?ooo`030000003oool0oooo01@0oooo00<000000?oo o`3oool03`3oool2000006T0oooo000=0?ooo`030000003oool0oooo0080oooo1P00001D0?ooo`03 0000003oool0oooo01@0oooo00<000000?ooo`3oool03P3oool00`000000oooo0000001Y0?ooo`00 3@3oool00`000000oooo0?ooo`05000005L0oooo00<000000?ooo`3oool0503oool00`000000oooo 0?ooo`0>0?ooo`800000JP3oool000d0oooo1000001K0?ooo`030000003oool0oooo01@0oooo00<0 00000?ooo`3oool03@3oool00`000000oooo0000001Z0?ooo`003@3oool2000005d0oooo00<00000 0?ooo`3oool0503oool00`000000oooo0?ooo`0=0?ooo`030000003oool0000006X0oooo000>0?oo o`<00000F`3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo00`0oooo00@000000?oo o`3oool00000JP3oool000l0oooo0P00001K0?ooo`030000003oool0oooo01@0oooo00<000000?oo o`3oool0303oool00`000000oooo0000001[0?ooo`004@3oool2000005P0oooo00<000000?ooo`3o ool05@3oool00`000000oooo0?ooo`0;0?ooo`040000003oool0oooo000006/0oooo000B0?ooo`<0 0000EP3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo00X0oooo00D000000?ooo`3o ool0oooo0000001[0?ooo`00503oool3000005@0oooo00<000000?ooo`3oool05@3oool00`000000 oooo0?ooo`0:0?ooo`040000003oool0oooo000006`0oooo000E0?ooo`@00000DP3oool00`000000 oooo0?ooo`0E0?ooo`030000003oool0oooo00T0oooo00D000000?ooo`3oool0oooo0000001/0?oo o`005`3oool010000000oooo00000000001@0?ooo`030000003oool0oooo01D0oooo00<000000?oo o`3oool02@3oool01@000000oooo0?ooo`3oool0000006`0oooo000H0?ooo`80000000<0oooo0000 003oool0CP3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo00P0oooo00D000000?oo o`3oool0oooo0000001]0?ooo`006P3oool010000000oooo00000000001=0?ooo`030000003oool0 oooo01D0oooo00<000000?ooo`3oool01`3oool00`000000oooo0?ooo`020?ooo`030000003oool0 oooo06/0oooo000K0?ooo`80000000<0oooo000000000000B`3oool00`000000oooo0?ooo`0E0?oo o`030000003oool0oooo00L0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`1[0?oo o`007@3oool00`000000oooo0?ooo`02000004T0oooo00<000000?ooo`3oool05@3oool00`000000 oooo0?ooo`060?ooo`030000003oool0oooo0080oooo00<000000?ooo`3oool0K03oool001h0oooo 00@000000?ooo`3oool0oooo0P0000170?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3o ool01P3oool00`000000oooo0?ooo`020?ooo`030000003oool0oooo06`0oooo000O0?ooo`800000 0`3oool00`000000oooo0?ooo`140?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool0 1P3oool00`000000oooo0?ooo`030?ooo`030000003oool0oooo06`0oooo000Q0?ooo`040000003o ool0oooo0?ooo`800000A03oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo00D0oooo 00<000000?ooo`3oool0103oool00`000000oooo0?ooo`1/0?ooo`008P3oool2000000<0oooo0P00 00120?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool01@3oool00`000000oooo0?oo o`040?ooo`030000003oool0oooo06`0oooo000T0?ooo`030000003oool0oooo0080oooo0P000010 0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`04 0?ooo`030000003oool0oooo06d0oooo000U0?ooo`030000003oool0oooo00<0oooo0P00000n0?oo o`030000003oool0oooo01@0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`050?oo o`030000003oool0oooo06d0oooo000V0?ooo`8000001@3oool00`000000oooo0?ooo`0k0?ooo`03 0000003oool0oooo01@0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`050?ooo`03 0000003oool0oooo06d0oooo000X0?ooo`030000003oool0oooo00<0oooo0P00000k0?ooo`030000 003oool0oooo01@0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`050?ooo`030000 003oool0oooo06h0oooo000Y0?ooo`030000003oool0oooo00@0oooo0P00000i0?ooo`030000003o ool0oooo01@0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`050?ooo`030000003o ool0oooo06h0oooo000Z0?ooo`8000001P3oool00`000000oooo0?ooo`0f0?ooo`030000003oool0 oooo01@0oooo00D000000?ooo`3oool0oooo000000080?ooo`030000003oool0oooo06h0oooo000/ 0?ooo`030000003oool0oooo00@0oooo0P00000f0?ooo`030000003oool0oooo01@0oooo00@00000 0?ooo`3oool00000203oool00`000000oooo0?ooo`1_0?ooo`00;@3oool2000000H0oooo0P00000d 0?ooo`030000003oool0oooo01@0oooo00@000000?ooo`3oool00000203oool00`000000oooo0?oo o`1_0?ooo`00;`3oool00`000000oooo0?ooo`050?ooo`030000003oool0oooo0340oooo00<00000 0?ooo`3oool0503oool00`000000oooo000000090?ooo`030000003oool0oooo06l0oooo000`0?oo o`030000003oool0oooo00D0oooo1000000_0?ooo`030000003oool0oooo01@0oooo0P00000:0?oo o`030000003oool0oooo06l0oooo000a0?ooo`8000002@3oool00`000000oooo0?ooo`0/0?ooo`03 0000003oool0oooo01@0oooo0P0000090?ooo`030000003oool0oooo0700oooo000c0?ooo`030000 003oool0oooo00L0oooo0P00000/0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool0 203oool00`000000oooo0?ooo`1`0?ooo`00=03oool00`000000oooo0?ooo`080?ooo`800000:P3o ool00`000000oooo0?ooo`0C0?ooo`8000002P3oool00`000000oooo0?ooo`1`0?ooo`00=@3oool0 0`000000oooo0?ooo`090?ooo`030000003oool0oooo02L0oooo00<000000?ooo`3oool04`3oool2 000000T0oooo00<000000?ooo`3oool0L@3oool003H0oooo0P00000:0?ooo`8000009`3oool00`00 0000oooo0?ooo`0C0?ooo`8000002@3oool00`000000oooo0?ooo`1a0?ooo`00>03oool00`000000 oooo0?ooo`090?ooo`8000009@3oool00`000000oooo0?ooo`0B0?ooo`030000003oool0000000T0 oooo00<000000?ooo`3oool0L@3oool003T0oooo00<000000?ooo`3oool02P3oool00`000000oooo 0?ooo`0R0?ooo`030000003oool0oooo0180oooo00<000000?ooo`000000203oool00`000000oooo 0?ooo`1b0?ooo`00>P3oool2000000/0oooo0`00000Q0?ooo`030000003oool0oooo0140oooo00@0 00000?ooo`3oool00000203oool00`000000oooo0?ooo`1b0?ooo`00?03oool00`000000oooo0?oo o`0;0?ooo`8000007`3oool00`000000oooo0?ooo`0@0?ooo`050000003oool0oooo0?ooo`000000 203oool00`000000oooo0?ooo`1b0?ooo`00?@3oool00`000000oooo0?ooo`0<0?ooo`8000007@3o ool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo0080oooo00<000000?ooo`3oool01P3o ool00`000000oooo0?ooo`1b0?ooo`00?P3oool00`000000oooo0?ooo`0=0?ooo`030000003oool0 oooo01X0oooo00<000000?ooo`3oool03`3oool00`000000oooo0?ooo`020?ooo`030000003oool0 oooo00D0oooo00<000000?ooo`3oool0L`3oool003l0oooo0P00000>0?ooo`8000006@3oool00`00 0000oooo0?ooo`0?0?ooo`030000003oool0oooo00<0oooo00<000000?ooo`3oool01@3oool00`00 0000oooo0?ooo`1c0?ooo`00@@3oool00`000000oooo0?ooo`0=0?ooo`<000005P3oool00`000000 oooo0?ooo`0>0?ooo`030000003oool0oooo00@0oooo00<000000?ooo`3oool01@3oool00`000000 oooo0?ooo`1c0?ooo`00@P3oool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo01<0oooo 00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`040?ooo`030000003oool0oooo00@0oooo 00<000000?ooo`3oool0M03oool004<0oooo0P00000@0?ooo`8000004`3oool00`000000oooo0?oo o`0>0?ooo`030000003oool0oooo00@0oooo00<000000?ooo`3oool0103oool00`000000oooo0?oo o`1d0?ooo`00A@3oool200000100oooo0P00000A0?ooo`030000003oool0oooo00d0oooo00<00000 0?ooo`3oool01@3oool00`000000oooo0?ooo`040?ooo`030000003oool0oooo07@0oooo00170?oo o`030000003oool0oooo00l0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0<0?oo o`030000003oool0oooo00H0oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`1d0?oo o`00B03oool00`000000oooo0?ooo`0?0?ooo`<000003@3oool00`000000oooo0?ooo`0<0?ooo`03 0000003oool0oooo00H0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1e0?ooo`00 B@3oool00`000000oooo0?ooo`0A0?ooo`8000002`3oool00`000000oooo0?ooo`0;0?ooo`030000 003oool0oooo00L0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1e0?ooo`00BP3o ool2000001<0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`0:0?ooo`030000003o ool0oooo00P0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1e0?ooo`00C03oool0 0`000000oooo0?ooo`0A0?ooo`800000203oool00`000000oooo0?ooo`090?ooo`030000003oool0 oooo00T0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`1e0?ooo`00C@3oool00`00 0000oooo0?ooo`0B0?ooo`8000001P3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo 00T0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`1f0?ooo`00CP3oool2000001@0 oooo0P0000040?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool02@3oool00`000000 oooo0?ooo`020?ooo`030000003oool0oooo07H0oooo001@0?ooo`030000003oool0oooo01<0oooo 00D000000?ooo`3oool0oooo0000000:0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3o ool00P3oool00`000000oooo0?ooo`1f0?ooo`00D@3oool2000001@0oooo0P0000000`3oool00000 0?ooo`080?ooo`030000003oool0oooo00/0oooo00D000000?ooo`3oool0oooo0000001i0?ooo`00 D`3oool00`000000oooo0?ooo`0C0?ooo`<00000203oool00`000000oooo0?ooo`0;0?ooo`050000 003oool0oooo0?ooo`000000N@3oool005@0oooo00<000000?ooo`3oool04`3oool00`000000oooo 000000060?ooo`030000003oool0oooo00`0oooo00D000000?ooo`3oool0oooo0000001i0?ooo`00 E@3oool2000001<0oooo00<000000?ooo`3oool00P0000030?ooo`030000003oool0oooo00d0oooo 00@000000?ooo`3oool00000NP3oool005L0oooo00<000000?ooo`3oool0403oool00`000000oooo 0?ooo`020?ooo`80000000<0oooo0000003oool03P3oool010000000oooo0?ooo`00001j0?ooo`00 F03oool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo00@0oooo0P00000?0?ooo`040000 003oool0oooo000007X0oooo001I0?ooo`030000003oool0oooo00h0oooo00<000000?ooo`3oool0 103oool00`000000oooo0000000>0?ooo`040000003oool0oooo000007X0oooo001J0?ooo`800000 3P3oool00`000000oooo0?ooo`030?ooo`040000003oool0oooo0?ooo`800000303oool00`000000 oooo0000001k0?ooo`00G03oool2000000`0oooo00<000000?ooo`3oool00P3oool00`000000oooo 0?ooo`040?ooo`8000002P3oool00`000000oooo0000001k0?ooo`00GP3oool00`000000oooo0?oo o`090?ooo`030000003oool0oooo0080oooo00<000000?ooo`3oool01P3oool2000000P0oooo00<0 00000?ooo`000000N`3oool005l0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`02 0?ooo`030000003oool0oooo00P0oooo0`0000050?ooo`030000003oool0000007/0oooo001P0?oo o`030000003oool0oooo00L0oooo00D000000?ooo`3oool0oooo0000000>0?ooo`030000003oool0 oooo0080oooo0P00001l0?ooo`00H@3oool2000000L0oooo00@000000?ooo`3oool00000403oool0 10000000oooo0?ooo`3oool2000007`0oooo001S0?ooo`030000003oool0oooo00@0oooo00<00000 