(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 84229, 2203]*) (*NotebookOutlinePosition[ 84890, 2226]*) (* CellTagsIndexPosition[ 84846, 2222]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Corpo affine elastico vincolato", "Title"], Cell[TextData[StyleBox["v. 2.08 (23/6/2003) \[Copyright] A. Tatone \ [Universit\[AGrave] dell'Aquila]", FontFamily->"Arial", FontWeight->"Bold"]], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[Solve::"\"];\)\)}], "Input"], Cell["Prodotto tensoriale", "Text"], Cell[BoxData[ \(prt[u_, v_] := Transpose[{v}] . {u}\)], "Input"], Cell["Prodotto scalare", "Text"], Cell[BoxData[ \(prs[u_, v_] := Flatten[u] . Flatten[v]\)], "Input"], Cell["Traccia", "Text"], Cell[BoxData[ \(tr[m_] := m\_\(\(\[LeftDoubleBracket]\)\(1, 1\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(2, 2\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(3, 3\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell["Gradiente dello spostamento", "Text"], Cell[BoxData[ \(\(mH = Array[ug[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["Rotazione infinitesima", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"m\[Theta]", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(+\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell["Spostamento", "Text"], Cell[BoxData[ \(u[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := u0 + mH . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(u0 := {u01, u02, u03}\)], "Input"], Cell["Deformazione", "Text"], Cell[BoxData[ \(\[Phi][{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := {\[Zeta]1, \[Zeta]2, \ \[Zeta]3} + u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}]\)], "Input"], Cell["Gradiente dell'atto di moto", "Text"], Cell[BoxData[ \(\(mG = Array[g[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell["Atto di moto affine", "Text"], Cell[BoxData[ \(w[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := w0 + mG . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(w0 := {w01, w02, w03}\)], "Input"], Cell["Vettori base", "Text"], Cell[BoxData[{ \(\(e1 = {1, 0, 0};\)\), "\[IndentingNewLine]", \(\(e2 = {0, 1, 0};\)\), "\[IndentingNewLine]", \(\(e3 = {0, 0, 1};\)\)}], "Input"], Cell["Matrice della identit\[AGrave]", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(mI = {e1, e2, e3}\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell["Relazioni tra i moduli elastici", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(lam\[EAcute] = \(Solve[{Y == \(\(3 \[Lambda] + 2 \[Mu]\)\/\(\[Lambda] \ + \[Mu]\)\) \[Mu], \[Nu] == \[Lambda]\/\(2 \((\[Lambda] + \[Mu])\)\)}, {\ \[Lambda], \ \[Mu]}]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell[BoxData[ \({\[Lambda] \[Rule] \(-\(\(Y\ \[Nu]\)\/\(\((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\)\), \[Mu] \[Rule] Y\/\(2\ \((1 + \[Nu])\)\)}\)], "Output"] }, Open ]], Cell["Volume del parallelepipedo", "Text"], Cell[BoxData[ \(\(vol := L1\ L2\ L3;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Origine delle coordinate e polo", "Section"], Cell["\<\ Coordinate del centro del parallelepipedo (da fissare) (equivale alla scelta \ dell'origine)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(xC = {0, 0, 0}\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell["\<\ Polo (da scegliere) (\[EGrave] meglio usare una espressione del tipo xC + \ ... poich\[EGrave] risulta indipendente dalla scelta dell'origine)\ \>", "Text"], Cell[BoxData[ \(x0 := xC - L1\/2\ e1 - L2\/2\ e2\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Lunghezze spigoli", "Section"], Cell["Eventuali valori o relazioni", "Text"] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione delle facce", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1m = xC - \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1p = xC + \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3m = xC - \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3p = xC + \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2m = xC - \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2p = xC + \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione degli spigoli", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2m = xC - \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2p = xC + \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2p = xC - \(L1\/2\) e1 + \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2m = xC - \(L1\/2\) e1 - \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli", "Section"], Cell[CellGroupData[{ Cell["Inizializzazione", "Subsection"], Cell[BoxData[ \(\(vincoli = {};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Spigolo a destra", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo1 = Complement[ CoefficientList[\((u[spigolo1p2m] . \((e1)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u01 + L1\ ug[1, 1], ug[1, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo1]\)], "Input"], Cell[BoxData[ \({u01 + L1\ ug[1, 1], ug[1, 3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Faccia inferiore", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo2 = Complement[ CoefficientList[\((u[faccia2m] . \((e2)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo2]\)], "Input"], Cell[BoxData[ \({u01 + L1\ ug[1, 1], ug[1, 3], ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Lista dei vincoli su spostamenti e atti di moto", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({u01 + L1\ ug[1, 1], ug[1, 3], ug[2, 1], u02 + 1\/2\ L1\ ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[vincoli]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0\)], "Input"], Cell[BoxData[ \({u01, u02, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Flatten[Join[u0, mH]]\)], "Input"], Cell[BoxData[ \({u01, u02, u03, ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 1], ug[2, 2], ug[2, 3], ug[3, 1], ug[3, 2], ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[Map[\((# == 0)\) &, vincoli], Flatten[Join[mH, u0]]]\)], "Input"], Cell[BoxData[ \({{u01 \[Rule] \(-L1\)\ ug[1, 1], ug[1, 