Esercizio [3-1a]

Deformazione non affine

Si consideri un corpo che abbia ad un certo istante la forma di un disco di raggio $r = \frac{1}{2}$. Indicando con \bar{p}_0 il centro di tale disco e con $\{e_1, e_2\}$ una base ortonormale, si consideri la deformazione definita dall'espressione

$$\phi(\kappa(s_1, s_2)) = p_O + \phi_1(s_1, s_2)e_1 + \phi_2(s_1, s_2)e_2$$

con

$$\kappa(s_1, s_2) = \bar{p}_0 + s_1 \mathbf{e}_1 + s_2 \mathbf{e}_2$$

$$\phi_1(s_1, s_2) = \frac{26}{25} s_1 + \frac{1}{2} s_2 + \frac{3}{10} s_1 s_2$$

$$\phi_2(s_1, s_2) = \frac{49}{50} s_2 - \frac{3}{10} s_1 s_2$$

essendo p_0 una posizione assegnata, eventualmente coincidente con \bar{p}_0 . Si disegni il contorno della forma del corpo originaria (quadrato) e di quella generata dalla deformazione. Per un generico punto del corpo si costruisca il gradiente della deformazione. Si calcolino poi in corrispondenza di alcuni punti del corpo le direzioni principali della dilatazione, le dilatazioni principali, l'ampiezza della rotazione. Si calcoli infine il rapporto tra le aree delle due forme del corpo.

Descrizione della deformazione

Il contorno della forma originaria è descritto dalla curva

$$\bar{\mathbf{c}}_1(h) = \bar{\mathbf{p}}_0 + r\cos(2h\pi)\mathbf{e}_1 + r\sin(2h\pi)\mathbf{e}_2$$

con $h \in [-\frac{1}{2}, \frac{1}{2}]$. Il contorno del corpo dopo la deformazione è descritto dalla curva corrispondente

$$\boldsymbol{c}_1(h) = \boldsymbol{\phi}(\bar{\boldsymbol{c}}_1(h)) = \mathsf{p_0} + \phi_1(r\cos(2h\pi), r\cos(2h\pi)) \boldsymbol{e}_1 + +\phi_2(r\cos(2h\pi), r\cos(2h\pi)) \boldsymbol{e}_2$$

La descrizione può essere arricchita aggiungendo i due segmenti ortogonali

$$\begin{split} & \bar{\mathbf{c}}_{2}(h) = \bar{\mathbf{p}}_{O} + rh\mathbf{e}_{1} \\ & \bar{\mathbf{c}}_{3}(h) = \bar{\mathbf{p}}_{O} + rh\mathbf{e}_{2} \\ & \mathbf{c}_{2}(h) = \phi(\bar{\mathbf{c}}_{2}(h)) = \mathbf{p}_{O} + \phi_{1}(rh, 0)\mathbf{e}_{1} + \phi_{2}(rh, 0)\mathbf{e}_{2} \\ & \mathbf{c}_{3}(h) = \phi(\bar{\mathbf{c}}_{3}(h)) = \mathbf{p}_{O} + \phi_{1}(0, rh)\mathbf{e}_{1} + \phi_{2}(0, rh)\mathbf{e}_{2} \end{split}$$

oppure i segmenti paralleli alle direzioni principali nel centro del disco.

Direzioni principali e rotazione

La matrice di $\mathbf{F}(\kappa(s_1, s_2))$ è in generale

$$[\mathbf{F}(\boldsymbol{\kappa}(s_1, s_2))] := \begin{pmatrix} \frac{\partial \phi_1}{\partial s_1}(s_1, s_2) & \frac{\partial \phi_1}{\partial s_2}(s_1, s_2) \\ \frac{\partial \phi_2}{\partial s_1}(s_1, s_2) & \frac{\partial \phi_2}{\partial s_2}(s_1, s_2) \end{pmatrix}.$$

Esercizio [3-1a]

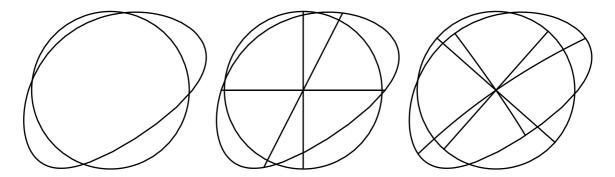


Figura 1: Tre diverse descrizioni della deformazione assegnata.