0?ooo`0000004P3oool5000007`0oooo001T0?ooo`030000003oool0oooo00<0oooo00<000000?oo o`0000005@3oool00`000000oooo0?ooo`1k0?ooo`00I@3oool00`000000oooo0?ooo`020?ooo`80 0000U03oool006H0oooo0P0000020?ooo`800000U03oool006P0oooo00<000000?ooo`000000U@3o ool006T0oooo0P00002E0?ooo`00o`3oool10?ooo`00o`3oool10?ooo`00o`3oool10?ooo`00o`3o ool10?ooo`00o`3oool10?ooo`00o`3oool10?ooo`00o`3oool10?ooo`00\ \>"], ImageRangeCache->{{{0, 255.625}, {280.25, 0}} -> {0.051778, -9.05966*^-5, \ 0.00332034, 0.00332034}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e3", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(proj[3];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.065 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.549167 0.952381 [ [ 0 0 0 0 ] [ 1 1.065 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.065 L 0 1.065 L closepath clip newpath .8 1 0 r .5 Mabswid [ ] 0 setdash .97619 .07298 m .93756 .11161 L .89542 .15375 L .85585 .19332 L .81779 .23137 L .77728 .27188 L .73829 .31088 L .69684 .35232 L .65691 .39225 L .6185 .43067 L .57763 .47153 L .53828 .51088 L .50045 .54872 L .46016 .58901 L .42139 .62778 L .38016 .669 L .34046 .70871 L .30226 .7469 L .26162 .78755 L .22249 .82668 L .18091 .86826 L .14084 .90833 L .10229 .94688 L .06129 .98788 L .02381 1.02536 L s .97619 .07298 m .93756 .11161 L .89542 .15375 L .85585 .19332 L .81779 .23137 L .77728 .27188 L .73829 .31088 L .69684 .35232 L .65691 .39225 L .6185 .43067 L .57763 .47153 L .53828 .51088 L .50045 .54872 L .46016 .58901 L .42139 .62778 L .38016 .669 L .34046 .70871 L .30226 .7469 L .26162 .78755 L .22249 .82668 L .18091 .86826 L .14084 .90833 L .10229 .94688 L .06129 .98788 L .02381 1.02536 L s .97619 .07298 m .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L .97619 .07298 L s .02381 1.02536 m .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L .02381 1.02536 L s .02381 .07298 m .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L s .02381 .07298 m .06244 .07298 L .10458 .07298 L .14415 .07298 L .18221 .07298 L .22272 .07298 L .26171 .07298 L .30316 .07298 L .34309 .07298 L .3815 .07298 L .42237 .07298 L .46172 .07298 L .49955 .07298 L .53984 .07298 L .57861 .07298 L .61984 .07298 L .65954 .07298 L .69774 .07298 L .73838 .07298 L .77751 .07298 L .81909 .07298 L .85916 .07298 L .89771 .07298 L .93871 .07298 L .97619 .07298 L s .02381 .07298 m .06244 .07298 L .10458 .07298 L .14415 .07298 L .18221 .07298 L .22272 .07298 L .26171 .07298 L .30316 .07298 L .34309 .07298 L .3815 .07298 L .42237 .07298 L .46172 .07298 L .49955 .07298 L .53984 .07298 L .57861 .07298 L .61984 .07298 L .65954 .07298 L .69774 .07298 L .73838 .07298 L .77751 .07298 L .81909 .07298 L .85916 .07298 L .89771 .07298 L .93871 .07298 L .97619 .07298 L s .02381 .07298 m .02381 .11161 L .02381 .15375 L .02381 .19332 L .02381 .23137 L .02381 .27188 L .02381 .31088 L .02381 .35232 L .02381 .39225 L .02381 .43067 L .02381 .47153 L .02381 .51088 L .02381 .54872 L .02381 .58901 L .02381 .62778 L .02381 .669 L .02381 .70871 L .02381 .7469 L .02381 .78755 L .02381 .82668 L .02381 .86826 L .02381 .90833 L .02381 .94688 L .02381 .98788 L .02381 1.02536 L s .02381 .07298 m .02381 .11161 L .02381 .15375 L .02381 .19332 L .02381 .23137 L .02381 .27188 L .02381 .31088 L .02381 .35232 L .02381 .39225 L .02381 .43067 L .02381 .47153 L .02381 .51088 L .02381 .54872 L .02381 .58901 L .02381 .62778 L .02381 .669 L .02381 .70871 L .02381 .7469 L .02381 .78755 L .02381 .82668 L .02381 .86826 L .02381 .90833 L .02381 .94688 L .02381 .98788 L .02381 1.02536 L s 1 0 .6 r .92857 .02536 m .89882 .0665 L .86638 .11138 L .83591 .15352 L .8066 .19405 L .77541 .23719 L .74539 .27872 L .71348 .32286 L .68273 .36539 L .65315 .4063 L .62168 .44982 L .59138 .49173 L .56225 .53202 L .53123 .57493 L .50137 .61622 L .46963 .66012 L .43906 .70241 L .40965 .74309 L .37835 .78638 L .34822 .82805 L .3162 .87234 L .28535 .91501 L .25567 .95606 L .22409 .99973 L .19524 1.03964 L s .92857 .02536 m .89882 .0665 L .86638 .11138 L .83591 .15352 L .8066 .19405 L .77541 .23719 L .74539 .27872 L .71348 .32286 L .68273 .36539 L .65315 .4063 L .62168 .44982 L .59138 .49173 L .56225 .53202 L .53123 .57493 L .50137 .61622 L .46963 .66012 L .43906 .70241 L .40965 .74309 L .37835 .78638 L .34822 .82805 L .3162 .87234 L .28535 .91501 L .25567 .95606 L .22409 .99973 L .19524 1.03964 L s .92857 .02536 m .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L .92857 .02536 L s .19524 1.03964 m .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L .19524 1.03964 L s .02381 .07298 m .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L .02381 .07298 L s .02381 .07298 m .06051 .07104 L .10054 .06894 L .13813 .06696 L .17429 .06506 L .21277 .06303 L .24981 .06108 L .28919 .05901 L .32712 .05701 L .36361 .05509 L .40244 .05305 L .43982 .05108 L .47576 .04919 L .51404 .04717 L .55087 .04524 L .59003 .04317 L .62776 .04119 L .66404 .03928 L .70265 .03725 L .73983 .03529 L .77933 .03321 L .81739 .03121 L .85402 .02928 L .89297 .02723 L .92857 .02536 L s .02381 .07298 m .06051 .07104 L .10054 .06894 L .13813 .06696 L .17429 .06506 L .21277 .06303 L .24981 .06108 L .28919 .05901 L .32712 .05701 L .36361 .05509 L .40244 .05305 L .43982 .05108 L .47576 .04919 L .51404 .04717 L .55087 .04524 L .59003 .04317 L .62776 .04119 L .66404 .03928 L .70265 .03725 L .73983 .03529 L .77933 .03321 L .81739 .03121 L .85402 .02928 L .89297 .02723 L .92857 .02536 L s .02381 .07298 m .03076 .11219 L .03835 .15496 L .04547 .19512 L .05232 .23375 L .05961 .27487 L .06663 .31444 L .07409 .35651 L .08128 .39704 L .08819 .43603 L .09555 .47751 L .10263 .51745 L .10944 .55585 L .11669 .59675 L .12367 .6361 L .13109 .67794 L .13824 .71825 L .14512 .75701 L .15243 .79827 L .15948 .83798 L .16696 .88019 L .17417 .92086 L .18111 .95999 L .18849 1.0016 L .19524 1.03964 L s .02381 .07298 m .03076 .11219 L .03835 .15496 L .04547 .19512 L .05232 .23375 L .05961 .27487 L .06663 .31444 L .07409 .35651 L .08128 .39704 L .08819 .43603 L .09555 .47751 L .10263 .51745 L .10944 .55585 L .11669 .59675 L .12367 .6361 L .13109 .67794 L .13824 .71825 L .14512 .75701 L .15243 .79827 L .15948 .83798 L .16696 .88019 L .17417 .92086 L .18111 .95999 L .18849 1.0016 L .19524 1.03964 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 306.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgh0oooo00<0o`2I0?ooo`3oool04@3oool00`3P0oooo00<0 o`2I0?ooo`3oool03`3oool00`3L0oooo00<0o`2I0?ooo`3oool03`3oool00`3H0oooo00<0o`2I0?ooo`3oool03`3oool00`3H0oooo00<0o`2I0?ooo`3oool03P3o ool00`380oooo00<0o`2I0?ooo`3oool03P3oool00`340oooo00<0o`2I0?ooo`3oool03P3oool00`3< o`00oooo0?ooo`0M0?ooo`001P3oool00`300 oooo00<0o`2I0?ooo`3oool03P3oool00`300oooo00<0o`2I0?ooo`3oool03@3oool00`30?ooo`030?l0V@3oool0oooo0:40oooo00<0c?l00?ooo`3o09T0HP3oool000H0oooo00<0 c?l00?ooo`3oool03P3oool00`3o09T0oooo0?ooo`2P0?ooo`0300?ooo`030?l0V@3oool0oooo09h0oooo00@0c?l0 0?ooo`3oool0o`2II03oool000H0oooo00<0c?l00?ooo`3oool03`3oool00`3o09T0oooo0?ooo`2L 0?ooo`0400?oo o`030?l0V@3oool0oooo08H0oooo00060?ooo`0300?ooo`030?l0V@3oool0oooo08L0oooo00060?ooo`0300?ooo`030?l0 V@3oool0oooo08P0oooo00060?ooo`0300?ooo`030?l0V@3oool0oooo08T0oooo00060?ooo`0300?ooo`0300?ooo`001P3oool00`30?ooo`80c?l0 6P3oool00`3o09T0oooo0?ooo`0A0?ooo`030?l0V@3oool0oooo0=H0oooo00060?ooo`0300?ooo`030?l0V@3oool0oooo 0=P0oooo00060?ooo`03003oool20?l0VNH0oooo000h0?ooo`030?l0V@3oool0oooo0>D0oooo003o0?oo ob40oooo003o0?ooob40oooo003o0?ooob40oooo003o0?ooob40oooo003o0?ooob40oooo003o0?oo ob40oooo003o0?ooob40oooo0000\ \>"], ImageRangeCache->{{{0, 287}, {305.688, 0}} -> {-0.525005, -0.57669, \ 0.00365857, 0.00365857}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e2 ", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(proj[2];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.015 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.5075 0.952381 [ [ 0 0 0 0 ] [ 1 1.015 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.015 L 0 1.015 L closepath clip newpath .8 1 0 r .5 Mabswid [ ] 0 setdash .97619 .98369 m .93756 .98369 L .89542 .98369 L .85585 .98369 L .81779 .98369 L .77728 .98369 L .73829 .98369 L .69684 .98369 L .65691 .98369 L .6185 .98369 L .57763 .98369 L .53828 .98369 L .50045 .98369 L .46016 .98369 L .42139 .98369 L .38016 .98369 L .34046 .98369 L .30226 .98369 L .26162 .98369 L .22249 .98369 L .18091 .98369 L .14084 .98369 L .10229 .98369 L .06129 .98369 L .02381 .98369 L s .97619 .03131 m .93756 .03131 L .89542 .03131 L .85585 .03131 L .81779 .03131 L .77728 .03131 L .73829 .03131 L .69684 .03131 L .65691 .03131 L .6185 .03131 L .57763 .03131 L .53828 .03131 L .50045 .03131 L .46016 .03131 L .42139 .03131 L .38016 .03131 L .34046 .03131 L .30226 .03131 L .26162 .03131 L .22249 .03131 L .18091 .03131 L .14084 .03131 L .10229 .03131 L .06129 .03131 L .02381 .03131 L s .97619 .03131 m .97619 .06994 L .97619 .11208 L .97619 .15165 L .97619 .18971 L .97619 .23022 L .97619 .26921 L .97619 .31066 L .97619 .35059 L .97619 .389 L .97619 .42987 L .97619 .46922 L .97619 .50705 L .97619 .54734 L .97619 .58611 L .97619 .62734 L .97619 .66704 L .97619 .70524 L .97619 .74588 L .97619 .78501 L .97619 .82659 L .97619 .86666 L .97619 .90521 L .97619 .94621 L .97619 .98369 L s .02381 .03131 m .02381 .06994 L .02381 .11208 L .02381 .15165 L .02381 .18971 L .02381 .23022 L .02381 .26921 L .02381 .31066 L .02381 .35059 L .02381 .389 L .02381 .42987 L .02381 .46922 L .02381 .50705 L .02381 .54734 L .02381 .58611 L .02381 .62734 L .02381 .66704 L .02381 .70524 L .02381 .74588 L .02381 .78501 L .02381 .82659 L .02381 .86666 L .02381 .90521 L .02381 .94621 L .02381 .98369 L s .02381 .03131 m .02381 .06994 L .02381 .11208 L .02381 .15165 L .02381 .18971 L .02381 .23022 L .02381 .26921 L .02381 .31066 L .02381 .35059 L .02381 .389 L .02381 .42987 L .02381 .46922 L .02381 .50705 L .02381 .54734 L .02381 .58611 L .02381 .62734 L .02381 .66704 L .02381 .70524 L .02381 .74588 L .02381 .78501 L .02381 .82659 L .02381 .86666 L .02381 .90521 L .02381 .94621 L .02381 .98369 L s .02381 .98369 m .06244 .98369 L .10458 .98369 L .14415 .98369 L .18221 .98369 L .22272 .98369 L .26171 .98369 L .30316 .98369 L .34309 .98369 L .3815 .98369 L .42237 .98369 L .46172 .98369 L .49955 .98369 L .53984 .98369 L .57861 .98369 L .61984 .98369 L .65954 .98369 L .69774 .98369 L .73838 .98369 L .77751 .98369 L .81909 .98369 L .85916 .98369 L .89771 .98369 L .93871 .98369 L .97619 .98369 L s .02381 .03131 m .06244 .03131 L .10458 .03131 L .14415 .03131 L .18221 .03131 L .22272 .03131 L .26171 .03131 L .30316 .03131 L .34309 .03131 L .3815 .03131 L .42237 .03131 L .46172 .03131 L .49955 .03131 L .53984 .03131 L .57861 .03131 L .61984 .03131 L .65954 .03131 L .69774 .03131 L .73838 .03131 L .77751 .03131 L .81909 .03131 L .85916 .03131 L .89771 .03131 L .93871 .03131 L .97619 .03131 L s .02381 .98369 m .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L .02381 .98369 L s .02381 .03131 m .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L .02381 .03131 L s 1 0 .6 r .92857 .99083 m .89882 .99083 L .86638 .99083 L .83591 .99083 L .8066 .99083 L .77541 .99083 L .74539 .99083 L .71348 .99083 L .68273 .99083 L .65315 .99083 L .62168 .99083 L .59138 .99083 L .56225 .99083 L .53123 .99083 L .50137 .99083 L .46963 .99083 L .43906 .99083 L .40965 .99083 L .37835 .99083 L .34822 .99083 L .3162 .99083 L .28535 .99083 L .25567 .99083 L .22409 .99083 L .19524 .99083 L s .92857 .02417 m .89882 .02417 L .86638 .02417 L .83591 .02417 L .8066 .02417 L .77541 .02417 L .74539 .02417 L .71348 .02417 L .68273 .02417 L .65315 .02417 L .62168 .02417 L .59138 .02417 L .56225 .02417 L .53123 .02417 L .50137 .02417 L .46963 .02417 L .43906 .02417 L .40965 .02417 L .37835 .02417 L .34822 .02417 L .3162 .02417 L .28535 .02417 L .25567 .02417 L .22409 .02417 L .19524 .02417 L s .92857 .02417 m .92857 .06338 L .92857 .10615 L .92857 .14631 L .92857 .18494 L .92857 .22606 L .92857 .26564 L .92857 .3077 L .92857 .34823 L .92857 .38722 L .92857 .4287 L .92857 .46864 L .92857 .50704 L .92857 .54794 L .92857 .58729 L .92857 .62913 L .92857 .66944 L .92857 .7082 L .92857 .74946 L .92857 .78917 L .92857 .83138 L .92857 .87205 L .92857 .91118 L .92857 .9528 L .92857 .99083 L s .19524 .02417 m .19524 .06338 L .19524 .10615 L .19524 .14631 L .19524 .18494 L .19524 .22606 L .19524 .26564 L .19524 .3077 L .19524 .34823 L .19524 .38722 L .19524 .4287 L .19524 .46864 L .19524 .50704 L .19524 .54794 L .19524 .58729 L .19524 .62913 L .19524 .66944 L .19524 .7082 L .19524 .74946 L .19524 .78917 L .19524 .83138 L .19524 .87205 L .19524 .91118 L .19524 .9528 L .19524 .99083 L s .02381 .02417 m .02381 .06338 L .02381 .10615 L .02381 .14631 L .02381 .18494 L .02381 .22606 L .02381 .26564 L .02381 .3077 L .02381 .34823 L .02381 .38722 L .02381 .4287 L .02381 .46864 L .02381 .50704 L .02381 .54794 L .02381 .58729 L .02381 .62913 L .02381 .66944 L .02381 .7082 L .02381 .74946 L .02381 .78917 L .02381 .83138 L .02381 .87205 L .02381 .91118 L .02381 .9528 L .02381 .99083 L s .02381 .99083 m .06051 .99083 L .10054 .99083 L .13813 .99083 L .17429 .99083 L .21277 .99083 L .24981 .99083 L .28919 .99083 L .32712 .99083 L .36361 .99083 L .40244 .99083 L .43982 .99083 L .47576 .99083 L .51404 .99083 L .55087 .99083 L .59003 .99083 L .62776 .99083 L .66404 .99083 L .70265 .99083 L .73983 .99083 L .77933 .99083 L .81739 .99083 L .85402 .99083 L .89297 .99083 L .92857 .99083 L s .02381 .02417 m .06051 .02417 L .10054 .02417 L .13813 .02417 L .17429 .02417 L .21277 .02417 L .24981 .02417 L .28919 .02417 L .32712 .02417 L .36361 .02417 L .40244 .02417 L .43982 .02417 L .47576 .02417 L .51404 .02417 L .55087 .02417 L .59003 .02417 L .62776 .02417 L .66404 .02417 L .70265 .02417 L .73983 .02417 L .77933 .02417 L .81739 .02417 L .85402 .02417 L .89297 .02417 L .92857 .02417 L s .02381 .99083 m .03076 .99083 L .03835 .99083 L .04547 .99083 L .05232 .99083 L .05961 .99083 L .06663 .99083 L .07409 .99083 L .08128 .99083 L .08819 .99083 L .09555 .99083 L .10263 .99083 L .10944 .99083 L .11669 .99083 L .12367 .99083 L .13109 .99083 L .13824 .99083 L .14512 .99083 L .15243 .99083 L .15948 .99083 L .16696 .99083 L .17417 .99083 L .18111 .99083 L .18849 .99083 L .19524 .99083 L s .02381 .02417 m .03076 .02417 L .03835 .02417 L .04547 .02417 L .05232 .02417 L .05961 .02417 L .06663 .02417 L .07409 .02417 L .08128 .02417 L .08819 .02417 L .09555 .02417 L .10263 .02417 L .10944 .02417 L .11669 .02417 L .12367 .02417 L .13109 .02417 L .13824 .02417 L .14512 .02417 L .15243 .02417 L .15948 .02417 L .16696 .02417 L .17417 .02417 L .18111 .02417 L .18849 .02417 L .19524 .02417 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{269.5, 273.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg 0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool> 0?ooo`001P3ooood0?l0VA<0oooo00060?ooo`030?l0V@3oool0oooo02/0oooo00<0o`2I0?ooo`3o ool0`P3oool00`3o09T0oooo0?ooo`0A0?ooo`001P3oool00`3o09T0c?l000?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?oo o`00o`3oool>0?ooo`00\ \>"], ImageRangeCache->{{{0, 268.5}, {272.5, 0}} -> {-0.525053, -0.532875, \ 0.00391101, 0.00391101}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e1", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(proj[1];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.04926 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.938306 0.541051 0.938306 [ [ 0 0 0 0 ] [ 1 1.04926 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.04926 L 0 1.04926 L closepath clip newpath .8 1 0 r .5 Mabswid [ ] 0 setdash .03085 .0719 m .03085 .10996 L .03085 .15147 L .03085 .19046 L .03085 .22796 L .03085 .26787 L .03085 .30628 L .03085 .34712 L .03085 .38645 L .03085 .4243 L .03085 .46456 L .03085 .50333 L .03085 .54061 L .03085 .5803 L .03085 .6185 L .03085 .65912 L .03085 .69824 L .03085 .73587 L .03085 .77591 L .03085 .81446 L .03085 .85543 L .03085 .8949 L .03085 .93288 L .03085 .97328 L .03085 1.0102 L s .96915 .0719 m .96915 .10996 L .96915 .15147 L .96915 .19046 L .96915 .22796 L .96915 .26787 L .96915 .30628 L .96915 .34712 L .96915 .38645 L .96915 .4243 L .96915 .46456 L .96915 .50333 L .96915 .54061 L .96915 .5803 L .96915 .6185 L .96915 .65912 L .96915 .69824 L .96915 .73587 L .96915 .77591 L .96915 .81446 L .96915 .85543 L .96915 .8949 L .96915 .93288 L .96915 .97328 L .96915 1.0102 L s .96915 .0719 m .93109 .0719 L .88958 .0719 L .85059 .0719 L .8131 .0719 L .77319 .0719 L .73477 .0719 L .69394 .0719 L .6546 .0719 L .61675 .0719 L .57649 .0719 L .53772 .0719 L .50044 .0719 L .46075 .0719 L .42255 .0719 L .38194 .0719 L .34281 .0719 L .30519 .0719 L .26514 .0719 L .22659 .0719 L .18562 .0719 L .14615 .0719 L .10817 .0719 L .06777 .0719 L .03085 .0719 L s .96915 1.0102 m .93109 1.0102 L .88958 1.0102 L .85059 1.0102 L .8131 1.0102 L .77319 1.0102 L .73477 1.0102 L .69394 1.0102 L .6546 1.0102 L .61675 1.0102 L .57649 1.0102 L .53772 1.0102 L .50044 1.0102 L .46075 1.0102 L .42255 1.0102 L .38194 1.0102 L .34281 1.0102 L .30519 1.0102 L .26514 1.0102 L .22659 1.0102 L .18562 1.0102 L .14615 1.0102 L .10817 1.0102 L .06777 1.0102 L .03085 1.0102 L s .96915 .0719 m .93109 .0719 L .88958 .0719 L .85059 .0719 L .8131 .0719 L .77319 .0719 L .73477 .0719 L .69394 .0719 L .6546 .0719 L .61675 .0719 L .57649 .0719 L .53772 .0719 L .50044 .0719 L .46075 .0719 L .42255 .0719 L .38194 .0719 L .34281 .0719 L .30519 .0719 L .26514 .0719 L .22659 .0719 L .18562 .0719 L .14615 .0719 L .10817 .0719 L .06777 .0719 L .03085 .0719 L s .03085 .0719 m .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L .03085 .0719 L s .96915 .0719 m .