3] \[Rule] 0, u02 \[Rule] 0, ug[2, 3] \[Rule] 0, ug[2, 1] \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uvinc = %[\([1]\)]\)], "Input"], Cell[BoxData[ \({u01 \[Rule] \(-L1\)\ ug[1, 1], ug[1, 3] \[Rule] 0, u02 \[Rule] 0, ug[2, 3] \[Rule] 0, ug[2, 1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[uvinc]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(wvinc = \(uvinc /. ug \[Rule] g\) /. {u01 \[Rule] w01, u02 \[Rule] w02, u03 \[Rule] w03}\)], "Input"], Cell[BoxData[ \({w01 \[Rule] \(-L1\)\ g[1, 1], g[1, 3] \[Rule] 0, w02 \[Rule] 0, g[2, 3] \[Rule] 0, g[2, 1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mH /. uvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), "0"}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({\(-L1\)\ ug[1, 1], 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mG //. wvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(g[1, 1]\), \(g[1, 2]\), "0"}, {"0", \(g[2, 2]\), "0"}, {\(g[3, 1]\), \(g[3, 2]\), \(g[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w0 //. wvinc\)], "Input"], Cell[BoxData[ \({\(-L1\)\ g[1, 1], 0, w03}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Risultante e momento delle forze attive", "Section"], Cell[BoxData[ \(\(mMa = \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\((prt[\((spigolo1m2p - x0)\), q\ e1])\) \[DifferentialD]\[Zeta]3 + \[Integral]\ \_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\((prt[\((\ faccia2p - x0)\), \(-p\)\ e2])\) \[DifferentialD]\[Zeta]1 \ \[DifferentialD]\[Zeta]3\);\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(1\/vol\) mMa // Simplify\) // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/L1\), "0"}, {\(-\(\(L1\ p\)\/\(2\ L2\)\)\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa = \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\((q\ e1)\) \[DifferentialD]\ \[Zeta]3 + \ \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\ \((\(-p\)\ e2)\) \[DifferentialD]\[Zeta]1 \[DifferentialD]\[Zeta]3\)\)], \ "Input"], Cell[BoxData[ \({L3\ q, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tensione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(wpar = Join[Flatten[mG], w0]\)], "Input"], Cell[BoxData[ \({g[1, 1], g[1, 2], g[1, 3], g[2, 1], g[2, 2], g[2, 3], g[3, 1], g[3, 2], g[3, 3], w01, w02, w03}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mT", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mT]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0] //. wvinc\)], "Input"], Cell[BoxData[ \(\(-L1\)\ L3\ q\ g[1, 1]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0]\)], "Input"], Cell[BoxData[ \(L3\ q\ w01 - L1\ L3\ p\ w02\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc\)], "Input"], Cell[BoxData[ \(\(\(-L1\)\ L3\ q\ g[1, 1] + L2\ L3\ q\ g[1, 2] - L1\ L2\ L3\ p\ g[2, 2]\ \)\/\(L1\ L2\ L3\) - g[1, 1]\ \[Sigma][1, 1] - g[1, 2]\ \[Sigma][1, 2] - g[3, 1]\ \[Sigma][1, 3] - g[2, 2]\ \[Sigma][2, 2] - g[3, 2]\ \[Sigma][2, 3] - g[3, 3]\ \[Sigma][3, 3]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ Coefficient[\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc, wpar], {0}] // Simplify\)], "Input"], Cell[BoxData[ \({\(-\(\(q + L2\ \[Sigma][1, 1]\)\/L2\)\), q\/L1 - \[Sigma][1, 2], \(-\[Sigma][1, 3]\), \(-p\) - \[Sigma][2, 2], \(-\[Sigma][2, 3]\), \(-\[Sigma][3, 3]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(tens = \(Solve[Map[\((# \[Equal] 0)\)\ &, %], \ Union[Flatten[mT]]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({\[Sigma][1, 1] \[Rule] \(-\(q\/L2\)\), \[Sigma][1, 2] \[Rule] q\/L1, \[Sigma][1, 3] \[Rule] 0, \[Sigma][2, 2] \[Rule] \(-p\), \[Sigma][2, 3] \[Rule] 0, \[Sigma][3, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mT /. tens // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(q\/L2\)\), \(q\/L1\), "0"}, {\(q\/L1\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dilatazione infinitesima e rotazione infinitesima", "Section"], Cell[CellGroupData[{ Cell["Dalla tensione", "Subsection"], Cell[BoxData[ \(\(mE = \(1\/\(2 \[Mu]\)\) \((mT - \(\[Lambda]\/\(3 \[Lambda] + 2 \[Mu]\)\) tr[mT] mI)\) //. tens // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE // Factor]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \[Mu]\)\/\(2\ L2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\), \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(q\/\(2\ L1\ \[Mu]\)\), \(-\(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \[Mu]\)\/\(2\ L2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(\((L2\ p + q)\)\ \[Lambda]\)\/\(2\ L2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dalle condizioni di vincolo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), "0"}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({\(-L1\)\ ug[1, 1], 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE + m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \[Mu]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\), \(q\/\(2\ L1\ \[Mu]\) - \[Theta][ 3]\), \(\[Theta][2]\)}, {\(q\/\(2\ L1\ \[Mu]\) + \[Theta][ 3]\), \(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \[Mu]\)\/\(\(-6\)\ L2\ \[Lambda]\ \[Mu] - 4\ L2\ \[Mu]\^2\)\), \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][ 1]\), \(\(L2\ p\ \[Lambda] + q\ \[Lambda]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\((mE + m\[Theta] - mH)\) /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \[Mu]\)\/\(6\ L2\ \ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\) - ug[1, 1]\), \(q\/\(2\ L1\ \[Mu]\) - ug[1, 2] - \[Theta][3]\), \(\[Theta][2]\)}, {\(q\/\(2\ L1\ \[Mu]\) + \[Theta][ 3]\), \(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \ \[Mu]\)\/\(\(-6\)\ L2\ \[Lambda]\ \[Mu] - 4\ L2\ \[Mu]\^2\) - ug[2, 2]\), \(-\[Theta][1]\)}, {\(\(-ug[3, 1]\) - \[Theta][2]\), \(\(-ug[3, 2]\) + \[Theta][ 1]\), \(\(L2\ p\ \[Lambda] + q\ \[Lambda]\)\/\(6\ L2\ \ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\) - ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(var = Intersection[Variables[\((mE + m\[Theta] - mH)\) /. uvinc], Join[Flatten[mH], Flatten[mE], Flatten[m\[Theta]], Flatten[mT], u0]]\)], "Input"], Cell[BoxData[ \({ug[1, 1], ug[1, 2], ug[2, 2], ug[3, 1], ug[3, 2], ug[3, 3], \[Theta][1], \[Theta][2], \[Theta][3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(sol = \(Solve[Map[\((# \[Equal] 0)\) &, Flatten[\((mE + m\[Theta] - mH)\ \)] /. uvinc], var]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({ug[1, 1] \[Rule] \(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \ \[Mu]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\), ug[1, 2] \[Rule] q\/\(L1\ \[Mu]\), ug[2, 2] \[Rule] \(-\(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \[Mu]\)\/\(2\ L2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)\), ug[3, 1] \[Rule] 0, ug[3, 2] \[Rule] 0, ug[3, 3] \[Rule] \(L2\ p\ \[Lambda] + q\ \[Lambda]\)\/\(6\ L2\ \ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\), \[Theta][1] \[Rule] 0, \[Theta][2] \[Rule] 0, \[Theta][3] \[Rule] \(-\(q\/\(2\ L1\ \[Mu]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mH /. uvinc\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \[Mu]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\), \(q\/\(L1\ \[Mu]\)\), "0"}, { "0", \(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \[Mu]\)\/\(\(-6\)\ L2\ \[Lambda]\ \[Mu] - 4\ L2\ \[Mu]\^2\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Lambda] + q\ \[Lambda]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(L2\ p\ \[Lambda] - 2\ q\ \[Lambda] - 2\ q\ \[Mu]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\), \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(q\/\(2\ L1\ \[Mu]\)\), \(\(2\ L2\ p\ \[Lambda] - q\ \[Lambda] + 2\ L2\ p\ \[Mu]\)\/\(\(-6\)\ L2\ \[Lambda]\ \[Mu] - 4\ L2\ \[Mu]\^2\)\), "0"}, {"0", "0", \(\(L2\ p\ \[Lambda] + q\ \[Lambda]\)\/\(6\ L2\ \[Lambda]\ \[Mu] + 4\ L2\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta] /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(q\/\(2\ L1\ \[Mu]\)\), "0"}, {\(-\(q\/\(2\ L1\ \[Mu]\)\)\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u0 /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({\(L1\ \((q - L2\ p\ \[Nu])\)\)\/\(L2\ Y\), 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mH /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(\(-q\) + L2\ p\ \[Nu]\)\/\(L2\ Y\)\), \(\(2\ q\ \((1 + \ \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {"0", \(\(\(-L2\)\ p + q\ \[Nu]\)\/\(L2\ Y\)\), "0"}, {"0", "0", \(\(\((L2\ p + q)\)\ \[Nu]\)\/\(L2\ Y\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mE /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(\(-q\) + L2\ p\ \[Nu]\)\/\(L2\ Y\)\), \(\(q\ \((1 + \ \[Nu])\)\)\/\(L1\ Y\)\), "0"}, {\(\(q\ \((1 + \[Nu])\)\)\/\(L1\ Y\)\), \(\(\(-L2\)\ p + q\ \[Nu]\)\/\(L2\ Y\)\), "0"}, {"0", "0", \(\(\((L2\ p + q)\)\ \[Nu]\)\/\(L2\ Y\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mT /. tens\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(q\/L2\)\), \(q\/L1\), "0"}, {\(q\/L1\), \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Visualizzazione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({\(2\ L2\ q\ \((L2 + 2\ \[Zeta]2)\)\ \((1 + \[Nu])\) + L1\^2\ \((q - L2\ \ p\ \[Nu])\) - 2\ L1\ \[Zeta]1\ \((q - L2\ p\ \[Nu])\)\)\/\(2\ L1\ L2\ Y\), \ \(-\(\(\((L2 + 2\ \[Zeta]2)\)\ \((L2\ p - q\ \[Nu])\)\)\/\(2\ L2\ Y\)\)\), u03 + \(\((L2\ p + q)\)\ \[Zeta]3\ \[Nu]\)\/\(L2\ Y\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[x0] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({\(L1\ \((q - L2\ p\ \[Nu])\)\)\/\(L2\ Y\), 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(x0\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uval = {u03 \[Rule] 0}\)], "Input"], Cell[BoxData[ \({u03 \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e3", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, lato1 = xC - \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato2 = xC + \(L1\/2\) e1 + \[Xi]\ L2\ e2, lato3 = xC + \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato4 = xC - \(L1\/2\) e1 + \[Xi]\ L2\ e2}, Block[{x0Q = \((Take[#1, 2] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Take[#1, 2] &)\) /@ {\[Phi][lato1], \[Phi][ lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .88496 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.445217 0.842815 0.442478 0.842815 [ [ 0 0 0 0 ] [ 1 .88496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .88496 L 0 .88496 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .05331 .02107 m .0863 .02107 L .12228 .02107 L .15608 .02107 L .18858 .02107 L .22317 .02107 L .25647 .02107 L .29186 .02107 L .32596 .02107 L .35877 .02107 L .39367 .02107 L .42727 .02107 L .45958 .02107 L .49399 .02107 L .5271 .02107 L .5623 .02107 L .59621 .02107 L .62883 .02107 L .66354 .02107 L .69696 .02107 L .73247 .02107 L .76668 .02107 L .7996 .02107 L .83462 .02107 L .86662 .02107 L s .86662 .02107 m .87107 .05406 L .87592 .09005 L .88047 .12384 L .88485 .15634 L .88951 .19093 L .89399 .22423 L .89876 .25963 L .90336 .29373 L .90777 .32653 L .91248 .36143 L .917 .39504 L .92136 .42735 L .92599 .46175 L .93045 .49486 L .93519 .53007 L .93976 .56398 L .94416 .59659 L .94883 .6313 L .95333 .66472 L .95812 .70023 L .96273 .73445 L .96716 .76737 L .97188 .80238 L .97619 .83439 L s .16287 .83439 m .19587 .83439 L .23185 .83439 L .26564 .83439 L .29814 .83439 L .33274 .83439 L .36604 .83439 L .40143 .83439 L .43553 .83439 L .46833 .83439 L .50323 .83439 L .53684 .83439 L .56915 .83439 L .60355 .83439 L .63666 .83439 L .67187 .83439 L .70578 .83439 L .7384 .83439 L .77311 .83439 L .80652 .83439 L .84203 .83439 L .87625 .83439 L .90917 .83439 L .94419 .83439 L .97619 .83439 L s .05331 .02107 m .05775 .05406 L .0626 .09005 L .06715 .12384 L .07153 .15634 L .07619 .19093 L .08068 .22423 L .08545 .25963 L .09004 .29373 L .09446 .32653 L .09916 .36143 L .10369 .39504 L .10804 .42735 L .11267 .46175 L .11713 .49486 L .12188 .53007 L .12645 .56398 L .13084 .59659 L .13552 .6313 L .14002 .66472 L .1448 .70023 L .14941 .73445 L .15385 .76737 L .15856 .80238 L .16287 .83439 L s .02381 .02107 m .058 .02107 L .09529 .02107 L .13031 .02107 L .16399 .02107 L .19983 .02107 L .23434 .02107 L .27102 .02107 L .30635 .02107 L .34035 .02107 L .37651 .02107 L .41134 .02107 L .44482 .02107 L .48047 .02107 L .51478 .02107 L .55127 .02107 L .58641 .02107 L .62021 .02107 L .65617 .02107 L .6908 .02107 L .7276 .02107 L .76306 .02107 L .79717 .02107 L .83346 .02107 L .86662 .02107 L s .86662 .02107 m .86662 .05526 L .86662 .09255 L .86662 .12757 L .86662 .16125 L .86662 .19709 L .86662 .2316 L .86662 .26828 L .86662 .30362 L .86662 .33761 L .86662 .37377 L .86662 .4086 L .86662 .44208 L .86662 .47773 L .86662 .51205 L .86662 .54853 L .86662 .58367 L .86662 .61747 L .86662 .65344 L .86662 .68806 L .86662 .72486 L .86662 .76032 L .86662 .79443 L .86662 .83072 L .86662 .86389 L s .02381 .86389 m .058 .86389 L .09529 .86389 L .13031 .86389 L .16399 .86389 L .19983 .86389 L .23434 .86389 L .27102 .86389 L .30635 .86389 L .34035 .86389 L .37651 .86389 L .41134 .86389 L .44482 .86389 L .48047 .86389 L .51478 .86389 L .55127 .86389 L .58641 .86389 L .62021 .86389 L .65617 .86389 L .6908 .86389 L .7276 .86389 L .76306 .86389 L .79717 .86389 L .83346 .86389 L .86662 .86389 L s .02381 .02107 m .02381 .05526 L .02381 .09255 L .02381 .12757 L .02381 .16125 L .02381 .19709 L .02381 .2316 L .02381 .26828 L .02381 .30362 L .02381 .33761 L .02381 .37377 L .02381 .4086 L .02381 .44208 L .02381 .47773 L .02381 .51205 L .02381 .54853 L .02381 .58367 L .02381 .61747 L .02381 .65344 L .02381 .68806 L .02381 .72486 L .02381 .76032 L .02381 .79443 L .02381 .83072 L .02381 .86389 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 254.813}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgKoool00`000?ooooooo`0Uoooo0006 oooo00<0003oooooool01_ooo`030000oooooooo0>Koool00`000?ooooooo`0Uoooo0006oooo00<0 003oooooool01_ooo`030000oooooooo0>Koool00`000?ooooooo`0Uoooo0006oooo00<0003ooooo ool01_ooo`030000oooooooo0>Koool00`000?ooooooo`0Uoooo0006oooo00<0003oooooool01ooo o`030000oooooooo0>Goool200009_ooo`001_ooo`030000oooooooo00Ooool00`000?ooooooo`3U oooo0P0002Koool000Koool00`000?ooooooo`07oooo00<0003oooooool0iOooo`80000Voooo0006 oooo00<0003oooooool01oooo`030000oooooooo0>Goool200009_ooo`001_ooo`030000oooooooo 00Ooool00`000?ooooooo`3Uoooo0P0002Koool000Koool00`000?ooooooo`07oooo00<0003ooooo ool0iOooo`80000Voooo0006oooo00<0003oooooool01oooo`030000oooooooo0>Goool200009_oo o`001_ooo`030000oooooooo00Soool00`000?ooooooo`3Toooo00<0003oool000009Oooo`001_oo o`030000oooooooo00Soool00`000?ooooooo`3Toooo00<0003oool000009Oooo`001_ooo`030000 oooooooo00Soool00`000?ooooooo`3Toooo00<0003oool000009Oooo`001_ooo`030000oooooooo 00Soool00`000?ooooooo`3Toooo00<0003oool000009Oooo`001_ooo`030000oooooooo00Soool0 0`000?ooooooo`3Toooo00<0003oool000009Oooo`001_ooo`030000oooooooo00Soool00`000?oo ooooo`3Toooo00<0003oool000009Oooo`001_ooo`030000oooooooo00Woool00`000?ooooooo`3S oooo00@0003oooooool0000Toooo0006oooo00<0003oooooool02Oooo`030000oooooooo0>?oool0 10000?ooooooo`0002Coool000Koool00`000?ooooooo`09oooo00<0003oooooool0hoooo`040000 oooooooo00009?ooo`001_ooo`030000oooooooo00Woool00`000?ooooooo`3Soooo00@0003ooooo ool0000Toooo0006oooo00<0003oooooool02Oooo`030000oooooooo0>?oool010000?ooooooo`00 02Coool000Koool00`000?ooooooo`09oooo00<0003oooooool0hoooo`040000oooooooo00009?oo o`001_ooo`030000oooooooo00Woool00`000?ooooooo`3Soooo00@0003oooooool0000Toooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02_ooo`030000oooooooo0>;oool01@000?ooooooooooo`00000Soooo0006 oooo00<0003oooooool02oooo`030000oooooooo0>7oool00`000?ooooooo`02oooo00<0003ooooo ool08?ooo`001_ooo`030000oooooooo00_oool00`000?ooooooo`3Qoooo00<0003oooooool00_oo o`030000oooooooo023oool000Koool00`000?ooooooo`0;oooo00<0003oooooool0hOooo`030000 oooooooo00;oool00`000?ooooooo`0Poooo0006oooo00<0003oooooool02oooo`030000oooooooo 0>7oool00`000?ooooooo`02oooo00<0003oooooool08?ooo`001_ooo`030000oooooooo00_oool0 0`000?ooooooo`3Qoooo00<0003oooooool00_ooo`030000oooooooo023oool000Koool00`000?oo ooooo`0;oooo00<0003oooooool0hOooo`030000oooooooo00;oool00`000?ooooooo`0Poooo0006 oooo00<0003oooooool02oooo`030000oooooooo0>7oool00`000?ooooooo`02oooo00<0003ooooo ool08?ooo`001_ooo`030000oooooooo00_oool00`000?ooooooo`3Qoooo00<0003oooooool00ooo o`030000oooooooo01ooool000Koool00`000?ooooooo`0;oooo00<0003oooooool0hOooo`030000 oooooooo00?oool00`000?ooooooo`0Ooooo0006oooo00<0003oooooool03?ooo`030000oooooooo 0>3oool00`000?ooooooo`03oooo00<0003oooooool07oooo`001_ooo`030000oooooooo00coool0 0`000?ooooooo`3Poooo00<0003oooooool00oooo`030000oooooooo01ooool000Koool00`000?oo ooooo`03oool00`000?ooooooo`04oooo00<0003ooooo ool07_ooo`001_ooo`030000oooooooo00coool00`000?ooooooo`3Poooo00<0003oooooool01?oo o`030000oooooooo01koool000Koool00`000?ooooooo`03oool00`000?ooooooo`04oooo00<0003oooooool07_ooo`001_ooo`030000oooooooo00goool0 0`000?ooooooo`3Ooooo00<0003oooooool01?ooo`030000oooooooo01koool000Koool00`000?oo ooooo`0=oooo00<0003oooooool0goooo`030000oooooooo00Coool00`000?ooooooo`0Noooo0006 oooo00<0003oooooool03Oooo`030000oooooooo0=ooool00`000?ooooooo`04oooo00<0003ooooo ool07_ooo`001_ooo`030000oooooooo00goool00`000?ooooooo`3Ooooo00<0003oooooool01Ooo o`030000oooooooo01goool000Koool00`000?ooooooo`0=oooo00<0003oooooool0goooo`030000 oooooooo00Goool00`000?ooooooo`0Moooo0006oooo00<0003oooooool03_ooo`030000oooooooo 0=koool00`000?ooooooo`05oooo00<0003oooooool07Oooo`001_ooo`030000oooooooo00koool0 0`000?ooooooo`3Noooo00<0003oooooool01Oooo`030000oooooooo01goool000Koool00`000?oo ooooo`0>oooo00<0003oooooool0g_ooo`030000oooooooo00Goool00`000?ooooooo`0Moooo0006 oooo00<0003oooooool03_ooo`030000oooooooo0=koool00`000?ooooooo`05oooo00<0003ooooo ool07Oooo`001_ooo`030000oooooooo00koool00`000?ooooooo`3Noooo00<0003oooooool01Ooo o`030000oooooooo01goool000Koool00`000?ooooooo`0>oooo00<0003oooooool0g_ooo`030000 oooooooo00Goool00`000?ooooooo`0Moooo0006oooo00<0003oooooool03_ooo`030000oooooooo 0=koool00`000?ooooooo`05oooo00<0003oooooool07Oooo`001_ooo`030000oooooooo00koool0 0`000?ooooooo`3Noooo00<0003oooooool01Oooo`030000oooooooo01goool000Koool00`000?oo ooooo`0?oooo00<0003oooooool0gOooo`030000oooooooo00Koool00`000?ooooooo`0Loooo0006 