Sostituendo le espressioni di ϕ_1 e ϕ_2 si ottiene

$$[\mathbf{F}(\boldsymbol{\kappa}(s_1, s_2))] = \begin{pmatrix} \frac{52+15s_2}{50} & \frac{5+3s_1}{10} \\ -\frac{3s_2}{10} & \frac{49-15s_1}{50} \end{pmatrix}$$

La matrice del tensore di Cauchy-Green è

$$[\mathbf{C}(\boldsymbol{\kappa}(s_1, s_2))] = [\mathbf{F}(\boldsymbol{\kappa}(s_1, s_2))]^T [\mathbf{F}(\boldsymbol{\kappa}(s_1, s_2))] = \begin{pmatrix} \frac{1352 + 780s_2 + 225s_2^2}{1250} & \frac{130 - 36s_2 + 3s_1(26 + 15s_2)}{250} \\ \frac{130 - 36s_2 + 3s_1(26 + 15s_2)}{250} & \frac{1513 - 360s_1 + 225s_1^2}{1250} \end{pmatrix}$$

Centro: $\kappa(0,0)$

Sostituiti i valori di s_1 e s_2 dalla matrice di ${\bf C}$ si ottengono, calcolando le radici degli autovalori, le dilatazioni principali

$$\lambda_1 = 0.788687, \quad \lambda_2 = 1.29227$$

e le matrici delle proiezioni sugli autospazi

$$[\mathbf{P}_1] = \begin{pmatrix} 0.561454 & -0.496209 \\ -0.496209 & 0.438546 \end{pmatrix}$$
$$[\mathbf{P}_2] = \begin{pmatrix} 0.438546 & 0.496209 \\ 0.496209 & 0.561454 \end{pmatrix}$$

Dalla matrice della rotazione, calcolata utilizzando l'espressione $\mathbf{R} = \mathbf{F}(\frac{1}{\lambda_1}\mathbf{P}_1 + \frac{1}{\lambda_2}\mathbf{P}_2)$, si ottiene infine l'ampiezza della rotazione

$$\theta = -0.0772372\pi$$
.

Punto in basso: $\kappa(0,-\frac{1}{2})$

$$\lambda_1 = 0.623135, \quad \lambda_2 = 1.27934$$

$$[\mathbf{P}_1] = \begin{pmatrix} 0.658522 & -0.474205 \\ -0.474205 & 0.341478 \end{pmatrix}$$

Esercizio [3-1a]

$$[\mathbf{P}_2] = \begin{pmatrix} 0.341478 & 0.474205 \\ 0.474205 & 0.658522 \end{pmatrix}$$
$$\theta = -0.0588953\pi.$$

Punto a destra: $\kappa(\frac{1}{2},0)$

$$\lambda_1 = 0.648333, \quad \lambda_2 = 1.33141$$

$$[\mathbf{P}_1] = \begin{pmatrix} 0.511018 & -0.499879 \\ -0.499879 & 0.488982 \end{pmatrix}$$

$$[\mathbf{P}_2] = \begin{pmatrix} 0.488982 & 0.499879 \\ 0.4998799 & 0.511018 \end{pmatrix}$$

$$\theta = -0.106484\pi$$

Punto in alto: $\kappa(0,\frac{1}{2})$

$$\lambda_1 = 0.928546, \quad \lambda_2 = 1.33671$$

$$[\mathbf{P}_1] = \begin{pmatrix} 0.376596 & -0.484532 \\ -0.484532 & 0.623404 \end{pmatrix}$$

$$[\mathbf{P}_2] = \begin{pmatrix} 0.623404 & 0.484532 \\ 0.484532 & 0.376596 \end{pmatrix}$$

$$\theta = -0.092639\pi.$$

Punto a sinistra: $\kappa(-\frac{1}{2},0)$

$$\lambda_1 = 0.918329, \quad \lambda_2 = 1.27972$$
$$[\mathbf{P}_1] = \begin{pmatrix} 0.70004 & -0.45824 \\ -0.45824 & 0.29996 \end{pmatrix}$$
$$[\mathbf{P}_2] = \begin{pmatrix} 0.29996 & 0.45824 \\ 0.45824 & 0.70004 \end{pmatrix}$$
$$\theta = -0.0509019\pi.$$

Rapporto tra le aree

Occorre integrare l'espressione del determinante del gradiente della deformazione sul dominio della parametrizzazione. Risulta

$$\frac{4}{\pi} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\sqrt{\frac{1}{4} - s_1^2}}^{\sqrt{\frac{1}{4} - s_1^2}} \det \mathbf{F}(\kappa(s_1, s_2)) ds_2 ds_1 = 1.0192$$