Power, Forces and Moments

Mais il y a aussi, au moins depuis d’Alambert, une deuxiéme voie possible, celle des puissances
(ou travaux) virtuelles. Contrairement a ce que 1’on croit parfois, cette deuxieme maniere est
tout aussi naturelle que la premiere et elle ne fait che traduire une expérience physique tres com-
mune. Si on veut savoir si une valise € lourde, on essaie de la soulever un peu; pour apprecier
la tension d"une courroie de transmission, on 1’écarte quelque peu de sa position stable; et c’est
en essayant de pousser une voiture que 'on se rendra compte des frottements tant externes
qu’internes s’opposant au mouvement.

[...] L'idée essentielle de cette deuxiéme voie est celle de “dualité”. Aussi cette voie est-elle non
seulement tres proche de I'expérience la plus commune comme nous 'avons déja noté, mais
aussi trés souple; selon que I'on choisira un espace vectoriel plus ou moins “vaste”, on aura une
description des efforts plus ou moins fine.

[Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. Premiére
partie: Théorie du second gradient, Journal de Mécanique, 12 (1973), pp. 235-274.]
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2 POWER, FORCES AND MOMENTS

1 Power and forces

Let us consider a body B := {A, B}, made up of two points and a placement
p:B—E&. (1)

The simplest way of describing the mechanical interaction of the body and its environment is to
give a linear function W), called power, which for any placement p transforms any velocity
field into a scalar.

The choice of the test velocity space plays a fundamental role in the modeling. If we denote the
test velocities of body points pp and pg by

VA, VB @)
the power can be uniquely given the form
W (vp, vg) = fa - va + - VB, €)

Vectors fa, fg are called the forces applied respectively to A and B.
The most interesting case is when B and p are such that the set im p (the shape of the body) is
a subset R C £ which is the closure of an open set. A test velocity field is a function

Vipa > Va, 4)
whose domain is R. The exterior power can be given in general the following representation

W) (v) :/ b.vdv+/ t-vdA. ®)
R R
The vector fields b and t, respectively on R and R, are called bulk force distribution and surface
force distributions (or contact forces).

2 Power for arigid test velocity field

2.1 Forces and moments

In a rigid test velocity field the velocities are such that

va = Vo +W(pa —po),

vg =vo +W(pg — Po)- ©
Hence the exterior power (3) becomes
W (va,vg) = fa - va + fs - VB
= (fa+fg) - vo +fa - W(pa — po) +fg - W(ps — Po) )
= (fa+fg)-vo + (pa —pPo) ®fa- W+ (pg —po) ® fg - W
= (fa +£f8) - vo + ((Pa — Po) @ fa + (pg — Po) @ fg) - W.
by using the axial vector w of the spin W, expressions (6) turn into
VA =Vo + @ X (Pa —Po), @)

VB = Vo +w X (pg — Po),
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POWER, FORCES AND MOMENTS

which give the following expression for the power

W) (va,vg) = (fa +f8) - vo + ((Pa — Po) X fa + (P — Po) X ) - w.

The coefficient of v
f.= fA + fB

is called total force, the coefficient of w
myp, := (pa —Po) * fa + (pg — Po) X fg
is called total moment vector with respect to pg. The coefficient of W
Mp, := (pa —Po) ® fa + (P8 — P0) ® fg

is called total moment tensor with respect to pg.
Note that (7), because of the skew symmetry of W, can be written also

W (va, vg) = (fa +fg) - vo +skw ((pa — Po) © fa + (P — Po) ® fg) - W.
For a body B in the shape R, any rigid test velocity field can be described by
v(x) =vo+W(x—pg) VxeR.

The exterior power (5) becomes

W (v) :/Rb-vdV—i—s/avadA

_ (/RdeJr/athA) Vo - (/R(x—po)®de+/aR(x—po)®tdA) W.

In such a case the total force and the total moment tensor are

f::/ bdv+/ tdA,
R IR

M ::/ _ ®de+/ —po) @ tdA,
Po .R(x PO) .8R(x PO)

while (15) reads
WED (v) = f.vg + Mp, - W.