oooo00<0003oooooool03oooo`030000oooooooo0=goool00`000?ooooooo`06oooo00<0003ooooo ool07?ooo`001_ooo`030000oooooooo00ooool00`000?ooooooo`3Moooo00<0003oooooool01_oo o`030000oooooooo01coool000Koool00`000?ooooooo`0?oooo00<0003oooooool0gOooo`030000 oooooooo00Koool00`000?ooooooo`0Loooo0006oooo00<0003oooooool03oooo`030000oooooooo 0=goool00`000?ooooooo`06oooo00<0003oooooool07?ooo`001_ooo`030000oooooooo00ooool0 0`000?ooooooo`3Moooo00<0003oooooool01_ooo`030000oooooooo01coool000Koool00`000?oo ooooo`0?oooo00<0003oooooool0gOooo`030000oooooooo00Koool00`000?ooooooo`0Loooo0006 oooo00<0003oooooool03oooo`030000oooooooo0=goool00`000?ooooooo`07oooo00<0003ooooo ool06oooo`001_ooo`030000oooooooo00ooool00`000?ooooooo`3Moooo00<0003oooooool01ooo o`030000oooooooo01_oool000Koool00`000?ooooooo`0?oooo00<0003oooooool0gOooo`030000 oooooooo00Ooool00`000?ooooooo`0Koooo0006oooo00<0003oooooool04?ooo`030000oooooooo 0=coool00`000?ooooooo`07oooo00<0003oooooool06oooo`001_ooo`030000oooooooo013oool0 0`000?ooooooo`3Loooo00<0003oooooool01oooo`030000oooooooo01_oool000Koool00`000?oo ooooo`0@oooo00<0003oooooool0g?ooo`030000oooooooo00Soool00`000?ooooooo`0Joooo0006 oooo00<0003oooooool04?ooo`030000oooooooo0=coool00`000?ooooooo`08oooo00<0003ooooo ool06_ooo`001_ooo`030000oooooooo013oool00`000?ooooooo`3Loooo00<0003oooooool02?oo o`030000oooooooo01[oool000Koool00`000?ooooooo`0@oooo00<0003oooooool0g?ooo`030000 oooooooo00Soool00`000?ooooooo`0Joooo0006oooo00<0003oooooool04?ooo`030000oooooooo 0=coool00`000?ooooooo`08oooo00<0003oooooool06_ooo`001_ooo`030000oooooooo017oool0 0`000?ooooooo`3Koooo00<0003oooooool02?ooo`030000oooooooo01[oool000Koool00`000?oo ooooo`0Aoooo00<0003oooooool0foooo`030000oooooooo00Soool00`000?ooooooo`0Joooo0006 oooo00<0003oooooool04Oooo`030000oooooooo0=_oool00`000?ooooooo`09oooo00<0003ooooo ool06Oooo`001_ooo`030000oooooooo017oool00`000?ooooooo`3Koooo00<0003oooooool02Ooo o`030000oooooooo01Woool000Koool00`000?ooooooo`0Boooo00<0003oooooool0f_ooo`030000 oooooooo00Woool00`000?ooooooo`0Ioooo0006oooo00<0003oooooool04_ooo`030000oooooooo 0=[oool00`000?ooooooo`09oooo00<0003oooooool06Oooo`001_ooo`030000oooooooo01;oool0 0`000?ooooooo`3Joooo00<0003oooooool02Oooo`030000oooooooo01Woool000Koool00`000?oo ooooo`0Boooo00<0003oooooool0f_ooo`030000oooooooo00Woool00`000?ooooooo`0Ioooo0006 oooo00<0003oooooool04_ooo`030000oooooooo0=[oool00`000?ooooooo`09oooo00<0003ooooo ool06Oooo`001_ooo`030000oooooooo01;oool00`000?ooooooo`3Joooo00<0003oooooool02Ooo o`030000oooooooo01Woool000Koool00`000?ooooooo`0Boooo00<0003oooooool0f_ooo`030000 oooooooo00Woool00`000?ooooooo`0Ioooo0006oooo00<0003oooooool04_ooo`030000oooooooo 0=[oool00`000?ooooooo`09oooo00<0003oooooool06Oooo`001_ooo`030000oooooooo01?oool0 0`000?ooooooo`3Ioooo00<0003oooooool02_ooo`030000oooooooo01Soool000Koool00`000?oo ooooo`0Coooo00<0003oooooool0fOooo`030000oooooooo00[oool00`000?ooooooo`0Hoooo0006 oooo00<0003oooooool04oooo`030000oooooooo0=Woool00`000?ooooooo`0:oooo00<0003ooooo ool06?ooo`001_ooo`030000oooooooo01?oool00`000?ooooooo`3Ioooo00<0003oooooool02_oo o`030000oooooooo01Soool000Koool00`000?ooooooo`0Coooo00<0003oooooool0fOooo`030000 oooooooo00[oool00`000?ooooooo`0Hoooo0006oooo00<0003oooooool04oooo`030000oooooooo 0=Woool00`000?ooooooo`0:oooo00<0003oooooool06?ooo`001_ooo`030000oooooooo01?oool0 0`000?ooooooo`3Ioooo00<0003oooooool02_ooo`030000oooooooo01Soool000Koool00`000?oo ooooo`0Coooo00<0003oooooool0fOooo`030000oooooooo00_oool00`000?ooooooo`0Goooo0006 oooo00<0003oooooool04oooo`030000oooooooo0=Woool00`000?ooooooo`0;oooo00<0003ooooo ool05oooo`001_ooo`030000oooooooo01?oool00`000?ooooooo`3Ioooo00<0003oooooool02ooo o`030000oooooooo01Ooool000Koool00`000?ooooooo`0Doooo00<0003oooooool0f?ooo`030000 oooooooo00_oool00`000?ooooooo`0Goooo0006oooo00<0003oooooool05?ooo`030000oooooooo 0=Soool00`000?ooooooo`0;oooo00<0003oooooool05oooo`001_ooo`030000oooooooo01Coool0 0`000?ooooooo`3Hoooo00<0003oooooool03?ooo`030000oooooooo01Koool000Koool00`000?oo ooooo`0Doooo00<0003oooooool0f?ooo`030000oooooooo00coool00`000?ooooooo`0Foooo0006 oooo00<0003oooooool05?ooo`030000oooooooo0=Soool00`000?ooooooo`0oooo00<0003oooooool05?ooo`001_ooo`030000oooooooo01Ooool0 0`000?ooooooo`3Eoooo00<0003oooooool03_ooo`030000oooooooo01Coool000Koool00`000?oo ooooo`0Goooo00<0003oooooool0eOooo`030000oooooooo00koool00`000?ooooooo`0Doooo0006 oooo00<0003oooooool05oooo`030000oooooooo0=Goool00`000?ooooooo`0>oooo00<0003ooooo ool05?ooo`001_ooo`030000oooooooo01Ooool00`000?ooooooo`3Eoooo00<0003oooooool03_oo o`030000oooooooo01Coool000Koool00`000?ooooooo`0Goooo00<0003oooooool0eOooo`030000 oooooooo00koool00`000?ooooooo`0Doooo0006oooo00<0003oooooool05oooo`030000oooooooo 0=Goool00`000?ooooooo`0>oooo00<0003oooooool05?ooo`001_ooo`030000oooooooo01Ooool0 0`000?ooooooo`3Eoooo00<0003oooooool03_ooo`030000oooooooo01Coool000Koool00`000?oo ooooo`0Goooo00<0003oooooool0eOooo`030000oooooooo00koool00`000?ooooooo`0Doooo0006 oooo00<0003oooooool05oooo`030000oooooooo0=Goool00`000?ooooooo`0>oooo00<0003ooooo ool05?ooo`001_ooo`030000oooooooo01Soool00`000?ooooooo`3Doooo00<0003oooooool03ooo o`030000oooooooo01?oool000Koool00`000?ooooooo`0Hoooo00<0003oooooool0e?ooo`030000 oooooooo00ooool00`000?ooooooo`0Coooo0006oooo00<0003oooooool06?ooo`030000oooooooo 0=Coool00`000?ooooooo`0?oooo00<0003oooooool04oooo`001_ooo`030000oooooooo01Soool0 0`000?ooooooo`3Doooo00<0003oooooool03oooo`030000oooooooo01?oool000Koool00`000?oo ooooo`0Hoooo00<0003oooooool0e?ooo`030000oooooooo00ooool00`000?ooooooo`0Coooo0006 oooo00<0003oooooool06?ooo`030000oooooooo0=Coool00`000?ooooooo`0?oooo00<0003ooooo ool04oooo`001_ooo`030000oooooooo01Soool00`000?ooooooo`3Doooo00<0003oooooool03ooo o`030000oooooooo01?oool000Koool00`000?ooooooo`0Ioooo00<0003oooooool0doooo`030000 oooooooo013oool00`000?ooooooo`0Boooo0006oooo00<0003oooooool06Oooo`030000oooooooo 0=?oool00`000?ooooooo`0@oooo00<0003oooooool04_ooo`001_ooo`030000oooooooo01Woool0 0`000?ooooooo`3Coooo00<0003oooooool04?ooo`030000oooooooo01;oool000Koool00`000?oo ooooo`0Ioooo00<0003oooooool0doooo`030000oooooooo013oool00`000?ooooooo`0Boooo0006 oooo00<0003oooooool06Oooo`030000oooooooo0=?oool00`000?ooooooo`0@oooo00<0003ooooo