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L .96915 .0719 L s .03085 .0719 m .03085 .10996 L .03085 .15147 L .03085 .19046 L .03085 .22796 L .03085 .26787 L .03085 .30628 L .03085 .34712 L .03085 .38645 L .03085 .4243 L .03085 .46456 L .03085 .50333 L .03085 .54061 L .03085 .5803 L .03085 .6185 L .03085 .65912 L .03085 .69824 L .03085 .73587 L .03085 .77591 L .03085 .81446 L .03085 .85543 L .03085 .8949 L .03085 .93288 L .03085 .97328 L .03085 1.0102 L s .96915 .0719 m .96915 .10996 L .96915 .15147 L .96915 .19046 L .96915 .22796 L .96915 .26787 L .96915 .30628 L .96915 .34712 L .96915 .38645 L .96915 .4243 L .96915 .46456 L .96915 .50333 L .96915 .54061 L .96915 .5803 L .96915 .6185 L .96915 .65912 L .96915 .69824 L .96915 .73587 L .96915 .77591 L .96915 .81446 L .96915 .85543 L .96915 .8949 L .96915 .93288 L .96915 .97328 L .96915 1.0102 L s 1 0 .6 r .02381 .02498 m .02381 .06552 L .02381 .10973 L .02381 .15125 L .02381 .19118 L .02381 .23369 L .02381 .2746 L .02381 .31809 L .02381 .35999 L .02381 .40029 L .02381 .44317 L .02381 .48446 L .02381 .52416 L .02381 .56643 L .02381 .60711 L .02381 .65037 L .02381 .69203 L .02381 .73211 L .02381 .77476 L .02381 .81581 L .02381 .85944 L .02381 .90148 L .02381 .94193 L .02381 .98496 L .02381 1.02428 L s .97619 .02498 m .97619 .06552 L .97619 .10973 L .97619 .15125 L .97619 .19118 L .97619 .23369 L .97619 .2746 L .97619 .31809 L .97619 .35999 L .97619 .40029 L .97619 .44317 L .97619 .48446 L .97619 .52416 L .97619 .56643 L .97619 .60711 L .97619 .65037 L .97619 .69203 L .97619 .73211 L .97619 .77476 L .97619 .81581 L .97619 .85944 L .97619 .90148 L .97619 .94193 L .97619 .98496 L .97619 1.02428 L s .97619 .02498 m .93756 .02498 L .89542 .02498 L .85585 .02498 L .81779 .02498 L .77728 .02498 L .73829 .02498 L .69684 .02498 L .65691 .02498 L .6185 .02498 L .57763 .02498 L .53828 .02498 L .50045 .02498 L .46016 .02498 L .42139 .02498 L .38016 .02498 L .34046 .02498 L .30226 .02498 L .26162 .02498 L .22249 .02498 L .18091 .02498 L .14084 .02498 L .10229 .02498 L .06129 .02498 L .02381 .02498 L s .97619 1.02428 m .93756 1.02428 L .89542 1.02428 L .85585 1.02428 L .81779 1.02428 L .77728 1.02428 L .73829 1.02428 L .69684 1.02428 L .65691 1.02428 L .6185 1.02428 L .57763 1.02428 L .53828 1.02428 L .50045 1.02428 L .46016 1.02428 L .42139 1.02428 L .38016 1.02428 L .34046 1.02428 L .30226 1.02428 L .26162 1.02428 L .22249 1.02428 L .18091 1.02428 L .14084 1.02428 L .10229 1.02428 L .06129 1.02428 L .02381 1.02428 L s .97619 .0719 m .93756 .0719 L .89542 .0719 L .85585 .0719 L .81779 .0719 L .77728 .0719 L .73829 .0719 L .69684 .0719 L .65691 .0719 L .6185 .0719 L .57763 .0719 L .53828 .0719 L .50045 .0719 L .46016 .0719 L .42139 .0719 L .38016 .0719 L .34046 .0719 L .30226 .0719 L .26162 .0719 L .22249 .0719 L .18091 .0719 L .14084 .0719 L .10229 .0719 L .06129 .0719 L .02381 .0719 L s .02381 .0719 m .02381 .06999 L .02381 .06792 L .02381 .06597 L .02381 .06409 L .02381 .0621 L .02381 .06018 L .02381 .05814 L .02381 .05617 L .02381 .05428 L .02381 .05226 L .02381 .05033 L .02381 .04846 L .02381 .04648 L .02381 .04457 L .02381 .04254 L .02381 .04058 L .02381 .0387 L .02381 .0367 L .02381 .03477 L .02381 .03272 L .02381 .03075 L .02381 .02885 L .02381 .02683 L .02381 .02498 L s .97619 .0719 m .97619 .06999 L .97619 .06792 L .97619 .06597 L .97619 .06409 L .97619 .0621 L .97619 .06018 L .97619 .05814 L .97619 .05617 L .97619 .05428 L .97619 .05226 L .97619 .05033 L .97619 .04846 L .97619 .04648 L .97619 .04457 L .97619 .04254 L .97619 .04058 L .97619 .0387 L .97619 .0367 L .97619 .03477 L .97619 .03272 L .97619 .03075 L .97619 .02885 L .97619 .02683 L .97619 .02498 L s .02381 .0719 m .02381 .11053 L .02381 .15267 L .02381 .19224 L .02381 .2303 L .02381 .2708 L .02381 .3098 L .02381 .35124 L .02381 .39117 L .02381 .42959 L .02381 .47045 L .02381 .5098 L .02381 .54764 L .02381 .58793 L .02381 .6267 L .02381 .66792 L .02381 .70763 L .02381 .74583 L .02381 .78647 L .02381 .8256 L .02381 .86718 L .02381 .90725 L .02381 .9458 L .02381 .9868 L .02381 1.02428 L s .97619 .0719 m .97619 .11053 L .97619 .15267 L .97619 .19224 L .97619 .2303 L .97619 .2708 L .97619 .3098 L .97619 .35124 L .97619 .39117 L .97619 .42959 L .97619 .47045 L .97619 .5098 L .97619 .54764 L .97619 .58793 L .97619 .6267 L .97619 .66792 L .97619 .70763 L .97619 .74583 L .97619 .78647 L .97619 .8256 L .97619 .86718 L .97619 .90725 L .97619 .9458 L .97619 .9868 L .97619 1.02428 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{269.75, 283}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg 0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool> 0?ooo`00o`3oool>0?ooo`001P3ooooo0?l0V@80o`2I1P3oool000H0oooo00<0o`2I0?ooo`3oool0 o@3oool00`3o09T0oooo0?ooo`040?ooo`001P3oool00`3o09T0oooo0?ooo`3m0?ooo`030?l0V@3o ool0oooo00@0oooo00060?ooo`030?l0V@3oool0oooo0?d0oooo00<0o`2I0?ooo`3oool0103oool0 00H0oooo00<0o`2I0?ooo`3oool0o@3oool00`3o09T0oooo0?ooo`040?ooo`001P3oool00`3o09T0 oooo0?ooo`3m0?ooo`030?l0V@3oool0oooo00@0oooo00060?ooo`030?l0V@3oool0oooo0?d0oooo 00<0o`2I0?ooo`3oool0103oool000H0oooo00<0o`2I0?ooo`3oool0o@3oool00`3o09T0oooo0?oo o`040?ooo`001P3oool00`3o09T0oooo0?ooo`3m0?ooo`030?l0V@3oool0oooo00@0oooo00060?oo o`030?l0V@3oool0oooo0?d0oooo00<0o`2I0?ooo`3oool0103oool000H0oooo00<0o`2I0?ooo`3o ool0o@3oool00`3o09T0oooo0?ooo`040?ooo`001P3oool00`3o09T0oooo0?ooo`3m0?ooo`030?l0 V@3oool0oooo00@0oooo00060?ooo`030?l0V@3oool0oooo0?d0oooo00<0o`2I0?ooo`3oool0103o ool000H0ooooo`3o09T20?l0V@H0oooo00060?ooo`030?l0V@3oool0c?l00?/0oooo00<0c?l00?oo o`3o09T01P3oool000H0oooo00<0o`2I0?ooo`30?ooo`00o`3oool>0?ooo`00o`3o ool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00o`3oool>0?ooo`00\ \>"], ImageRangeCache->{{{0, 268.75}, {282, 0}} -> {-0.532881, -0.576653, \ 0.00396562, 0.00396562}}] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Momento delle forze reattive", "Section"], Cell["Da moltiplicare per il volume", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(mT\ - mMa\/vol /. tens\) /. sol // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(\(L2\ p\)\/L1\)\), "0", "0"}, {\(\(L2\ p\)\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa\)], "Input"], Cell[BoxData[ \({L1\ L3\ p, 0, 0}\)], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for X", ScreenRectangle->{{0, 1024}, {0, 768}}, WindowSize->{1020, 692}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, Magnification->1, StyleDefinitions -> Notebook[{ Cell[CellGroupData[{ Cell["Style Definitions", "Subtitle"], Cell["\<\ Modify the definitions below to change the default appearance of all cells in \ a given style. Make modifications to any definition using commands in the \ Format menu.\ \>", "Text"], Cell[CellGroupData[{ Cell["Style Environment Names", "Section"], Cell[StyleData[All, "Working"], PageWidth->WindowWidth, CellLabelMargins->{{12, Inherited}, {Inherited, Inherited}}, ScriptMinSize->9], Cell[StyleData[All, "Presentation"], PageWidth->WindowWidth, CellLabelMargins->{{24, Inherited}, {Inherited, Inherited}}, ScriptMinSize->12], Cell[StyleData[All, "Condensed"], PageWidth->WindowWidth, CellLabelMargins->{{8, Inherited}, {Inherited, Inherited}}, ScriptMinSize->8], Cell[StyleData[All, "Printout"], PageWidth->PaperWidth, CellLabelMargins->{{2, Inherited}, {Inherited, Inherited}}, ScriptMinSize->5, PrivateFontOptions->{"FontType"->"Outline"}] }, Closed]], Cell[CellGroupData[{ Cell["Notebook Options", "Section"], Cell["\<\ The options defined for the style below will be used at the Notebook level.\ \>", "Text"], Cell[StyleData["Notebook"], PageHeaders->{{Cell[ TextData[ { CounterBox[ "Page"]}], "PageNumber"], None, Cell[ TextData[ { ValueBox[ "FileName"]}], "Header"]}, {Cell[ TextData[ { ValueBox[ "FileName"]}], "Header"], None, Cell[ TextData[ { CounterBox[ "Page"]}], "PageNumber"]}}, CellFrameLabelMargins->6, StyleMenuListing->None] }, Closed]], Cell[CellGroupData[{ Cell["Styles for Headings", "Section"], Cell[CellGroupData[{ Cell[StyleData["Title"], CellFrame->{{0, 0}, {3, 0}}, CellMargins->{{12, Inherited}, {20, 40}}, CellGroupingRules->{"TitleGrouping", 0}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LineSpacing->{1, 11}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Title", CounterAssignments->{{"Section", 0}, {"Equation", 0}, {"Figure", 0}, { "Subtitle", 0}, {"Subsubtitle", 0}}, FontFamily->"Helvetica", FontSize->32, FontWeight->"Bold"], Cell[StyleData["Title", "Presentation"], CellFrame->{{0, 0}, {3, 0}}, CellMargins->{{24, 10}, {20, 40}}, LineSpacing->{1, 0}, Background->None], Cell[StyleData["Title", "Condensed"], CellMargins->{{8, 10}, {4, 8}}, FontSize->20], Cell[StyleData["Title", "Printout"], CellMargins->{{2, 10}, {12, 30}}, FontSize->24] }, Open ]], Cell[CellGroupData[{ Cell[StyleData["Subtitle"], CellMargins->{{12, Inherited}, {20, 15}}, CellGroupingRules->{"TitleGrouping", 10}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Subtitle", CounterAssignments->{{"Section", 0}, {"Equation", 0}, {"Figure", 0}, { "Subsubtitle", 0}}, FontFamily->"Helvetica", FontSize->24], Cell[StyleData["Subtitle", "Presentation"], CellMargins->{{24, 10}, {20, 20}}, LineSpacing->{1, 0}, FontSize->18], Cell[StyleData["Subtitle", "Condensed"], CellMargins->{{8, 10}, {4, 4}}, FontSize->14], Cell[StyleData["Subtitle", "Printout"], CellMargins->{{2, 10}, {12, 8}}, FontSize->18] }, Open ]], Cell[CellGroupData[{ Cell[StyleData["Subsubtitle"], CellMargins->{{12, Inherited}, {20, 15}}, CellGroupingRules->{"TitleGrouping", 20}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Subsubtitle", CounterAssignments->{{"Section", 0}, {"Equation", 0}, {"Figure", 0}}, FontFamily->"Helvetica", FontSize->14, FontSlant->"Italic"], Cell[StyleData["Subsubtitle", "Presentation"], CellMargins->{{24, 10}, {20, 20}}, LineSpacing->{1, 0}, FontSize->24], Cell[StyleData["Subsubtitle", "Condensed"], CellMargins->{{8, 10}, {8, 8}}, FontSize->12], Cell[StyleData["Subsubtitle", "Printout"], CellMargins->{{2, 10}, {12, 8}}, FontSize->14] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Section"], CellDingbat->"\[FilledSquare]", CellMargins->{{25, Inherited}, {8, 