As an alternative, by using the axial vector of W we can obtain the total moment tensor
my, = X — ><de—|—/ X — x tdA,
Po /R (x —po) . (x—po)

while (15) reads
WED (v) = f-vg + mp, - w.

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)
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4 POWER, FORCES AND MOMENTS

2.2 Moment vector and skew symmetric part of the moment tensor

Note that the moment vector is the axial vector of 2 skw M. By comparing (18) and (20) we get
M-W=m-w (21)

where w is the axialvector of W. Since

My My My 0 —ws w
M-W= | My My M:ja|: | ws 0 —-w

Mz1 Mz, Mas —wy Wy 0
= (Mzy — Mp3)wq + (My3 — Mzq)ws + (Ma1 — Myp)ws, (22)
1 0 Mip — My Miz — Mz 0 —ws w
skwM - W = E M21 - M12 0 M23 - M32 . w3 0 —wW1
M3z — Mz Mzz — M3 0 —wy Wy 0
= (M3 — Mp3)wy + (M3 — M3z1)wy + (Ma1 — Myp)ws, (23)

m-w = (myey + mpey + msez) - (wre1 + wyey + wszes)
= miwy + mowy + Maws, (24)

the components of m turns out to be such that

my = Mzp — Mps,
my = Mz — M3, (25)
ms = Mp1 — M.

Hence they are equal respectively to terms (3,2), (1,3) and (2,1) of the matrix of M — MT =
2 skw M.

3 Power for an affine test velocity field

3.1 Forces and moments
An affine test velocity field is such that

va = vo +L(pa —Po),

(26)
vg = vo + L(pg — Po)-

Hence the exterior power becomes

W (vp,vg) = fa - va + fg - VB
= (fa+fg)-vo+ (fa - L(pa —po) +fs - L(pg — P0))
= (fa+1fg) - vo + ((pa —Po) @ fa + (P8 — Po) ® fg) - L

= (fa +fg) - vo + skw ((pa — po) ® fao + (ps —po) ® fg) - W
+ sym ((pa — po) ® fa + (pg — Po) ® fg) - D. (27)
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POWER, FORCES AND MOMENTS 5

The coefficient of L is called the total moment tensor

Mp, = (pa — po) ® fa + (P — po) ® fg. (28)

The coefficient of W, the skew symmetric part of L, can be called the total skew symmetric moment
while the coefficient of D, the symmetric part of L, can be called the total symmetric moment, with
respect to po.

For a body B in the shape R, an affine test velocity field can be described by the function

v(x) =vp+L(x—po) VxeR. (29)

The exterior power (5) becomes

W(e”)(v):/Rb-VdV—i-/avadA

- (/Rde+/athA) Vo + (/R(x—po)®de+/aR(x—po)®tdA) L. (30)

The total force and the total moment tensor are

f::/de+/ tdA, 31)
R IR
Mpo::/R(x—po)®de+/aR(x—po)®tdA (32)
while (30) reads
WE (v) = f-vg 4+ Mp, - L. (33)

3.2 Moment with respect to a different position

Let us consider a different description of the test velocity field (29)

v(x) =vc+L(x—pc), VxeER. (34)
Since
vc = vo + L(pc — po) (35)
we get
v(x) =vo +L(pc — po) + L(x —pc) = vo + L(x — po). (36)

Then, through (30), we arrive at the the following relation between the moment tensor with re-
spect to pc and the moment tensor with respect to pg

(pc—po)®(/Rde+/athA)+ (/R(x—pc)®de+/aR(x—pc)®tdA)
(37)

_ (/R(x—Po)®de+/aR(x—Po)®tdA).

Denoting by f the total force, by Mp, the total moment tensor with respect to pg and by M, the
total moment tensor with respect to pc, from the above expression we get

(PC‘PO)®£+MPC = Mp,. (38)

Note that if the total force is zero then the moment tensor is independent of the choice of pg.
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6 POWER, FORCES AND MOMENTS

4 Equipowerful force distributions

We call equipowerful those force distributions spending the same power on each test velocity field.