ool04_ooo`001_ooo`030000oooooooo01[oool00`000?ooooooo`3Boooo00<0003oooooool04Ooo o`030000oooooooo017oool000Koool00`000?ooooooo`0Joooo00<0003oooooool0d_ooo`030000 oooooooo017oool00`000?ooooooo`0Aoooo0006oooo00<0003oooooool06_ooo`030000oooooooo 0=;oool00`000?ooooooo`0Aoooo00<0003oooooool04Oooo`001_ooo`030000oooooooo01[oool0 0`000?ooooooo`3Boooo00<0003oooooool04Oooo`030000oooooooo017oool000Koool00`000?oo ooooo`0Joooo00<0003oooooool0d_ooo`030000oooooooo017oool00`000?ooooooo`0Aoooo0006 oooo00<0003oooooool06_ooo`030000oooooooo0=;oool00`000?ooooooo`0Aoooo00<0003ooooo ool04Oooo`001_ooo`030000oooooooo01[oool00`000?ooooooo`3Boooo00<0003oooooool04Ooo o`030000oooooooo017oool000Koool00`000?ooooooo`0Koooo00<0003oooooool0dOooo`030000 oooooooo01;oool00`000?ooooooo`0@oooo0006oooo00<0003oooooool06oooo`030000oooooooo 0=7oool00`000?ooooooo`0Boooo00<0003oooooool04?ooo`001_ooo`030000oooooooo01_oool0 0`000?ooooooo`3Aoooo00<0003oooooool04_ooo`030000oooooooo013oool000Koool00`000?oo ooooo`0Koooo00<0003oooooool0dOooo`030000oooooooo01;oool00`000?ooooooo`0@oooo0006 oooo00<0003oooooool06oooo`030000oooooooo0=7oool00`000?ooooooo`0Boooo00<0003ooooo ool04?ooo`001_ooo`030000oooooooo01_oool00`000?ooooooo`3Aoooo00<0003oooooool04_oo o`030000oooooooo013oool000Koool00`000?ooooooo`0Koooo00<0003oooooool0dOooo`030000 oooooooo01;oool00`000?ooooooo`0@oooo0006oooo00<0003oooooool06oooo`030000oooooooo 0=7oool00`000?ooooooo`0Boooo00<0003oooooool04?ooo`001_ooo`030000oooooooo01_oool0 0`000?ooooooo`3Aoooo00<0003oooooool04_ooo`030000oooooooo013oool000Koool00`000?oo ooooo`0Koooo00<0003oooooool0dOooo`030000oooooooo01;oool00`000?ooooooo`0@oooo0006 oooo00<0003oooooool07?ooo`030000oooooooo0=3oool00`000?ooooooo`0Coooo00<0003ooooo ool03oooo`001_ooo`030000oooooooo01coool00`000?ooooooo`3@oooo00<0003oooooool04ooo o`030000oooooooo00ooool000Koool00`000?ooooooo`0Loooo00<0003oooooool0d?ooo`030000 oooooooo01?oool00`000?ooooooo`0?oooo0006oooo00<0003oooooool07?ooo`030000oooooooo 0=3oool00`000?ooooooo`0Coooo00<0003oooooool03oooo`001_ooo`030000oooooooo01coool0 0`000?ooooooo`3@oooo00<0003oooooool04oooo`030000oooooooo00ooool000Koool00`000?oo ooooo`0Loooo00<0003oooooool0d?ooo`030000oooooooo01?oool00`000?ooooooo`0?oooo0006 oooo00<0003oooooool07?ooo`030000oooooooo0=3oool00`000?ooooooo`0Coooo00<0003ooooo ool03oooo`001_ooo`030000oooooooo01coool00`000?ooooooo`3@oooo00<0003oooooool05?oo o`030000oooooooo00koool000Koool00`000?ooooooo`0Loooo00<0003oooooool0d?ooo`030000 oooooooo01Coool00`000?ooooooo`0>oooo0006oooo00<0003oooooool07?ooo`030000oooooooo 0=3oool00`000?ooooooo`0Doooo00<0003oooooool03_ooo`001_ooo`030000oooooooo01goool0 0`000?ooooooo`3?oooo00<0003oooooool05?ooo`030000oooooooo00koool000Koool00`000?oo ooooo`0Moooo00<0003oooooool0coooo`030000oooooooo01Coool00`000?ooooooo`0>oooo0006 oooo00<0003oooooool07Oooo`030000oooooooo0oooo00<0003oooooool05_oo o`030000oooooooo00coool000Koool00`000?ooooooo`0Noooo00<0003oooooool0c_ooo`030000 oooooooo01Koool00`000?ooooooo`0ooool00`000?ooooooo`0Uoooo0006oooo00<0003oooooool0koooo`030000oooooooo02Goool0 00Koool00`000?ooooooo`3_oooo00<0003oooooool09Oooo`001_ooo`030000oooooooo0>ooool0 0`000?ooooooo`0Uoooo0006oooo00<0003oooooool0koooo`030000oooooooo02Goool000Kooooc 00009oooo`00ooooob7oool00?oooolQoooo003ooooo8Oooo`00ooooob7oool00?oooolQoooo003o oooo8Oooo`00\ \>"], ImageRangeCache->{{{0, 287}, {253.813, 0}} -> {-0.528656, -0.525005, \ 0.00413697, 0.00413697}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e2", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, u03 = 0, lato1 = xC + \(L2\/2\) e2 + \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato2 = xC + \(L2\/2\) e2 - \(L1\/2\) e1 + L3\ \[Xi]\ e3, lato3 = xC + \(L2\/2\) e2 - \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato4 = xC + \(L2\/2\) e2 + \(L1\/2\) e1 + L3\ \[Xi]\ e3}, Block[{x0Q = \((Extract[#1, {{1}, {3}}] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Extract[#1, {{1}, {3}}] &)\) /@ {\[Phi][ lato1], \[Phi][lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .9115 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.445217 0.842815 0.455752 0.842815 [ [ 0 0 0 0 ] [ 1 .9115 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .9115 L 0 .9115 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .16287 .8898 m .19587 .8898 L .23185 .8898 L .26564 .8898 L .29814 .8898 L .33274 .8898 L .36604 .8898 L .40143 .8898 L .43553 .8898 L .46833 .8898 L .50323 .8898 L .53684 .8898 L .56915 .8898 L .60355 .8898 L .63666 .8898 L .67187 .8898 L .70578 .8898 L .7384 .8898 L .77311 .8898 L .80652 .8898 L .84203 .8898 L .87625 .8898 L .90917 .8898 L .94419 .8898 L .97619 .8898 L s .16287 .0217 m .16287 .05692 L .16287 .09532 L .16287 .13139 L .16287 .16608 L .16287 .20301 L .16287 .23855 L .16287 .27633 L .16287 .31272 L .16287 .34774 L .16287 .38499 L .16287 .42086 L .16287 .45534 L .16287 .49207 L .16287 .52741 L .16287 .56498 L .16287 .60118 L .16287 .63599 L .16287 .67304 L .16287 .70871 L .16287 .74661 L .16287 .78313 L .16287 .81827 L .16287 .85564 L .16287 .8898 L s .16287 .0217 m .19587 .0217 L .23185 .0217 L .26564 .0217 L .29814 .0217 L .33274 .0217 L .36604 .0217 L .40143 .0217 L .43553 .0217 L .46833 .0217 L .50323 .0217 L .53684 .0217 L .56915 .0217 L .60355 .0217 L .63666 .0217 L .67187 .0217 L .70578 .0217 L .7384 .0217 L .77311 .0217 L .80652 .0217 L .84203 .0217 L .87625 .0217 L .90917 .0217 L .94419 .0217 L .97619 .0217 L s .97619 .0217 m .97619 .05692 L .97619 .09532 L .97619 .13139 L .97619 .16608 L .97619 .20301 L .97619 .23855 L .97619 .27633 L .97619 .31272 L .97619 .34774 L .97619 .38499 L .97619 .42086 L .97619 .45534 L .97619 .49207 L .97619 .52741 L .97619 .56498 L .97619 .60118 L .97619 .63599 L .97619 .67304 L .97619 .70871 L .97619 .74661 L .97619 .78313 L .97619 .81827 L .97619 .85564 L .97619 .8898 L s .02381 .87716 m .058 .87716 L .09529 .87716 L .13031 .87716 L .16399 .87716 L .19983 .87716 L .23434 .87716 L .27102 .87716 L .30635 .87716 L .34035 .87716 L .37651 .87716 L .41134 .87716 L .44482 .87716 L .48047 .87716 L .51478 .87716 L .55127 .87716 L .58641 .87716 L .62021 .87716 L .65617 .87716 L .6908 .87716 L .7276 .87716 L .76306 .87716 L .79717 .87716 L .83346 .87716 L .86662 .87716 L s .02381 .03434 m .02381 .06854 L .02381 .10582 L .02381 .14084 L .02381 .17452 L .02381 .21037 L .02381 .24488 L .02381 .28155 L .02381 .31689 L .02381 .35088 L .02381 .38705 L .02381 .42187 L .02381 .45536 L .02381 .49101 L .02381 .52532 L .02381 .5618 L .02381 .59694 L .02381 .63074 L .02381 .66671 L .02381 .70134 L .02381 .73814 L .02381 .77359 L .02381 .80771 L .02381 .844 L .02381 .87716 L s .02381 .03434 m .058 .03434 L .09529 .03434 L .13031 .03434 L .16399 .03434 L .19983 .03434 L .23434 .03434 L .27102 .03434 L .30635 .03434 L .34035 .03434 L .37651 .03434 L .41134 .03434 L .44482 .03434 L .48047 .03434 L .51478 .03434 L .55127 .03434 L .58641 .03434 L .62021 .03434 L .65617 .03434 L .6908 .03434 L .7276 .03434 L .76306 .03434 L .79717 .03434 L .83346 .03434 L .86662 .03434 L s .86662 .03434 m .86662 .06854 L .86662 .10582 L .86662 .14084 L .86662 .17452 L .86662 .21037 L .86662 .24488 L .86662 .28155 L .86662 .31689 L .86662 .35088 L .86662 .38705 L .86662 .42187 L .86662 .45536 L .86662 .49101 L .86662 .52532 L .86662 .5618 L .86662 .59694 L .86662 .63074 L .86662 .66671 L .86662 .70134 L .86662 .73814 L .86662 .77359 L .86662 .80771 L .86662 .844 L .86662 .87716 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 262.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOoool00`000?ooooooo`05oooo0006 ooool`0001ooool00`000?ooooooo`05oooo0006oooo00<0003oooooool09Oooo`030000oooooooo 0Ooool00`000?ooooooo`05oooo000^oooo00<0003ooooo ool0ioooo`030000oooooooo00Goool002koooo[00001oooo`00ooooob7oool00?oooolQoooo003o oooo8Oooo`00ooooob7oool00?oooolQoooo003ooooo8Oooo`00\ \>"], ImageRangeCache->{{{0, 287}, {261.5, 0}} -> {-0.528484, -0.540755, \ 0.00413578, 0.00413578}}] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Momento delle forze reattive", "Section"], Cell["Da moltiplicare per il volume", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(mT\ - mMa\/vol /. tens\) /. sol // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-\(q\/L2\)\), "0", "0"}, {\(\(L1\ p\)\/\(2\ L2\) + q\/L1\), "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa\)], "Input"], Cell[BoxData[ \({L3\ q, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{782, 668}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 48, 0, 115, "Title"], Cell[1778, 54, 217, 5, 49, "Text"], Cell[CellGroupData[{ Cell[2020, 63, 35, 0, 59, "Section"], Cell[2058, 65, 192, 3, 70, "Input"], Cell[2253, 70, 35, 0, 33, "Text"], Cell[2291, 72, 68, 1, 30, "Input"], Cell[2362, 75, 32, 0, 33, "Text"], Cell[2397, 77, 71, 1, 30, "Input"], Cell[2471, 80, 23, 0, 33, "Text"], Cell[2497, 82, 268, 5, 30, "Input"], Cell[2768, 89, 43, 0, 33, "Text"], Cell[2814, 91, 72, 1, 30, "Input"], Cell[CellGroupData[{ Cell[2911, 96, 47, 1, 30, "Input"], Cell[2961, 99, 347, 8, 71, "Output"] }, Open ]], Cell[3323, 110, 38, 0, 33, "Text"], Cell[3364, 112, 330, 7, 57, "Input"], Cell[3697, 121, 27, 0, 33, "Text"], Cell[3727, 123, 131, 2, 30, "Input"], Cell[3861, 127, 54, 1, 30, "Input"], Cell[3918, 130, 28, 0, 33, "Text"], Cell[3949, 132, 146, 2, 30, "Input"], Cell[4098, 136, 43, 0, 33, "Text"], Cell[4144, 138, 71, 1, 30, "Input"], Cell[4218, 141, 35, 0, 33, "Text"], Cell[4256, 143, 131, 2, 30, "Input"], Cell[4390, 147, 54, 1, 30, "Input"], Cell[4447, 150, 28, 0, 33, "Text"], Cell[4478, 152, 160, 3, 70, "Input"], Cell[4641, 157, 46, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4712, 161, 50, 1, 30, "Input"], Cell[4765, 164, 67, 1, 29, "Output"] }, Open ]], Cell[4847, 168, 47, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4919, 172, 265, 5, 47, "Input"], Cell[5187, 179, 192, 3, 44, "Output"] }, Open ]], Cell[5394, 185, 42, 0, 33, "Text"], Cell[5439, 187, 55, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[5531, 193, 50, 0, 39, "Section"], Cell[5584, 195, 116, 3, 33, "Text"], Cell[CellGroupData[{ Cell[5725, 202, 47, 1, 30, "Input"], Cell[5775, 205, 43, 1, 29, "Output"] }, Open ]], Cell[5833, 209, 169, 3, 33, "Text"], Cell[6005, 214, 65, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6107, 220, 36, 0, 39, "Section"], Cell[6146, 222, 44, 0, 33, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[6227, 227, 48, 0, 39, "Section"], Cell[CellGroupData[{ Cell[6300, 231, 102, 2, 42, "Input"], Cell[6405, 235, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6512, 241, 102, 2, 42, "Input"], Cell[6617, 245, 61, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6715, 251, 102, 2, 42, "Input"], Cell[6820, 255, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6927, 261, 102, 2, 42, "Input"], Cell[7032, 265, 61, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7130, 271, 102, 2, 42, "Input"], Cell[7235, 275, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7342, 281, 102, 2, 42, "Input"], Cell[7447, 285, 61, 1, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[7557, 292, 50, 0, 39, "Section"], Cell[CellGroupData[{ Cell[7632, 296, 105, 2, 42, "Input"], Cell[7740, 300, 67, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7844, 306, 105, 2, 42, "Input"], Cell[7952, 310, 58, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8047, 316, 101, 2, 42, "Input"], Cell[8151, 320, 67, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8255, 326, 101, 2, 42, "Input"], Cell[8359, 330, 76, 1, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[8484, 337, 26, 0, 39, "Section"], Cell[CellGroupData[{ Cell[8535, 341, 38, 0, 47, "Subsection"], Cell[8576, 343, 50, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[8663, 349, 38, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[8726, 353, 219, 5, 70, "Input"], Cell[8948, 360, 64, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9049, 366, 66, 1, 30, "Input"], Cell[9118, 369, 64, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[9231, 376, 38, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[9294, 380, 216, 5, 50, "Input"], Cell[9513, 387, 80, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9630, 393, 66, 1, 30, "Input"], Cell[9699, 396, 117, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[9865, 404, 69, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[9959, 408, 40, 1, 30, "Input"], Cell[10002, 411, 117, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10156, 418, 48, 1, 30, "Input"], Cell[10207, 421, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10279, 427, 35, 1, 30, "Input"], Cell[10317, 430, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10403, 436, 54, 1, 30, "Input"], Cell[10460, 439, 146, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10643, 446, 91, 1, 30, "Input"], Cell[10737, 449, 151, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10925, 456, 51, 1, 30, "Input"], Cell[10979, 459, 147, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11163, 466, 46, 1, 30, "Input"], Cell[11212, 469, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11284, 475, 132, 2, 30, "Input"], Cell[11419, 479, 143, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11599, 486, 58, 1, 30, "Input"], Cell[11660, 489, 320, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12017, 502, 44, 1, 30, "Input"], Cell[12064, 505, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12162, 511, 59, 1, 30, "Input"], Cell[12224, 514, 314, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12575, 527, 45, 1, 30, "Input"], Cell[12623, 530, 60, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[12744, 538, 58, 0, 39, "Section"], Cell[12805, 540, 376, 6, 52, "Input"], Cell[CellGroupData[{ Cell[13206, 550, 77, 1, 42, "Input"], Cell[13286, 553, 301, 8, 89, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13624, 566, 269, 5, 52, "Input"], Cell[13896, 573, 60, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[14005, 580, 27, 0, 39, "Section"], Cell[CellGroupData[{ Cell[14057, 584, 61, 1, 30, "Input"], Cell[14121, 587, 137, 2, 29, "Output"] }, Open ]], Cell[14273, 592, 382, 7, 57, "Input"], Cell[CellGroupData[{ Cell[14680, 603, 47, 1, 30, "Input"], Cell[14730, 606, 401, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15168, 619, 54, 1, 30, "Input"], Cell[15225, 622, 57, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15319, 628, 44, 1, 30, "Input"], Cell[15366, 631, 61, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15464, 637, 109, 2, 42, "Input"], Cell[15576, 641, 295, 4, 62, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15908, 650, 176, 3, 63, "Input"], Cell[16087, 655, 205, 3, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16329, 663, 165, 3, 31, "Input"], Cell[16497, 668, 239, 4, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16773, 677, 57, 1, 30, "Input"], Cell[16833, 680, 292, 8, 87, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17174, 694, 68, 0, 39, "Section"], Cell[CellGroupData[{ Cell[17267, 698, 36, 0, 47, "Subsection"], Cell[17306, 700, 185, 3, 44, "Input"], Cell[CellGroupData[{ Cell[17516, 707, 57, 1, 30, "Input"], Cell[17576, 710, 783, 16, 107, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[18408, 732, 49, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[18482, 736, 47, 1, 30, "Input"], Cell[18532, 739, 347, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18916, 752, 56, 1, 30, "Input"], Cell[18975, 755, 320, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19332, 768, 44, 1, 30, "Input"], Cell[19379, 771, 61, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19477, 777, 54, 1, 30, "Input"], Cell[19534, 780, 341, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19912, 793, 59, 1, 30, "Input"], Cell[19974, 796, 857, 17, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20868, 818, 79, 1, 30, "Input"], Cell[20950, 821, 829, 15, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21816, 841, 194, 4, 50, "Input"], Cell[22013, 847, 140, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22190, 854, 189, 3, 31, "Input"], Cell[22382, 859, 656, 12, 80, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23075, 876, 79, 1, 30, "Input"], Cell[23157, 879, 731, 16, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23925, 900, 66, 1, 30, "Input"], Cell[23994, 903, 760, 16, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24791, 924, 73, 1, 30, "Input"], Cell[24867, 927, 311, 8, 91, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25215, 940, 87, 1, 30, "Input"], Cell[25305, 943, 85, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25427, 949, 108, 2, 30, "Input"], Cell[25538, 953, 438, 10, 101, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26013, 968, 86, 1, 30, "Input"], Cell[26102, 971, 490, 11, 101, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26629, 987, 107, 2, 30, "Input"], Cell[26739, 991, 292, 8, 87, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[27092, 1006, 34, 0, 39, "Section"], Cell[CellGroupData[{ Cell[27151, 1010, 127, 2, 30, "Input"], Cell[27281, 1014, 322, 4, 79, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27640, 1023, 90, 1, 30, "Input"], Cell[27733, 1026, 85, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27855, 1032, 35, 1, 30, "Input"], Cell[27893, 1035, 69, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27999, 1041, 55, 1, 30, "Input"], Cell[28057, 1044, 49, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28143, 1050, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[28213, 1054, 849, 14, 173, "Input"], Cell[29065, 1070, 25946, 525, 263, 3818, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[55060, 1601, 45, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[55130, 1605, 961, 15, 362, "Input"], Cell[56094, 1622, 27389, 543, 70, 3767, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[83544, 2172, 47, 0, 39, "Section"], Cell[83594, 2174, 45, 0, 33, "Text"], Cell[CellGroupData[{ Cell[83664, 2178, 81, 1, 42, "Input"], Cell[83748, 2181, 306, 8, 89, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[84091, 2194, 35, 1, 30, "Input"], Cell[84129, 2197, 60, 1, 29, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)