24}}, CellGroupingRules->{"SectionGrouping", 30}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LineSpacing->{1, 7}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Section", CounterAssignments->{{"Subsection", 0}, {"Subsubsection", 0}}, FontFamily->"Helvetica", FontSize->16, FontWeight->"Bold"], Cell[StyleData["Section", "Presentation"], CellMargins->{{40, 10}, {11, 32}}, LineSpacing->{1, 0}, FontSize->24], Cell[StyleData["Section", "Condensed"], CellMargins->{{18, Inherited}, {6, 12}}, FontSize->12], Cell[StyleData["Section", "Printout"], CellMargins->{{13, 0}, {7, 22}}, FontSize->14] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Subsection"], CellDingbat->"\[FilledSmallSquare]", CellMargins->{{22, Inherited}, {8, 20}}, CellGroupingRules->{"SectionGrouping", 40}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Subsection", CounterAssignments->{{"Subsubsection", 0}}, FontFamily->"Times", FontSize->14, FontWeight->"Bold"], Cell[StyleData["Subsection", "Presentation"], CellMargins->{{36, 10}, {11, 32}}, LineSpacing->{1, 0}, FontSize->22], Cell[StyleData["Subsection", "Condensed"], CellMargins->{{16, Inherited}, {6, 12}}, FontSize->12], Cell[StyleData["Subsection", "Printout"], CellMargins->{{9, 0}, {7, 22}}, FontSize->12] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Subsubsection"], CellDingbat->"\[FilledSmallSquare]", CellMargins->{{22, Inherited}, {8, 18}}, CellGroupingRules->{"SectionGrouping", 50}, PageBreakBelow->False, DefaultNewInlineCellStyle->"None", InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, LanguageCategory->"NaturalLanguage", CounterIncrements->"Subsubsection", FontFamily->"Times", FontWeight->"Bold"], Cell[StyleData["Subsubsection", "Presentation"], CellMargins->{{34, 10}, {11, 26}}, LineSpacing->{1, 0}, FontSize->18], Cell[StyleData["Subsubsection", "Condensed"], CellMargins->{{17, Inherited}, {6, 12}}, FontSize->10], Cell[StyleData["Subsubsection", "Printout"], CellMargins->{{9, 0}, {7, 14}}, FontSize->11] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Styles for Body Text", "Section"], Cell[CellGroupData[{ Cell[StyleData["Text"], CellMargins->{{12, 10}, {7, 7}}, InputAutoReplacements->{"TeX"->StyleBox[ RowBox[ {"T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "LaTeX"->StyleBox[ RowBox[ {"L", StyleBox[ AdjustmentBox[ "A", BoxMargins -> {{-0.36, -0.1}, {0, -0}}, BoxBaselineShift -> -0.2], FontSize -> Smaller], "T", AdjustmentBox[ "E", BoxMargins -> {{-0.075, -0.085}, {0, 0}}, BoxBaselineShift -> 0.5], "X"}]], "mma"->"Mathematica", "Mma"->"Mathematica", "MMA"->"Mathematica", Inherited}, Hyphenation->True, LineSpacing->{1, 3}, CounterIncrements->"Text", FontFamily->"Helvetica", FontSize->10, FontWeight->"Plain", FontSlant->"Plain", FontColor->RGBColor[0.8047, 0, 0], FontVariations->{"Underline"->False, "StrikeThrough"->False}], Cell[StyleData["Text", "Presentation"], CellMargins->{{24, 10}, {10, 10}}, LineSpacing->{1, 5}], Cell[StyleData["Text", "Condensed"], CellMargins->{{8, 10}, {6, 6}}, LineSpacing->{1, 1}], Cell[StyleData["Text", "Printout"], CellMargins->{{2, 2}, {6, 6}}, TextJustification->0.5] }, Open ]], Cell[CellGroupData[{ Cell[StyleData["SmallText"], CellMargins->{{12, 10}, {6, 6}}, DefaultNewInlineCellStyle->"None", Hyphenation->True, LineSpacing->{1, 3}, LanguageCategory->"NaturalLanguage", CounterIncrements->"SmallText", FontFamily->"Helvetica", FontSize->9, FontWeight->"Plain", FontSlant->"Plain", FontColor->RGBColor[0.8047, 0, 0], FontVariations->{"Underline"->False, "StrikeThrough"->False}], Cell[StyleData["SmallText", "Presentation"], CellMargins->{{24, 10}, {8, 8}}, LineSpacing->{1, 5}], Cell[StyleData["SmallText", "Condensed"], CellMargins->{{8, 10}, {5, 5}}, LineSpacing->{1, 2}, FontSize->9], Cell[StyleData["SmallText", "Printout"], CellMargins->{{2, 2}, {5, 5}}, TextJustification->0.5, FontSize->7] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Styles for Input/Output", "Section"], Cell["\<\ The cells in this section define styles used for input and output to the \ kernel. Be careful when modifying, renaming, or removing these styles, \ because the front end associates special meanings with these style names. \ Some attributes for these styles are actually set in FormatType Styles (in \ the last section of this stylesheet). \ \>", "Text"], Cell[CellGroupData[{ Cell[StyleData["Input"], CellMargins->{{45, 10}, {5, 7}}, Evaluatable->True, CellGroupingRules->"InputGrouping", CellHorizontalScrolling->True, PageBreakWithin->False, GroupPageBreakWithin->False, DefaultFormatType->DefaultInputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, AutoItalicWords->{}, LanguageCategory->"Mathematica", FormatType->InputForm, ShowStringCharacters->True, NumberMarks->True, LinebreakAdjustments->{0.85, 2, 10, 0, 1}, CounterIncrements->"Input", FontWeight->"Plain"], Cell[StyleData["Input", "Presentation"], CellMargins->{{72, Inherited}, {8, 10}}, LineSpacing->{1, 0}, FontSize->16], Cell[StyleData["Input", "Condensed"], CellMargins->{{40, 10}, {2, 3}}, FontSize->11], Cell[StyleData["Input", "Printout"], CellMargins->{{39, 0}, {4, 6}}, LinebreakAdjustments->{0.85, 2, 10, 1, 1}, FontSize->9] }, Closed]], Cell[StyleData["InputOnly"], Evaluatable->True, CellGroupingRules->"InputGrouping", CellHorizontalScrolling->True, DefaultFormatType->DefaultInputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, AutoItalicWords->{}, LanguageCategory->"Mathematica", FormatType->InputForm, ShowStringCharacters->True, NumberMarks->True, LinebreakAdjustments->{0.85, 2, 10, 0, 1}, CounterIncrements->"Input", StyleMenuListing->None, FontWeight->"Plain"], Cell[CellGroupData[{ Cell[StyleData["Output"], CellMargins->{{47, 10}, {7, 5}}, CellEditDuplicate->True, CellGroupingRules->"OutputGrouping", CellHorizontalScrolling->True, PageBreakWithin->False, GroupPageBreakWithin->False, GeneratedCell->True, CellAutoOverwrite->True, DefaultFormatType->DefaultOutputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, AutoItalicWords->{}, LanguageCategory->None, FormatType->InputForm, CounterIncrements->"Output", Background->RGBColor[0.914076, 0.914076, 0.996109]], Cell[StyleData["Output", "Presentation"], CellMargins->{{72, Inherited}, {10, 8}}, LineSpacing->{1, 0}, FontSize->16], Cell[StyleData["Output", "Condensed"], CellMargins->{{41, Inherited}, {3, 2}}, FontSize->11], Cell[StyleData["Output", "Printout"], CellMargins->{{39, 0}, {6, 4}}, FontSize->9] }, Open ]], Cell[CellGroupData[{ Cell[StyleData["Message"], CellMargins->{{45, Inherited}, {Inherited, Inherited}}, CellGroupingRules->"OutputGrouping", PageBreakWithin->False, GroupPageBreakWithin->False, GeneratedCell->True, CellAutoOverwrite->True, ShowCellLabel->False, DefaultFormatType->DefaultOutputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, AutoItalicWords->{}, LanguageCategory->None, FormatType->InputForm, CounterIncrements->"Message", StyleMenuListing->None, FontSize->11, FontColor->RGBColor[0, 0, 1]], Cell[StyleData["Message", "Presentation"], CellMargins->{{72, Inherited}, {Inherited, Inherited}}, LineSpacing->{1, 0}, FontSize->16], Cell[StyleData["Message", "Condensed"], CellMargins->{{41, Inherited}, {Inherited, Inherited}}, FontSize->11], Cell[StyleData["Message", "Printout"], CellMargins->{{39, Inherited}, {Inherited, Inherited}}, FontSize->7, FontColor->GrayLevel[0]] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Print"], CellMargins->{{45, Inherited}, {Inherited, Inherited}}, CellGroupingRules->"OutputGrouping", CellHorizontalScrolling->True, PageBreakWithin->False, GroupPageBreakWithin->False, GeneratedCell->True, CellAutoOverwrite->True, ShowCellLabel->False, DefaultFormatType->DefaultOutputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, AutoItalicWords->{}, LanguageCategory->None, FormatType->InputForm, CounterIncrements->"Print", StyleMenuListing->None], Cell[StyleData["Print", "Presentation"], CellMargins->{{72, Inherited}, {Inherited, Inherited}}, LineSpacing->{1, 0}, FontSize->16], Cell[StyleData["Print", "Condensed"], CellMargins->{{41, Inherited}, {Inherited, Inherited}}, FontSize->11], Cell[StyleData["Print", "Printout"], CellMargins->{{39, Inherited}, {Inherited, Inherited}}, FontSize->8] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Graphics"], CellMargins->{{4, Inherited}, {Inherited, Inherited}}, CellGroupingRules->"GraphicsGrouping", CellHorizontalScrolling->True, PageBreakWithin->False, GeneratedCell->True, CellAutoOverwrite->True, ShowCellLabel->False, DefaultFormatType->DefaultOutputFormatType, LanguageCategory->None, FormatType->InputForm, CounterIncrements->"Graphics", ImageMargins->{{43, Inherited}, {Inherited, 0}}, StyleMenuListing->None, FontFamily->"Courier", FontSize->10], Cell[StyleData["Graphics", "Presentation"], ImageMargins->{{62, Inherited}, {Inherited, 0}}], Cell[StyleData["Graphics", "Condensed"], ImageMargins->{{38, Inherited}, {Inherited, 0}}, Magnification->0.6], Cell[StyleData["Graphics", "Printout"], ImageMargins->{{30, Inherited}, {Inherited, 0}}, Magnification->0.8] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["CellLabel"], LanguageCategory->None, StyleMenuListing->None, FontFamily->"Helvetica", FontSize->9, FontColor->RGBColor[0, 0, 1]], Cell[StyleData["CellLabel", "Presentation"], FontSize->12], Cell[StyleData["CellLabel", "Condensed"], FontSize->9], Cell[StyleData["CellLabel", "Printout"], FontFamily->"Courier", FontSize->8, FontSlant->"Italic", FontColor->GrayLevel[0]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Inline Formatting", "Section"], Cell["\<\ These styles are for modifying individual words or letters in a cell \ exclusive of the cell tag.