When considering rigid test velocity fields, equipowerful force distributions share the same
total force and the same moment vector (or the skew symmetric moment tensor).

When considering affine test velocity fields, equipowerful force distributions share the same
total force and the same total moment tensor (both symmetric and skew symmetric part).

It is worth noting that if two different force distributions have the same total force and the
same total moment tensor with respect a position pg, they still have the same moment, possibly
different from the previous one, with respect to any other position by (38).

4.1 Forces applied at the face centres of a rectangular parallelepiped

fc

2,

fg PB PA

Figure 1: Forces applied at the face centres of a rectangular parallelepiped.

Let us consider a body in the shape of a rectangular parallelepiped, whose edge lengths are ¢4, /5,
{3, with forces applied at the center of the faces orthogonal to e; and e, like in fig. 1. The total
force is

f=1fp+1fg+fc+fp. 39)

The total moment tensor, with respect to the parallelepiped center pg, is
Mp, = (Pa —Po) @ fa + (P — Po) @ fg + (Pc —Po) @ fc + (PD — PO) @ fD

1 1 (40)
=le® i(fA —fg) + (e, ® E(fc —fp).

4.2 Uniform force distribution on the faces of a rectangular parallelepiped

Let us consider the force distribution in fig. 2, which is uniform on each of the faces orthogonal to
e; and ep. The barycenter cr of a face F is defined by the property

(cr —po)Ar = /f (x— po) dA, (41)

where A is the area of face F and pg is an arbitrary position, even outside . Since the barycen-
ters of rectangular faces are their centres, choosing pg as the parallelpiped center, the moment

DISAT, University of L'Aquila, May 26, 2011 (785) A. Tatone — Mechanics of Solids and Materials.



POWER, FORCES AND MOMENTS 7
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Figure 2: Uniform force distribution on the faces of a rectangular parallelepiped.

€2

tensor of the force distribution on F; and F_1 is

/ (x—Po)®tAdA+/ (x - po) @ tg dA
F1 F_a

(42)
b b b
=Agr (591) @ta+Ar, ( - ?el> ®@tg = EAfl e; ® (ta —tg)
while the moment tensor of the force distribution on /5 e F_» is
/ (x—po)@tch—i-/ (x —po) @tp dA
Fa F_a (43)
ly ly 0y
=Ar, (Eez) Qtct+Ar, ( — Eez) Qtp = EA]:Z e R (tc —tp).
By using the area function induced by the volume function (see APPENDIX 2), we get
1 1
dA = Ar, =vol(lr ez l3e3,e1) = ~vol(lr ez, l3e3,l1€1) = Vg,
F1 61 gl (44)

1 1
dA = Ar, = vol(lze3, (1e1,e;) = - vol({ze3, (1 e, lre2) = Vg,
5 62 62

where e and e; are normal unit vectors to the faces F; and J,. Hence the total moment tensor
will be

1 1
M, = VR(E1®§(tA—tB)+ez®§(tc—tD)) (45)
The total force turns out to be
f:A}-l(tA+tB)+A}-2(tc+tD). (46)
Note that by choosing
fA fg fc fp
th = , tg = , tc=—, tp=—, 47
A Ar, B Ar C A, A, (47)

the force distribution just considered turns out to belong to the same equipowerful class as the
previous one.
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8 POWER, FORCES AND MOMENTS
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Figure 3: Uniform force distribution on the faces of a parallalepiped.
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Figure 4: Uniform force distribution on the faces of a parallalepiped, with opposite values on
opposite faces.

e

t

4.3 Decomposition of a force distribution on the faces of a rectangular paral-
lelepiped

Let us consider once again the force distribution in fig. 2 while changing names according to fig. 3
and adding a force distribution on the faces orthogonal to e3 as well. We can define a different
force distribution, as in fig. 4, made up of a uniform distribution on the boundary with opposite
values on opposite faces, by

1 ~ 1 B 1 _
t = §<q +t), t= E(t2+ +t), t3:= E(t3+ +t), (48)

The expression for the moment tensor with respect to the center turns out to be, from that com-
puted for the force distribution in fig. 2,

1 1 1
Mp, = Vr(e1®@s(t] +t ) +er®@-(tf +t ) tes® = (t5 +t5)
° ( 201 1 2 2 ) (49)
=Ve(eoti+eot+eaot),
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POWER, FORCES AND MOMENTS

where pg is again the center of the parallelepiped.. Note that (49) implies
Mpyer = Vr ty,
Mpye; = Vi to,
My ez = Vg t3.
By setting
tp = f11eq +fxex + 313, to = tpey +iney +ixpe3,  tr = f13e1 + fx3er + f33e3,

we get the matrix of the moment tensor

fn fi2 f13
Mpo] = Vg [t tn tn],
f31 tzp  f33

Further, by defining

1 1 1
o + — . + — . + —
t) = o 7 —t), t:= A (ty —t;), t5:= A (ty —t5),

we can derive the following decomposition

¢ B 1
=1t + %t’l, =1t — %t’l,
/ /
+ 2, - _ 2,
t2 —t2+3t2, tZ —tz—Etz,
/3 ~ 03
tf =tz + Etg, t; =t;— 3tg.

Since the total force is
f=Ve(t] +t + 1),
we can define a uniform bulk distribution

=t +t+t;

such that the total force is f, while the moment tensor with respect to the center pg is zero

/R(x —po) @t dV =Vr(c—po)®t =0,

since the barycenter ¢, which is defined by the property

(c—po)Vr = /R(x— po)dV,

(50)

(61

(52)

(53)

(54)

(55)

(56)

(57)

(58)

coincides with pg. Hence the force distribution made up of a uniform bulk distribution t’ given

by (56) and of a surface force distribution given by

1
tl = ViRMpOel'

1
tz = VitRMpoez,

1
t3 - TRMpoeg,,

(59)

where M, is given by (49), belongs to the same equipowerful class as the force distribution in

fig. 3.
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10 POWER, FORCES AND MOMENTS

4.4 Force distribution on the faces of a prism with triangular cross section

n

—t1& /Iﬂt

dars

€]

Figure 5: Force distribution on the boundary of a prism.

Let us consider a body, as in fig. 5, in the shape of a prism with triangular cross section, with
edge lengths ¢4, {5, {3, with a uniform force distribution on the faces 7_1, F_; and F, the sloping
face, such that

Art—Ar t1—Ar ,tb=o0. (60)

It follows

U360t — U3l t1 — 31t =0 = t= (621:1 + g]tz), (61)

| =

where ( := /3 + (5. By choosing pg in the sloping face center, the moment tensor is

/ 14
My, = —%6253 e ® (—tl) — 525153 e ® (—tz) = VR(el Rt t+er® tz) (62)

Note that

t2 =17 Mpo €2, (63)

where 1
n:.— Z(ézel + 6182) (64)

is the outward unit normal to the sloping face.

4.5 Forces applied at the face centres of a parallelepiped

Let us consider a parallelepiped with edges {uy, up, us} and forces f;, —f;, f,, —f;, f3, —f3 applied
respectively at the center of opposite faces, as in fig. 6. The total force is zero and the total moment

DISAT, University of L'Aquila, May 26, 2011 (785) A. Tatone — Mechanics of Solids and Materials.
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Figure 6: Forces applied at the center of the faces of a parallelpiped.

tensor is
M=u ®f +u®f+u3® f;. (65)

Denoting by {nj, ny, n3} the outward unit normal vectors, let us express n; as a linear combina-
tion of the vectors {uy, up, uz}

ny = vyug + 21U + U313, (66)
This linear combination can be transformed, dividing by v11, into
u; = hing + apjup + azus. (67)
Since n; is a unit vector orthogonal to up and u3 then
up -ny = (hing +axup +azug) -y =y (68)
Further, by the properties of the volume function,
Vi = vol (uy, up, u3z) = vol (uy, uz, u;) = vol (uy, uz, hyny + ar uy + azjusz)