\ \>", "Text"], Cell[StyleData["RM"], StyleMenuListing->None, FontWeight->"Plain", FontSlant->"Plain"], Cell[StyleData["BF"], StyleMenuListing->None, FontWeight->"Bold"], Cell[StyleData["IT"], StyleMenuListing->None, FontSlant->"Italic"], Cell[StyleData["TR"], StyleMenuListing->None, FontFamily->"Times", FontWeight->"Plain", FontSlant->"Plain"], Cell[StyleData["TI"], StyleMenuListing->None, FontFamily->"Times", FontWeight->"Plain", FontSlant->"Italic"], Cell[StyleData["TB"], StyleMenuListing->None, FontFamily->"Times", FontWeight->"Bold", FontSlant->"Plain"], Cell[StyleData["TBI"], StyleMenuListing->None, FontFamily->"Times", FontWeight->"Bold", FontSlant->"Italic"], Cell[StyleData["MR"], HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, StyleMenuListing->None, FontFamily->"Courier", FontWeight->"Plain", FontSlant->"Plain"], Cell[StyleData["MO"], HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, StyleMenuListing->None, FontFamily->"Courier", FontWeight->"Plain", FontSlant->"Italic"], Cell[StyleData["MB"], HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, StyleMenuListing->None, FontFamily->"Courier", FontWeight->"Bold", FontSlant->"Plain"], Cell[StyleData["MBO"], HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, StyleMenuListing->None, FontFamily->"Courier", FontWeight->"Bold", FontSlant->"Italic"], Cell[StyleData["SR"], StyleMenuListing->None, FontFamily->"Helvetica", FontWeight->"Plain", FontSlant->"Plain"], Cell[StyleData["SO"], StyleMenuListing->None, FontFamily->"Helvetica", FontWeight->"Plain", FontSlant->"Italic"], Cell[StyleData["SB"], StyleMenuListing->None, FontFamily->"Helvetica", FontWeight->"Bold", FontSlant->"Plain"], Cell[StyleData["SBO"], StyleMenuListing->None, FontFamily->"Helvetica", FontWeight->"Bold", FontSlant->"Italic"], Cell[CellGroupData[{ Cell[StyleData["SO10"], StyleMenuListing->None, FontFamily->"Helvetica", FontSize->10, FontWeight->"Plain", FontSlant->"Italic"], Cell[StyleData["SO10", "Printout"], StyleMenuListing->None, FontFamily->"Helvetica", FontSize->7, FontWeight->"Plain", FontSlant->"Italic"], Cell[StyleData["SO10", "EnhancedPrintout"], StyleMenuListing->None, FontFamily->"Futura", FontSize->7, FontWeight->"Plain", FontSlant->"Italic"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Formulas and Programming", "Section"], Cell[CellGroupData[{ Cell[StyleData["InlineFormula"], CellMargins->{{10, 4}, {0, 8}}, CellHorizontalScrolling->True, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, LanguageCategory->"Formula", ScriptLevel->1, SingleLetterItalics->True], Cell[StyleData["InlineFormula", "Presentation"], CellMargins->{{24, 10}, {10, 10}}, LineSpacing->{1, 5}, FontSize->16], Cell[StyleData["InlineFormula", "Condensed"], CellMargins->{{8, 10}, {6, 6}}, LineSpacing->{1, 1}, FontSize->11], Cell[StyleData["InlineFormula", "Printout"], CellMargins->{{2, 0}, {6, 6}}, FontSize->10] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["DisplayFormula"], CellMargins->{{42, Inherited}, {Inherited, Inherited}}, CellHorizontalScrolling->True, DefaultFormatType->DefaultInputFormatType, HyphenationOptions->{"HyphenationCharacter"->"\[Continuation]"}, LanguageCategory->"Formula", ScriptLevel->0, SingleLetterItalics->True, UnderoverscriptBoxOptions->{LimitsPositioning->True}], Cell[StyleData["DisplayFormula", "Presentation"], LineSpacing->{1, 5}, FontSize->16], Cell[StyleData["DisplayFormula", "Condensed"], LineSpacing->{1, 1}, FontSize->11], Cell[StyleData["DisplayFormula", "Printout"], FontSize->10] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Program"], CellFrame->{{0, 0}, {0.5, 0.5}}, CellMargins->{{10, 4}, {0, 8}}, CellHorizontalScrolling->True, Hyphenation->False, LanguageCategory->"Formula", ScriptLevel->1, FontFamily->"Courier"], Cell[StyleData["Program", "Presentation"], CellMargins->{{24, 10}, {10, 10}}, LineSpacing->{1, 5}, FontSize->16], Cell[StyleData["Program", "Condensed"], CellMargins->{{8, 10}, {6, 6}}, LineSpacing->{1, 1}, FontSize->11], Cell[StyleData["Program", "Printout"], CellMargins->{{2, 0}, {6, 6}}, FontSize->9] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Outline Styles", "Section"], Cell[CellGroupData[{ Cell[StyleData["Outline1"], CellMargins->{{12, 10}, {7, 7}}, CellGroupingRules->{"SectionGrouping", 50}, ParagraphIndent->-38, CounterIncrements->"Outline1", FontSize->18, FontWeight->"Bold", CounterBoxOptions->{CounterFunction:>CapitalRomanNumeral}], Cell[StyleData["Outline1", "Printout"], CounterBoxOptions->{CounterFunction:>CapitalRomanNumeral}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Outline2"], CellMargins->{{59, 10}, {7, 7}}, CellGroupingRules->{"SectionGrouping", 60}, ParagraphIndent->-27, CounterIncrements->"Outline2", FontSize->15, FontWeight->"Bold", CounterBoxOptions->{CounterFunction:>(Part[ CharacterRange[ "A", "Z"], #]&)}], Cell[StyleData["Outline2", "Printout"], CounterBoxOptions->{CounterFunction:>(Part[ CharacterRange[ "A", "Z"], #]&)}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Outline3"], CellMargins->{{108, 10}, {7, 7}}, CellGroupingRules->{"SectionGrouping", 70}, ParagraphIndent->-21, CounterIncrements->"Outline3", FontSize->12, CounterBoxOptions->{CounterFunction:>Identity}], Cell[StyleData["Outline3", "Printout"], CounterBoxOptions->{CounterFunction:>Identity}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["Outline4"], CellMargins->{{158, 10}, {7, 7}}, CellGroupingRules->{"SectionGrouping", 80}, ParagraphIndent->-18, CounterIncrements->"Outline4", FontSize->10, CounterBoxOptions->{CounterFunction:>(Part[ CharacterRange[ "a", "z"], #]&)}], Cell[StyleData["Outline4", "Printout"]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Hyperlink Styles", "Section"], Cell["\<\ The cells below define styles useful for making hypertext ButtonBoxes. The \ \"Hyperlink\" style is for links within the same Notebook, or between \ Notebooks.\ \>", "Text"], Cell[CellGroupData[{ Cell[StyleData["Hyperlink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`NotebookLocate[ #2]}]&), Active->True, ButtonNote->ButtonData}], Cell[StyleData["Hyperlink", "Presentation"], FontSize->16], Cell[StyleData["Hyperlink", "Condensed"], FontSize->11], Cell[StyleData["Hyperlink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]], Cell["\<\ The following styles are for linking automatically to the on-line help \ system.\ \>", "Text"], Cell[CellGroupData[{ Cell[StyleData["MainBookLink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`HelpBrowserLookup[ "MainBook", #]}]&), Active->True, ButtonFrame->"None"}], Cell[StyleData["MainBookLink", "Presentation"], FontSize->16], Cell[StyleData["MainBookLink", "Condensed"], FontSize->11], Cell[StyleData["MainBookLink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["AddOnsLink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontFamily->"Courier", FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`HelpBrowserLookup[ "AddOns", #]}]&), Active->True, ButtonFrame->"None"}], Cell[StyleData["AddOnsLink", "Presentation"], FontSize->16], Cell[StyleData["AddOnsLink", "Condensed"], FontSize->11], Cell[StyleData["AddOnsLink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["RefGuideLink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontFamily->"Courier", FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`HelpBrowserLookup[ "RefGuide", #]}]&), Active->True, ButtonFrame->"None"}], Cell[StyleData["RefGuideLink", "Presentation"], FontSize->16], Cell[StyleData["RefGuideLink", "Condensed"], FontSize->11], Cell[StyleData["RefGuideLink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["GettingStartedLink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`HelpBrowserLookup[ "GettingStarted", #]}]&), Active->True, ButtonFrame->"None"}], Cell[StyleData["GettingStartedLink", "Presentation"], FontSize->16], Cell[StyleData["GettingStartedLink", "Condensed"], FontSize->11], Cell[StyleData["GettingStartedLink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["OtherInformationLink"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, FontColor->RGBColor[0, 0, 1], FontVariations->{"Underline"->True}, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`HelpBrowserLookup[ "OtherInformation", #]}]&), Active->True, ButtonFrame->"None"}], Cell[StyleData["OtherInformationLink", "Presentation"], FontSize->16], Cell[StyleData["OtherInformationLink", "Condensed"], FontSize->11], Cell[StyleData["OtherInformationLink", "Printout"], FontSize->10, FontColor->GrayLevel[0], FontVariations->{"Underline"->False}] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Styles for Headers and Footers", "Section"], Cell[StyleData["Header"], CellMargins->{{0, 0}, {4, 1}}, DefaultNewInlineCellStyle->"None", LanguageCategory->"NaturalLanguage", StyleMenuListing->None, FontSize->10, FontSlant->"Italic"], Cell[StyleData["Footer"], CellMargins->{{0, 0}, {0, 4}}, DefaultNewInlineCellStyle->"None", LanguageCategory->"NaturalLanguage", StyleMenuListing->None, FontSize->9, FontSlant->"Italic"], Cell[StyleData["PageNumber"], CellMargins->{{0, 0}, {4, 1}}, StyleMenuListing->None, FontFamily->"Times", FontSize->10] }, Closed]], Cell[CellGroupData[{ Cell["Palette Styles", "Section"], Cell["\<\ The cells below define styles that define standard ButtonFunctions, for use \ in palette buttons.