= vol (up,uz, hyny) = hyvol (U, u3,ny) = Az

= hlz%.
1

(69)

Notice that /1; is nothing but the height of the parallelepiped with respect to the face ;. Summa-
rizing:

ulonlz—R, II2'II1:0, 113'11120. (70)
AF,
From the expression for the moment tensor, it follows that
V.
Mn; = (y1®fj+u®@f, +uz ®f3)ny = (ug -np)fy = Aifl (71)
F1
and finally
M f
—n; = . (72)
Ve ' Ax

Similar expressions can be obtained by applying M to n and n3.

DISAT, University of L'Aquila, May 26, 2011 (785) A. Tatone — Mechanics of Solids and Materials.



12 POWER, FORCES AND MOMENTS
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Figure 7: Uniform force distributions applied on the faces of a parallelepiped.

4.6 Force distribution on the faces of a rectangular parallelepiped

Let us consider a parallelepiped with edges {u1, up, uz } and uniform force distributions t;, —t, t, —tp, t3, —t3
applied respectively on opposite faces, as in fig. 7. The total force is zero and the total moment
tensor is

M=/f (x*po)®t1dA+/f_ (x —po) ® (—t1)dA
—i—/f(x—Po)@tszJr/ﬁ (x—po) ® (—t)dA
+/}_3(x—po)®t3dA+/}__3(x—po)®(—t3)dA

= (cr, —po) @t Ax, +(cr, —po) ®(—t) AFr |
+(cr, —pPo) @b Ar, +(cr, —po) ® (—t) Ar ,
+(cr, —po) ®t3 Ar, + (cr , —Po) ® (—t3) Ar ,

=A@t +tArm Ot + Aruz @t3 (73)

where we have set

dA = Ar, = vol(up,uz,ny),
J1

. dA = Ar, = vol(uz,uy,ny), (74)
2

dA = Ar, = vol(uj, up,n3),
T3

with {nj, ny, n3} the outward unit normal vectors to the faces F;, 7, and F3. By using (70) we
get
Mn; = (Aru @t + Arw @b+ Apuz @ t3)ng = (ug-np) Aty = Vpty (75)

and finally

M
—n1 = ty. 76
VRnl 1 (76)
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Figure 8: Uniform force distributions applied on the faces of a deformed parallelepiped.

Similar expressions can be obtained by applying M to n, and n3. It is worth noticing that vectors
{n1,ny, n3} in general are non orthogonal, like the vectors {uy, up, uz}.

4.7 Force distribution on the faces of a deformed parallelepiped

Let us consider the parallelpiped with edges {uj, up, uz} of the previous paragraph, this time
seen as resulting from applying an affine deformation with gradient F to a parallelepiped with
edges {11, 1y, 43}, as in fig. 8. The total force is again zero and the total moment tensor (73) can
be transformed in the following way

M = A]:1 u ®t1+A]:2u2®t2—l—A]:3u3®t3
=ArpFu1 0t + A, Fu, @t + Ap, Fug @ t3
=Ar, (01 ®4)F +Afx, (20 b6)F + Az, (i3 @ t3)F' (77)

Denoting by {fi1, fiz, i3} the outward unit normal vector to the faces F;, F; and F3 of the paral-
lelpiped {1, @1p, @3}, let us consider the linear combination

Uy = hyfiy + @100 + A31103. (78)
Since n; is a unit vector orthogonal to @i and @3, we get
iy = (i + Ayl + &zp3) -0y = fy (79)
Further, by the properties of the volume function,

Vi = vol (@1, @i, @i3) = vol (fip, i3, 1) = vol (@, @13, 1Ay + A1y + A3113)

= vol (tip, @3, hyny) = hy vol (ip, @3, i) = leAJf1 (80)
= I = Y=
Ar,
Summarizing;:
V,
ﬁ]'ﬁlzi, ip-n; =0, az-n;=0. (81)
Af'1

DISAT, University of L'Aquila, May 26, 2011 (785) A. Tatone — Mechanics of Solids and Materials.



14 POWER, FORCES AND MOMENTS

Transforming the previous expressions into

V_
n; F_lulz—R, n,-F 1112—0, n -F uz3=0, (82)
Ag,
V_
(F )Ty uy = Ai FHTa up=0, (FHTa;-u3=0, (83)
Fi
we can notice that the vector (F_l)Tﬁl is orthogonal to both u; and u3, like nj. Hence we can set

(F_l)Tﬁl = I~<1n1.

It follows that
(FHTaw =king -y

and, by (83) and (70),
YR _g VR
Ar, AF,
Thus it is
7{1:&/‘}3: 1 A]:l'
Vi A]:-1 detF A]:-l
Setting
kl = i]jl
F1

the expression (84) can be rewritten
(det F) (Fil )Tﬁl = kynj.

We call cofactor of F the tensor
cof F:= (detF)(F~1)T.

Since nj is a unit vector then the ratio between the areas can be computed by the formula
ki = [|(cof F) my [,
while the unit normal vector n; can be computed as

e — cof F A
" l(cof Fyag ||

The moment tensor expression (77) can be transformed into the following
M(FT)fl = Ar, (1 ®t) + AF, (i ®tp) + AF, (13 @ t3).
If we apply this tensor to the unit normal vector fi; we get

M(F') 'y = (Ar, (M ®t) + Az, (@ b) + Ax, (63 ® t3)) iy

V.
= Agr (- -0p)ty = Aﬂﬁh
1

from which it follows M
W(FT)AI—H =kt
R

(84)

(85)

(86)

(87)

(88)

(89)

(90)

o1

92)

(93)

(94)

95)
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and also M M
ViR(detF) (FT)_lﬁl = ViR(COfF) I_ll = k]tl. (96)
The traction
=ty 97)

is charcterized, through (88), by the following property
ElAJi‘l = tlA]-"l- (98)

Similar expressions can be obtained for any other face. Looking at t;, ty, t3 as force distributions
on the faces of the parallelpiped with edges {11, @iz, @3}, their moment tensor turns out to be
M=Az (1 @h)+Az (@b)+Az (1301h)
=kiAz (L ®t) thhAz (L@t)+kAz (130 1t)
=Ar (M @t)+Ar (Rt)+AFr (32 t3)
=M(F')~! (99)

Hence (95) can be transformed into

n; =14 (100)

Sz

4.8 Cofactor matrix

In order to write an expression for the cofactor matrix defined in (90), let us replace the vectors
{1y, 0y, 3} with the vectors of the orthonormal basis {ej, ez, e3}. Let {nj,ny, n3} be the unit
normal vectors to the faces of the parallelepiped generated by the vectors {uj, up, uz} obtained
by applying to {e1, s, e3} the same deformation as in fig. 8. Notice that the area of Fj, already
defined in (70), can be given the expression

AF,

. = vol(up, uz,ny) = vol(ny, up, uz) = vol(ny, Fep, Fe3) . (101)

The basis vectors {e, e, e3} can be expressed as linear combinations of the independent vectors
{nq,Fe;, Fe3}, as follows
e; = yuni + 21Fex + 73, Fes,
e2 = y12m1 + 722Fes + 735Fes, (102)
e3 = 71301 + 723Fez + y33Fes.

Since n; is orthogonal to both Fe; and Fej3, it turns out

ni-e; = Y,
ng-e = Y12, (103)
nj-e3 = vy3.