\ \>", "Text"], Cell[StyleData["Paste"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`NotebookApply[ FrontEnd`InputNotebook[ ], #, After]}]&)}], Cell[StyleData["Evaluate"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`NotebookApply[ FrontEnd`InputNotebook[ ], #, All], SelectionEvaluate[ FrontEnd`InputNotebook[ ], All]}]&)}], Cell[StyleData["EvaluateCell"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`NotebookApply[ FrontEnd`InputNotebook[ ], #, All], FrontEnd`SelectionMove[ FrontEnd`InputNotebook[ ], All, Cell, 1], FrontEnd`SelectionEvaluateCreateCell[ FrontEnd`InputNotebook[ ], All]}]&)}], Cell[StyleData["CopyEvaluate"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`SelectionCreateCell[ FrontEnd`InputNotebook[ ], All], FrontEnd`NotebookApply[ FrontEnd`InputNotebook[ ], #, All], FrontEnd`SelectionEvaluate[ FrontEnd`InputNotebook[ ], All]}]&)}], Cell[StyleData["CopyEvaluateCell"], StyleMenuListing->None, ButtonStyleMenuListing->Automatic, ButtonBoxOptions->{ButtonFunction:>(FrontEndExecute[ { FrontEnd`SelectionCreateCell[ FrontEnd`InputNotebook[ ], All], FrontEnd`NotebookApply[ FrontEnd`InputNotebook[ ], #, All], FrontEnd`SelectionEvaluateCreateCell[ FrontEnd`InputNotebook[ ], All]}]&)}] }, Closed]], Cell[CellGroupData[{ Cell["Placeholder Styles", "Section"], Cell["\<\ The cells below define styles useful for making placeholder objects in \ palette templates.\ \>", "Text"], Cell[CellGroupData[{ Cell[StyleData["Placeholder"], Placeholder->True, StyleMenuListing->None, FontSlant->"Italic", FontColor->RGBColor[0.890623, 0.864698, 0.384756], TagBoxOptions->{Editable->False, Selectable->False, StripWrapperBoxes->False}], Cell[StyleData["Placeholder", "Presentation"]], Cell[StyleData["Placeholder", "Condensed"]], Cell[StyleData["Placeholder", "Printout"]] }, Closed]], Cell[CellGroupData[{ Cell[StyleData["PrimaryPlaceholder"], StyleMenuListing->None, DrawHighlighted->True, FontSlant->"Italic", Background->RGBColor[0.912505, 0.891798, 0.507774], TagBoxOptions->{Editable->False, Selectable->False, StripWrapperBoxes->False}], Cell[StyleData["PrimaryPlaceholder", "Presentation"]], Cell[StyleData["PrimaryPlaceholder", "Condensed"]], Cell[StyleData["PrimaryPlaceholder", "Printout"]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["FormatType Styles", "Section"], Cell["\<\ The cells below define styles that are mixed in with the styles of most \ cells. If a cell's FormatType matches the name of one of the styles defined \ below, then that style is applied between the cell's style and its own \ options. This is particularly true of Input and Output.\ \>", "Text"], Cell[StyleData["CellExpression"], PageWidth->Infinity, CellMargins->{{6, Inherited}, {Inherited, Inherited}}, ShowCellLabel->False, ShowSpecialCharacters->False, AllowInlineCells->False, Hyphenation->False, AutoItalicWords->{}, StyleMenuListing->None, FontFamily->"Courier", FontSize->12, Background->GrayLevel[1]], Cell[StyleData["InputForm"], InputAutoReplacements->{}, AllowInlineCells->False, Hyphenation->False, StyleMenuListing->None, FontFamily->"Courier"], Cell[StyleData["OutputForm"], PageWidth->Infinity, TextAlignment->Left, LineSpacing->{0.6, 1}, StyleMenuListing->None, FontFamily->"Courier"], Cell[StyleData["StandardForm"], InputAutoReplacements->{ "->"->"\[Rule]", ":>"->"\[RuleDelayed]", "<="->"\[LessEqual]", ">="->"\[GreaterEqual]", "!="->"\[NotEqual]", "=="->"\[Equal]", Inherited}, LineSpacing->{1.25, 0}, StyleMenuListing->None, FontFamily->"Courier"], Cell[StyleData["TraditionalForm"], InputAutoReplacements->{ "->"->"\[Rule]", ":>"->"\[RuleDelayed]", "<="->"\[LessEqual]", ">="->"\[GreaterEqual]", "!="->"\[NotEqual]", "=="->"\[Equal]", Inherited}, LineSpacing->{1.25, 0}, SingleLetterItalics->True, TraditionalFunctionNotation->True, DelimiterMatching->None, StyleMenuListing->None], Cell["\<\ The style defined below is mixed in to any cell that is in an inline cell \ within another.\ \>", "Text"], Cell[StyleData["InlineCell"], LanguageCategory->"Formula", ScriptLevel->1, StyleMenuListing->None], Cell[StyleData["InlineCellEditing"], StyleMenuListing->None, Background->RGBColor[1, 0.749996, 0.8]] }, Closed]], Cell[CellGroupData[{ Cell["Automatic Styles", "Section"], Cell["\<\ The cells below define styles that are used to affect the display of certain \ types of objects in typeset expressions. For example, \"UnmatchedBracket\" \ style defines how unmatched bracket, curly bracket, and parenthesis \ characters are displayed (typically by coloring them to make them stand out).\ \ \>", "Text"], Cell[StyleData["UnmatchedBracket"], StyleMenuListing->None, FontColor->RGBColor[0.760006, 0.330007, 0.8]] }, Closed]] }, Open ]] }] ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 48, 0, 123, "Title"], Cell[1778, 54, 183, 5, 48, "Text"], Cell[CellGroupData[{ Cell[1986, 63, 21, 0, 60, "Section"], Cell[CellGroupData[{ Cell[2032, 67, 126, 3, 28, "Input"], Cell[2161, 72, 478, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2676, 85, 85, 1, 28, "Input"], Cell[2764, 88, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2853, 94, 40, 1, 28, "Input"], Cell[2896, 97, 41, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2974, 103, 41, 1, 28, "Input"], Cell[3018, 106, 68, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3123, 112, 39, 1, 28, "Input"], Cell[3165, 115, 55, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3257, 121, 123, 3, 28, "Input"], Cell[3383, 126, 86, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3506, 132, 44, 1, 28, "Input"], Cell[3553, 135, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3634, 141, 52, 1, 28, "Input"], Cell[3689, 144, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[3823, 151, 35, 0, 40, "Section"], Cell[3861, 153, 192, 3, 65, "Input"], Cell[4056, 158, 35, 0, 30, "Text"], Cell[4094, 160, 68, 1, 28, "Input"], Cell[4165, 163, 32, 0, 30, "Text"], Cell[4200, 165, 71, 1, 28, "Input"], Cell[4274, 168, 23, 0, 30, "Text"], Cell[4300, 170, 268, 5, 28, "Input"], Cell[4571, 177, 43, 0, 30, "Text"], Cell[4617, 179, 72, 1, 28, "Input"], Cell[CellGroupData[{ Cell[4714, 184, 47, 1, 28, "Input"], Cell[4764, 187, 347, 8, 70, "Output"] }, Open ]], Cell[5126, 198, 38, 0, 30, "Text"], Cell[5167, 200, 330, 7, 56, "Input"], Cell[5500, 209, 27, 0, 30, "Text"], Cell[5530, 211, 131, 2, 28, "Input"], Cell[5664, 215, 54, 1, 28, "Input"], Cell[5721, 218, 28, 0, 30, "Text"], Cell[5752, 220, 146, 2, 28, "Input"], Cell[5901, 224, 43, 0, 30, "Text"], Cell[5947, 226, 71, 1, 28, "Input"], Cell[6021, 229, 35, 0, 30, "Text"], Cell[6059, 231, 131, 2, 28, "Input"], Cell[6193, 235, 54, 1, 28, "Input"], Cell[6250, 238, 28, 0, 30, "Text"], Cell[6281, 240, 160, 3, 65, "Input"], Cell[6444, 245, 46, 0, 30, "Text"], Cell[CellGroupData[{ Cell[6515, 249, 50, 1, 28, "Input"], Cell[6568, 252, 67, 1, 70, "Output"] }, Open ]], Cell[6650, 256, 47, 0, 30, "Text"], Cell[CellGroupData[{ Cell[6722, 260, 265, 5, 45, "Input"], Cell[6990, 267, 192, 3, 70, "Output"] }, Open ]], Cell[7197, 273, 24, 0, 30, "Text"], Cell[7224, 275, 382, 7, 56, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7643, 287, 50, 0, 40, "Section"], Cell[7696, 289, 130, 3, 30, "Text"], Cell[CellGroupData[{ Cell[7851, 296, 47, 1, 28, "Input"], Cell[7901, 299, 43, 1, 70, "Output"] }, Open ]], Cell[7959, 303, 169, 3, 30, "Text"], Cell[8131, 308, 71, 1, 40, "Input"], Cell[8205, 311, 33, 0, 30, "Text"], Cell[8241, 313, 59, 1, 28, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[8337, 319, 36, 0, 40, "Section"], Cell[8376, 321, 44, 0, 30, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[8457, 326, 48, 0, 60, "Section"], Cell[CellGroupData[{ Cell[8530, 330, 102, 2, 40, "Input"], Cell[8635, 334, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8742, 340, 102, 2, 40, "Input"], Cell[8847, 344, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8945, 350, 102, 2, 40, "Input"], Cell[9050, 354, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9157, 360, 102, 2, 40, "Input"], Cell[9262, 364, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9360, 370, 102, 2, 40, "Input"], Cell[9465, 374, 70, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9572, 380, 102, 2, 40, "Input"], Cell[9677, 384, 61, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[9787, 391, 50, 0, 40, "Section"], Cell[CellGroupData[{ Cell[9862, 395, 105, 2, 43, "Input"], Cell[9970, 399, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10065, 405, 105, 2, 43, "Input"], Cell[10173, 409, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10277, 415, 101, 2, 43, "Input"], Cell[10381, 419, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10485, 425, 101, 