Hence

(ni-e1)Ar,
(n1-ex)Ar, (104)
vol(ez, Fey, Fe3) = vol(y13ny, Fey, Fez) = (ng - e3) vol(ny, Fey, Fes3) = (nq - e3)Ary .

vol(ey, Fey, Fe3) = vol(y11ny, Fey, Feg) = (nq - e1) vol(ny, Fey, Feg)

vol(ey, Fey, Fez) = vol(vyony, Fep, Fez) = (ng - ) vol(ny, Fey, Feg)
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16 POWER, FORCES AND MOMENTS

From (89) and (88), since A 7 =1 weget
cofFe1 = k1n1 = A]:lnl. (105)

We can compute the components of this vector, which will be arranged in the first column of
the matrix of cof F, by using the scalar product with the basis vectors {e1, e, e3} thus obtaining,
through (104),

cof Fe;-e; = Ar (n;-ey) = vol(ey, Fey, Fe3) = fnfsz — fo3faz,

cof Fej - ey = Az (n - e) = vol(ey, Fep, Fe3) = f32f13 — f33f12, (106)

cofFej -e3 = Ar, (ng - e3) = vol(es, Fey, Fe3) = fiafo3 — fi3f.

From the area of F, we get

cofFe; - e; = vol(Feq, ey, Fe3) = fo3fa1 — fo1f33,
cof Fe; - ey = vol(Feq, ey, Fes) = f33f11 — fa1fis, (107)
cof Fe; - e3 = vol(Fey, e3, Fe3) = fi3fo1 — f11/23,

and, from the area of F3,
cofFes - e; = vol(Fey,Fes, e1) = fo1f3 — faof31,

cof Fez - ey = vol(Fey,Fey, e2) = f31f12 — farf11, (108)
cof Fez - e3 = vol(Fey, Fey, e3) = fi1f20 — fiafa1 -

Hence the matrix of the cofactor of F turns out to be

fo2fss — ffs2 ffsr—fafss faifz — fofan
[cof F] = | faofiz— fasfiz  fasfui— faifis  faifiz — faofun | - (109)
fiafoz — fisfz fizfar — fuifs fif2 — fiofa

For a plane deformation, where the matrix of F is

fn fiz 0
Fl=(fa1 f2o 0}, (110)
0 0 1
the cofactor matrix becomes
f2 —fa 0
[COf F] = —f12 f11 0 . (111)

0 0 firfz = fizfa

4.9 Force distribution on the faces of a tetrahedron

Let us consider uniform force distributions over the faces of a tetrahedron, whose edges are uy,
uy, u3, by, by, b3, as in fig. 9. The volume of a tetrahedron inscribed in a parallelepiped is (see
fig. 10)

1
Vi = 3 vol(uy, up, uz). (112)
Since {uj, up, uz} are independent vectors we can write

b; = —-u;+u3, by=-uz+u;, bz3=-u+uy (113)
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Figure 9: Body in the shape of a tetrahedron.

from which it follows
vol(by, by, u3) = vol(—uy + uz, —ug + uy, uz) = vol(uy, up, uz) = 6Vyg,
vol(by, b3, uy) = vol(—uz + uy, —u; + up, uy) = vol(uy, up, uz) = 6Vyg, (114)
vol(bs, by, uy) = vol(—uy + uy, —up + uz, up) = vol(uy, up, uz) = 6Vy.
In turn, uy, uy, uz can be written as linear combinations of any two of the three vectors by, by, b3,
together with the outward unit normal vector to the sloping face F
u; = fin + P by + B31 bs,
u; = fon + B3 bz + f1o by, (115)
uz = fan + P13 by + o3 bo.
If we rewrite (114) by using the expressions above we get
vol(by, by, u3) = vol(by, by, B3n + B13 by + Baz ba) = Bz vol(by, by, n) =263 AF,
vol(by, bz, u1) = vol(by, bs, B1n + 21 by + B31 b3) = Brvol(by, bz, n) =281 Ar,  (116)
vol(bz, by, uz) = vol(bs, by, foan + B3 bz + B12b1) = Bavol(bz, by, n) =28, Ar,

where the area of the sloping face is given by

A]: = %Vol(bl,bz, n) = %Vol(bz,bg, Il) = %Vol(bg, bl,n). (117)

Figure 10: How half a parallelpiped can be split into three different tetrahedrons (blue, pink,
yellow) of equal volume.
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18 POWER, FORCES AND MOMENTS

By using (113), it can be checked that the three expressions have the same value

vol(by, by, n) = vol(uz — up, u; — uz, n) = vol(uz, uy, n) + vol(uy, up, n) + vol(uy, uz, n

7

n)
vol(by, b3, n) = vol(u; — uz, up — uy,n) = vol(uy, up, n) + vol(uy, uz, n) 4+ vol(uz, uy, n),
vol(bz, by, n) = vol(uy — uy, uz — up, n) = vol(uy, uz, n) + vol(uz, uy, n) + vol(uy, up, n).

(

118)
Comparing (116) and (114) we find that 1 = B2 = B3 and that their common value is

h=3-—-"~ (119)

which is nothing but the height of the tetrahedron as a pyramid with base F.

Let us name the other three faces F_1, F_p, F_3 and let —t;, —tp, —t3 be the corresponding
uniform force distributions. The uniform force distribution t on the sloping face F is assumed to
be such that

Art— A].L1 t — A].‘72t2 — A]:73t3 =o. (120)

The moment tensor with respect to pg is

= (cr —po) ® (tAF)

Cr,—po)®(—thAr
+(er, —po) @ (= ) az)
+(cr, —pPo) @ (—hAF ;)
+ (x5 —pPo) @ (—t34Fr,).
By replacing the positions of the barycenters
1
cr=potu+3 (b3—b2) =po+z(w+u+us),
1
cr, = po + (w2 +us),
1 (122)
cF, = Po + 5 (us +ur),
1
¢Fy = Po + 3w +uw).
we get
1
MPO = EA]:(ul +uy + Ll3) Xt
1
— 347, (2 +uz) @t
(123)

1
— §Af72(113 -|-111) Xt

1
— §A;73(u1 +Ll2) Qt3.

Again, by applying M, /Vx to each outward unit normal vector we obtain the uniform force
distribution on the corresponding face. This can be shown for the sloping face F by noticing that,
because of (115) and (119),

uy-n=uy-n=uz3-n=h=3-"-. (124)
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Hence

1 Ar

- 2;; (w2 +u3) - n)ty
- S (s ) e (129
- 1:(;7: (w1 +u2) - n)ts
—3t— 212;1 t — 2AAJ;2 t) — 2AA’T; ts
which, by (120), becomes
VLRMPOD =t. (126)

Denoting by {nj, ny, n3} the opposite of the outward unit normal vectors to faces F_1, F_p, F_3,
respectively, it can also be shown that

V
ul-n1:3A;2 , up-n;=0, uz-n; =0,
-1
V
up -np = Af , uz-mp=0, u-n;=0, (127)
-2
V
u3-n3 = A;z , uz-n3=0, u;-n3=0.
-3

as it was in (70), where Vz was the volume of the whole parallelepiped and A 7, was the area of
a parallelogram. If we write n as a linear combination of the other unit normal vectors

n = vinj + vpny + v3ng, (128)

and compute the scalar product by uj, up, uz we get

_Ar,_Ar, A,

= . 129
Ay VT Ay VBT AL (129)

Vi

5 Symmetric and skew symmetric moment tensors

Let us consider an equipowerful class characterized by a zero total force and a symmetric moment
tensor. A force distribution belonging to such a class can be chosen to be a surface distribution
on the boundary of a body in the shape of a cube with volume ¢3. Denoting the moment tensor
matrix by

X 1t f3;
M] =0 [ty tn tn], (130)
f31 tzp f33

we get for each face
t) = t1eq +fa1ex +t31e3,
ty = tr1e + tnex +t3re3, (131)
t3 = f31e1 + f30e + t33e3.
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Figure 11: Force distribution with a symmetric (left) or skew symmetric (right) moment tensor.

Let us consider an equipowerful class characterized by a zero total force and a skew symmetric
moment tensor. Denoting the moment tensor matrix by

X 0  —tn t3
Mpo] = | tn 0 —t3x], (132)
—tz ity 0
we get for each face
t1 = tr1ep — ti3eg,
tr = typez — frreq, (133)
t3 = f13e1 — t3pep.

The two force distributions are usually depicted as shown in fig. 11.
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