2, 43, "Input"], Cell[10589, 429, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10702, 435, 105, 2, 43, "Input"], Cell[10810, 439, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10905, 445, 105, 2, 43, "Input"], Cell[11013, 449, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11117, 455, 105, 2, 43, "Input"], Cell[11225, 459, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11329, 465, 105, 2, 43, "Input"], Cell[11437, 469, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11550, 475, 105, 2, 43, "Input"], Cell[11658, 479, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11753, 485, 105, 2, 43, "Input"], Cell[11861, 489, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11965, 495, 105, 2, 43, "Input"], Cell[12073, 499, 67, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12177, 505, 105, 2, 43, "Input"], Cell[12285, 509, 76, 1, 70, "Output"] }, Open ]], Cell[12376, 513, 29, 0, 27, "SmallText"], Cell[12408, 515, 485, 9, 75, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[12930, 529, 49, 0, 40, "Section"], Cell[12982, 531, 45, 0, 27, "SmallText"], Cell[CellGroupData[{ Cell[13052, 535, 369, 6, 59, "Input"], Cell[13424, 543, 538, 9, 70, "Output"] }, Open ]], Cell[13977, 555, 34, 0, 27, "SmallText"], Cell[14014, 557, 91, 1, 43, "Input"], Cell[14108, 560, 91, 1, 43, "Input"], Cell[14202, 563, 46, 0, 27, "SmallText"], Cell[CellGroupData[{ Cell[14273, 567, 317, 5, 59, "Input"], Cell[14593, 574, 441, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[15083, 588, 26, 0, 40, "Section"], Cell[CellGroupData[{ Cell[15134, 592, 38, 0, 44, "Subsection"], Cell[15175, 594, 50, 1, 28, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[15262, 600, 47, 0, 44, "Subsection"], Cell[15312, 602, 82, 1, 38, "Input"], Cell[CellGroupData[{ Cell[15419, 607, 212, 5, 26, "Input"], Cell[15634, 614, 178, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15849, 622, 66, 1, 26, "Input"], Cell[15918, 625, 178, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[16145, 634, 49, 0, 28, "Subsection"], Cell[CellGroupData[{ Cell[16219, 638, 213, 5, 26, "Input"], Cell[16435, 645, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16521, 651, 213, 5, 26, "Input"], Cell[16737, 658, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16823, 664, 76, 1, 26, "Input"], Cell[16902, 667, 215, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17166, 677, 69, 0, 28, "Subsection"], Cell[CellGroupData[{ Cell[17260, 681, 40, 1, 26, "Input"], Cell[17303, 684, 215, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17555, 693, 48, 1, 26, "Input"], Cell[17606, 696, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17678, 702, 35, 1, 26, "Input"], Cell[17716, 705, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17802, 711, 54, 1, 26, "Input"], Cell[17859, 714, 146, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18042, 721, 91, 1, 26, "Input"], Cell[18136, 724, 142, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18315, 731, 51, 1, 26, "Input"], Cell[18369, 734, 138, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18544, 741, 46, 1, 26, "Input"], Cell[18593, 744, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18665, 750, 132, 2, 26, "Input"], Cell[18800, 754, 134, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18971, 761, 58, 1, 26, "Input"], Cell[19032, 764, 329, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19398, 777, 44, 1, 26, "Input"], Cell[19445, 780, 45, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19527, 786, 59, 1, 26, "Input"], Cell[19589, 789, 322, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19948, 802, 45, 1, 26, "Input"], Cell[19996, 805, 45, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[20102, 813, 58, 0, 40, "Section"], Cell[20163, 815, 43, 1, 28, "Input"], Cell[20209, 818, 230, 4, 52, "Input"], Cell[CellGroupData[{ Cell[20464, 826, 77, 1, 40, "Input"], Cell[20544, 829, 280, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20861, 842, 173, 3, 52, "Input"], Cell[21037, 847, 51, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[21137, 854, 27, 0, 40, "Section"], Cell[CellGroupData[{ Cell[21189, 858, 61, 1, 28, "Input"], Cell[21253, 861, 137, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21427, 868, 47, 1, 28, "Input"], Cell[21477, 871, 401, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21915, 884, 54, 1, 28, "Input"], Cell[21972, 887, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22044, 893, 44, 1, 28, "Input"], Cell[22091, 896, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22176, 902, 121, 2, 40, "Input"], Cell[22300, 906, 251, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22588, 915, 176, 3, 60, "Input"], Cell[22767, 920, 210, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23014, 928, 165, 3, 30, "Input"], Cell[23182, 933, 252, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23471, 942, 57, 1, 28, "Input"], Cell[23531, 945, 313, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[23893, 959, 44, 0, 40, "Section"], Cell[CellGroupData[{ Cell[23962, 963, 75, 0, 44, "Subsection"], Cell[24040, 965, 185, 3, 43, "Input"], Cell[CellGroupData[{ Cell[24250, 972, 57, 1, 28, "Input"], Cell[24310, 975, 592, 12, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[24951, 993, 43, 0, 44, "Subsection"], Cell[CellGroupData[{ Cell[25019, 997, 47, 1, 28, "Input"], Cell[25069, 1000, 347, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25453, 1013, 56, 1, 28, "Input"], Cell[25512, 1016, 329, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25878, 1029, 44, 1, 28, "Input"], Cell[25925, 1032, 45, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26007, 1038, 54, 1, 28, "Input"], Cell[26064, 1041, 341, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26442, 1054, 59, 1, 28, "Input"], Cell[26504, 1057, 721, 14, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27262, 1076, 79, 1, 28, "Input"], Cell[27344, 1079, 790, 15, 70, "Output"] }, Open ]], Cell[28149, 1097, 156, 3, 26, "SmallText"], Cell[CellGroupData[{ Cell[28330, 1104, 194, 4, 47, "Input"], Cell[28527, 1110, 140, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28704, 1117, 189, 3, 30, "Input"], Cell[28896, 1122, 816, 15, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[29773, 1144, 28, 0, 40, "Section"], Cell[CellGroupData[{ Cell[29826, 1148, 79, 1, 28, "Input"], Cell[29908, 1151, 774, 16, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[30719, 1172, 66, 1, 28, "Input"], Cell[30788, 1175, 584, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[31409, 1192, 73, 1, 28, "Input"], Cell[31485, 1195, 548, 13, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[32070, 1213, 87, 1, 28, "Input"], Cell[32160, 1216, 45, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[32242, 1222, 108, 2, 28, "Input"], Cell[32353, 1226, 455, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[32845, 1241, 86, 1, 28, "Input"], Cell[32934, 1244, 428, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33399, 1259, 107, 2, 28, "Input"], Cell[33509, 1263, 313, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33859, 1276, 78, 1, 28, "Input"], Cell[33940, 1279, 313, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[34302, 1293, 34, 0, 40, "Section"], Cell[CellGroupData[{ Cell[34361, 1297, 53, 0, 45, "Subsection"], Cell[CellGroupData[{ Cell[34439, 1301, 127, 2, 27, "Input"], Cell[34569, 1305, 336, 5, 59, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34942, 1315, 70, 1, 27, "Input"], Cell[35015, 1318, 45, 1, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35097, 1324, 67, 1, 27, "Input"], Cell[35167, 1327, 511, 9, 61, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35715, 1341, 197, 3, 27, "Input"], Cell[35915, 1346, 39, 1, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35991, 1352, 63, 1, 27, "Input"], Cell[36057, 1355, 49, 1, 43, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[36155, 1362, 49, 0, 29, "Subsection"], Cell[36207, 1364, 284, 6, 27, "Input"], Cell[36494, 1372, 977, 16, 179, "Input"], Cell[37474, 1390, 938, 17, 179, "Input"], Cell[CellGroupData[{ Cell[38437, 1411, 44, 1, 27, "Input"], Cell[38484, 1414, 83738, 4512, 290, 45435, 4035, "GraphicsData", \ "PostScript", "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[122271, 5932, 45, 0, 29, "Subsection"], Cell[CellGroupData[{ Cell[122341, 5936, 45, 1, 27, "Input"], Cell[122389, 5939, 39680, 905, 70, 7898, 508, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[162118, 6850, 46, 0, 29, "Subsection"], Cell[CellGroupData[{ Cell[162189, 6854, 45, 1, 27, "Input"], Cell[162237, 6857, 38722, 894, 70, 7838, 508, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[201008, 7757, 45, 0, 29, "Subsection"], Cell[CellGroupData[{ Cell[201078, 7761, 45, 1, 27, "Input"], Cell[201126, 7764, 25278, 729, 70, 7721, 508, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[226465, 8500, 47, 0, 60, "Section"], Cell[226515, 8502, 45, 0, 30, "Text"], Cell[CellGroupData[{ Cell[226585, 8506, 81, 1, 42, "Input"], Cell[226669, 8509, 299, 8, 104, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[227005, 8522, 35, 1, 27, "Input"], Cell[227043, 8525, 51, 1, 43, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)