(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 67264, 1970]*) (*NotebookOutlinePosition[ 67925, 1993]*) (* CellTagsIndexPosition[ 67881, 1989]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Corpo affine elastico vincolato", "Title"], Cell[TextData[StyleBox["v. 2.08 (23/6/2003) \[Copyright] A. Tatone \ [Universit\[AGrave] dell'Aquila]", FontFamily->"Arial", FontWeight->"Bold"]], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[Solve::"\"];\)\)}], "Input"], Cell["Prodotto tensoriale", "Text"], Cell[BoxData[ \(prt[u_, v_] := Transpose[{v}] . {u}\)], "Input"], Cell["Prodotto scalare", "Text"], Cell[BoxData[ \(prs[u_, v_] := Flatten[u] . Flatten[v]\)], "Input"], Cell["Traccia", "Text"], Cell[BoxData[ \(tr[m_] := m\_\(\(\[LeftDoubleBracket]\)\(1, 1\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(2, 2\)\(\[RightDoubleBracket]\)\) + m\_\(\(\[LeftDoubleBracket]\)\(3, 3\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell["Gradiente dello spostamento", "Text"], Cell[BoxData[ \(\(mH = Array[ug[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell["Rotazione infinitesima", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"m\[Theta]", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(+\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell["Spostamento", "Text"], Cell[BoxData[ \(u[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := u0 + mH . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(u0 := {u01, u02, u03}\)], "Input"], Cell["Deformazione", "Text"], Cell[BoxData[ \(\[Phi][{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := {\[Zeta]1, \[Zeta]2, \ \[Zeta]3} + u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}]\)], "Input"], Cell["Gradiente dell'atto di moto", "Text"], Cell[BoxData[ \(\(mG = Array[g[#1, #2]\ &, {3, 3}];\)\)], "Input"], Cell["Atto di moto affine", "Text"], Cell[BoxData[ \(w[{\[Zeta]1_, \[Zeta]2_, \[Zeta]3_}] := w0 + mG . \(({\[Zeta]1, \[Zeta]2, \[Zeta]3} - x0)\)\)], "Input"], Cell[BoxData[ \(w0 := {w01, w02, w03}\)], "Input"], Cell["Vettori base", "Text"], Cell[BoxData[{ \(\(e1 = {1, 0, 0};\)\), "\[IndentingNewLine]", \(\(e2 = {0, 1, 0};\)\), "\[IndentingNewLine]", \(\(e3 = {0, 0, 1};\)\)}], "Input"], Cell["Matrice della identit\[AGrave]", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(mI = {e1, e2, e3}\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell["Relazioni tra i moduli elastici", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(lam\[EAcute] = \(Solve[{Y == \(\(3 \[Lambda] + 2 \[Mu]\)\/\(\[Lambda] \ + \[Mu]\)\) \[Mu], \[Nu] == \[Lambda]\/\(2 \((\[Lambda] + \[Mu])\)\)}, {\ \[Lambda], \ \[Mu]}]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\)], \ "Input"], Cell[BoxData[ \({\[Lambda] \[Rule] \(-\(\(Y\ \[Nu]\)\/\(\((1 + \[Nu])\)\ \((\(-1\) + 2\ \[Nu])\)\)\)\), \[Mu] \[Rule] Y\/\(2\ \((1 + \[Nu])\)\)}\)], "Output"] }, Open ]], Cell["Volume del parallelepipedo", "Text"], Cell[BoxData[ \(\(vol := L1\ L2\ L3;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Origine delle coordinate e polo", "Section"], Cell["\<\ Coordinate del centro del parallelepipedo (da fissare) (equivale alla scelta \ dell'origine)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(xC = {0, 0, 0}\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell["\<\ Polo (da scegliere) (\[EGrave] meglio usare una espressione del tipo xC + \ ... poich\[EGrave] risulta indipendente dalla scelta dell'origine)\ \>", "Text"], Cell[BoxData[ \(x0 := xC - L2\/2\ e2\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Lunghezze spigoli", "Section"], Cell["Eventuali valori o relazioni", "Text"] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione delle facce", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1m = xC - \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia1p = xC + \(L1\/2\) e1\ + \ \[Zeta]3\ e3 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({L1\/2, \[Zeta]2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3m = xC - \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, \(-\(L3\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia3p = xC + \(L3\/2\) e3\ + \ \[Zeta]1\ e1 + \[Zeta]2\ e2\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \[Zeta]2, L3\/2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2m = xC - \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(faccia2p = xC + \(L2\/2\) e2\ + \ \[Zeta]1\ e1 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\[Zeta]1, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Parametrizzazione degli spigoli", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2m = xC - \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1p2p = xC + \(L2\/2\) e2 + \(L1\/2\) e1\ + \ \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({L1\/2, L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2p = xC - \(L1\/2\) e1 + \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), L2\/2, \[Zeta]3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spigolo1m2m = xC - \(L1\/2\) e1 - \(L2\/2\) e2 + \[Zeta]3\ e3\)], "Input"], Cell[BoxData[ \({\(-\(L1\/2\)\), \(-\(L2\/2\)\), \[Zeta]3}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli", "Section"], Cell[CellGroupData[{ Cell["Inizializzazione", "Subsection"], Cell[BoxData[ \(\(vincoli = {};\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Faccia inferiore", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincolo2 = Complement[ CoefficientList[\((u[faccia2m] . \((e2)\)\ )\) // Simplify, {\[Zeta]1, \[Zeta]2, \[Zeta]3}] // Flatten, {0}] // Union\)], "Input"], Cell[BoxData[ \({u02, ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli = Join[vincoli, vincolo2]\)], "Input"], Cell[BoxData[ \({u02, ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Lista dei vincoli su spostamenti e atti di moto", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({u02, ug[2, 1], ug[2, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[vincoli]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0\)], "Input"], Cell[BoxData[ \({u01, u02, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Flatten[Join[u0, mH]]\)], "Input"], Cell[BoxData[ \({u01, u02, u03, ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 1], ug[2, 2], ug[2, 3], ug[3, 1], ug[3, 2], ug[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[Map[\((# == 0)\) &, vincoli], Flatten[Join[mH, u0]]]\)], "Input"], Cell[BoxData[ \({{ug[2, 1] \[Rule] 0, ug[2, 3] \[Rule] 0, u02 \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uvinc = %[\([1]\)]\)], "Input"], Cell[BoxData[ \({ug[2, 1] \[Rule] 0, ug[2, 3] \[Rule] 0, u02 \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[uvinc]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(wvinc = \(uvinc /. ug \[Rule] g\) /. {u01 \[Rule] w01, u02 \[Rule] w02, u03 \[Rule] w03}\)], "Input"], Cell[BoxData[ \({g[2, 1] \[Rule] 0, g[2, 3] \[Rule] 0, w02 \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mH /. uvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({u01, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mG //. wvinc // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(g[1, 1]\), \(g[1, 2]\), \(g[1, 3]\)}, {"0", \(g[2, 2]\), "0"}, {\(g[3, 1]\), \(g[3, 2]\), \(g[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w0 //. wvinc\)], "Input"], Cell[BoxData[ \({w01, 0, w03}\)], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Risultante e momento delle forze attive", "Section"], Cell[BoxData[ \(\(mMa = \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\ \)\)\%\(L1\/2\)\((prt[\((faccia2p - x0)\), \(-p\)\ e2])\) \[DifferentialD]\[Zeta]1 \ \[DifferentialD]\[Zeta]3\);\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(1\/vol\) mMa // Simplify\) // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa = \ \[Integral]\_\(-\(L3\/2\)\)\%\(L3\/2\)\(\[Integral]\_\(-\(L1\/2\)\)\%\(L1\/2\)\ \((\(-p\)\ e2)\) \[DifferentialD]\[Zeta]1 \[DifferentialD]\[Zeta]3\)\)], \ "Input"], Cell[BoxData[ \({0, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tensione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(wpar = Join[Flatten[mG], w0]\)], "Input"], Cell[BoxData[ \({g[1, 1], g[1, 2], g[1, 3], g[2, 1], g[2, 2], g[2, 3], g[3, 1], g[3, 2], g[3, 3], w01, w02, w03}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mT", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mT]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\[Sigma][1, 1]\), \(\[Sigma][1, 2]\), \(\[Sigma][1, 3]\)}, {\(\[Sigma][1, 2]\), \(\[Sigma][2, 2]\), \(\[Sigma][2, 3]\)}, {\(\[Sigma][1, 3]\), \(\[Sigma][2, 3]\), \(\[Sigma][3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0] //. wvinc\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(prs[fa, w0]\)], "Input"], Cell[BoxData[ \(\(-L1\)\ L3\ p\ w02\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc\)], "Input"], Cell[BoxData[ \(\(-p\)\ g[2, 2] - g[1, 1]\ \[Sigma][1, 1] - g[1, 2]\ \[Sigma][1, 2] - g[1, 3]\ \[Sigma][1, 3] - g[3, 1]\ \[Sigma][1, 3] - g[2, 2]\ \[Sigma][2, 2] - g[3, 2]\ \[Sigma][2, 3] - g[3, 3]\ \[Sigma][3, 3]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ Coefficient[\((\((prs[fa, w0] + prs[mMa, mG])\) 1\/vol - prs[mT, mG])\) //. wvinc, wpar], {0}] // Simplify\)], "Input"], Cell[BoxData[ \({\(-\[Sigma][1, 1]\), \(-\[Sigma][1, 2]\), \(-\[Sigma][1, 3]\), \(-p\) - \[Sigma][2, 2], \(-\[Sigma][2, 3]\), \(-\[Sigma][3, 3]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(tens = \(Solve[Map[\((# \[Equal] 0)\)\ &, %], \ Union[Flatten[mT]]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({\[Sigma][1, 1] \[Rule] 0, \[Sigma][1, 2] \[Rule] 0, \[Sigma][1, 3] \[Rule] 0, \[Sigma][2, 2] \[Rule] \(-p\), \[Sigma][2, 3] \[Rule] 0, \[Sigma][3, 3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(mT /. tens // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dilatazione infinitesima e rotazione infinitesima", "Section"], Cell[CellGroupData[{ Cell["Dalla tensione", "Subsection"], Cell[BoxData[ \(\(mE = \(1\/\(2 \[Mu]\)\) \((mT - \(\[Lambda]\/\(3 \[Lambda] + 2 \[Mu]\)\) tr[mT] mI)\) //. tens // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE // Factor]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\), "0", "0"}, { "0", \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \[Mu])\)\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dalle condizioni di vincolo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {\(ug[2, 1]\), \(ug[2, 2]\), \(ug[2, 3]\)}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mH /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(ug[1, 1]\), \(ug[1, 2]\), \(ug[1, 3]\)}, {"0", \(ug[2, 2]\), "0"}, {\(ug[3, 1]\), \(ug[3, 2]\), \(ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(u0 /. uvinc\)], "Input"], Cell[BoxData[ \({u01, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][3]\), "0", \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][1]\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE + m\[Theta]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), \(-\[Theta][3]\), \(\[Theta][2]\)}, {\(\[Theta][ 3]\), \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), \(-\[Theta][1]\)}, {\(-\[Theta][2]\), \(\[Theta][ 1]\), \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\((mE + m\[Theta] - mH)\) /. uvinc]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\) - ug[1, 1]\), \(\(-ug[1, 2]\) - \[Theta][ 3]\), \(\(-ug[1, 3]\) + \[Theta][2]\)}, {\(\[Theta][ 3]\), \(\(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\) - ug[2, 2]\), \(-\[Theta][1]\)}, {\(\(-ug[3, 1]\) - \[Theta][2]\), \(\(-ug[3, 2]\) + \[Theta][ 1]\), \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \ \[Mu]\^2\) - ug[3, 3]\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(var = Intersection[Variables[\((mE + m\[Theta] - mH)\) /. uvinc], Join[Flatten[mH], Flatten[mE], Flatten[m\[Theta]], Flatten[mT], u0]]\)], "Input"], Cell[BoxData[ \({ug[1, 1], ug[1, 2], ug[1, 3], ug[2, 2], ug[3, 1], ug[3, 2], ug[3, 3], \[Theta][1], \[Theta][2], \[Theta][3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(sol = \(Solve[Map[\((# \[Equal] 0)\) &, Flatten[\((mE + m\[Theta] - mH)\ \)] /. uvinc], var]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\ \)\)\)], "Input"], Cell[BoxData[ \({ug[1, 1] \[Rule] \(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \ \[Mu])\)\), ug[1, 2] \[Rule] 0, ug[1, 3] \[Rule] \[Theta][2], ug[2, 2] \[Rule] \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), ug[3, 1] \[Rule] \(-\[Theta][2]\), ug[3, 2] \[Rule] 0, ug[3, 3] \[Rule] \(p\ \[Lambda]\)\/\(2\ \[Mu]\ \((3\ \[Lambda] + 2\ \ \[Mu])\)\), \[Theta][1] \[Rule] 0, \[Theta][3] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mH /. uvinc\) /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), "0", \(\[Theta][2]\)}, { "0", \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {\(-\[Theta][2]\), "0", \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[mE /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\), "0", "0"}, { "0", \(-\(\(p\ \((\[Lambda] + \[Mu])\)\)\/\(\[Mu]\ \((3\ \ \[Lambda] + 2\ \[Mu])\)\)\)\), "0"}, {"0", "0", \(\(p\ \[Lambda]\)\/\(6\ \[Lambda]\ \[Mu] + 4\ \[Mu]\^2\)\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[m\[Theta] /. sol // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", \(\[Theta][2]\)}, {"0", "0", "0"}, {\(-\[Theta][2]\), "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u0 /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({u01, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mH /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Nu]\)\/Y\), "0", \(\[Theta][2]\)}, {"0", \(-\(p\/Y\)\), "0"}, {\(-\[Theta][2]\), "0", \(\(p\ \[Nu]\)\/Y\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(mE /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(\(p\ \[Nu]\)\/Y\), "0", "0"}, {"0", \(-\(p\/Y\)\), "0"}, {"0", "0", \(\(p\ \[Nu]\)\/Y\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[\(\(mT /. tens\) /. sol\) /. lam\[EAcute] // Simplify]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", \(-p\), "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Visualizzazione", "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[{\[Zeta]1, \[Zeta]2, \[Zeta]3}] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({u01 + \(p\ \[Zeta]1\ \[Nu]\)\/Y + \[Zeta]3\ \[Theta][ 2], \(-\(\(p\ \((L2 + 2\ \[Zeta]2)\)\)\/\(2\ Y\)\)\), u03 + \(p\ \[Zeta]3\ \[Nu]\)\/Y - \[Zeta]1\ \[Theta][2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(u[x0] /. uvinc\) /. sol\) /. lam\[EAcute] // Simplify\)], "Input"], Cell[BoxData[ \({u01, 0, u03}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(x0\)], "Input"], Cell[BoxData[ \({0, \(-\(L2\/2\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(uval = {u03 \[Rule] 0, u01 \[Rule] 0, \[Theta][2] \[Rule] 0}\)], "Input"], Cell[BoxData[ \({u03 \[Rule] 0, u01 \[Rule] 0, \[Theta][2] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e3", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, lato1 = xC - \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato2 = xC + \(L1\/2\) e1 + \[Xi]\ L2\ e2, lato3 = xC + \(L2\/2\) e2 + \[Xi]\ L1\ e1, lato4 = xC - \(L1\/2\) e1 + \[Xi]\ L2\ e2}, Block[{x0Q = \((Take[#1, 2] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Take[#1, 2] &)\) /@ {\[Phi][lato1], \[Phi][ lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .98522 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.938306 0.492611 0.938306 [ [ 0 0 0 0 ] [ 1 .98522 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .98522 L 0 .98522 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .02346 m .06244 .02346 L .10458 .02346 L .14415 .02346 L .18221 .02346 L .22272 .02346 L .26171 .02346 L .30316 .02346 L .34309 .02346 L .3815 .02346 L .42237 .02346 L .46172 .02346 L .49955 .02346 L .53984 .02346 L .57861 .02346 L .61984 .02346 L .65954 .02346 L .69774 .02346 L .73838 .02346 L .77751 .02346 L .81909 .02346 L .85916 .02346 L .89771 .02346 L .93871 .02346 L .97619 .02346 L s .97619 .02346 m .97619 .05962 L .97619 .09906 L .97619 .13609 L .97619 .17171 L .97619 .20963 L .97619 .24612 L .97619 .28491 L .97619 .32229 L .97619 .35824 L .97619 .39649 L .97619 .43332 L .97619 .46873 L .97619 .50644 L .97619 .54273 L .97619 .58131 L .97619 .61848 L .97619 .65423 L .97619 .69227 L .97619 .72889 L .97619 .76781 L .97619 .80531 L .97619 .8414 L .97619 .87977 L .97619 .91485 L s .02381 .91485 m .06244 .91485 L .10458 .91485 L .14415 .91485 L .18221 .91485 L .22272 .91485 L .26171 .91485 L .30316 .91485 L .34309 .91485 L .3815 .91485 L .42237 .91485 L .46172 .91485 L .49955 .91485 L .53984 .91485 L .57861 .91485 L .61984 .91485 L .65954 .91485 L .69774 .91485 L .73838 .91485 L .77751 .91485 L .81909 .91485 L .85916 .91485 L .89771 .91485 L .93871 .91485 L .97619 .91485 L s .02381 .02346 m .02381 .05962 L .02381 .09906 L .02381 .13609 L .02381 .17171 L .02381 .20963 L .02381 .24612 L .02381 .28491 L .02381 .32229 L .02381 .35824 L .02381 .39649 L .02381 .43332 L .02381 .46873 L .02381 .50644 L .02381 .54273 L .02381 .58131 L .02381 .61848 L .02381 .65423 L .02381 .69227 L .02381 .72889 L .02381 .76781 L .02381 .80531 L .02381 .8414 L .02381 .87977 L .02381 .91485 L s .03085 .02346 m .06891 .02346 L .11042 .02346 L .14941 .02346 L .1869 .02346 L .22681 .02346 L .26523 .02346 L .30606 .02346 L .3454 .02346 L .38325 .02346 L .42351 .02346 L .46228 .02346 L .49956 .02346 L .53925 .02346 L .57745 .02346 L .61806 .02346 L .65719 .02346 L .69481 .02346 L .73486 .02346 L .77341 .02346 L .81438 .02346 L .85385 .02346 L .89183 .02346 L .93223 .02346 L .96915 .02346 L s .96915 .02346 m .96915 .06152 L .96915 .10303 L .96915 .14202 L .96915 .17952 L .96915 .21943 L .96915 .25784 L .96915 .29868 L .96915 .33801 L .96915 .37586 L .96915 .41612 L .96915 .45489 L .96915 .49217 L .96915 .53186 L .96915 .57006 L .96915 .61068 L .96915 .6498 L .96915 .68743 L .96915 .72747 L .96915 .76602 L .96915 .80699 L .96915 .84646 L .96915 .88444 L .96915 .92484 L .96915 .96176 L s .03085 .96176 m .06891 .96176 L .11042 .96176 L .14941 .96176 L .1869 .96176 L .22681 .96176 L .26523 .96176 L .30606 .96176 L .3454 .96176 L .38325 .96176 L .42351 .96176 L .46228 .96176 L .49956 .96176 L .53925 .96176 L .57745 .96176 L .61806 .96176 L .65719 .96176 L .69481 .96176 L .73486 .96176 L .77341 .96176 L .81438 .96176 L .85385 .96176 L .89183 .96176 L .93223 .96176 L .96915 .96176 L s .03085 .02346 m .03085 .06152 L .03085 .10303 L .03085 .14202 L .03085 .17952 L .03085 .21943 L .03085 .25784 L .03085 .29868 L .03085 .33801 L .03085 .37586 L .03085 .41612 L .03085 .45489 L .03085 .49217 L .03085 .53186 L .03085 .57006 L .03085 .61068 L .03085 .6498 L .03085 .68743 L .03085 .72747 L .03085 .76602 L .03085 .80699 L .03085 .84646 L .03085 .88444 L .03085 .92484 L .03085 .96176 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 283.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {282.688, 0}} -> {-0.533014, -0.525006, \ 0.00371438, 0.00371438}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Sezione ortogonale a e2", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Block[{q = 1, p = 1, L1 = 1, L2 = 1, L3 = 1, \[Nu] = 0.3, Y = 20, lato1 = xC + \(L2\/2\) e2 + \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato2 = xC + \(L2\/2\) e2 - \(L1\/2\) e1 + L3\ \[Xi]\ e3, lato3 = xC + \(L2\/2\) e2 - \(L3\/2\) e3 + L1\ \[Xi]\ e1, lato4 = xC + \(L2\/2\) e2 + \(L1\/2\) e1 + L3\ \[Xi]\ e3}, Block[{x0Q = \((Extract[#1, {{1}, {3}}] &)\) /@ {lato1, lato2, lato3, lato4}, xQ = Simplify[\(\(\(\((Extract[#1, {{1}, {3}}] &)\) /@ {\[Phi][ lato1], \[Phi][lato2], \[Phi][lato3], \[Phi][ lato4]} /. \[InvisibleSpace]uvinc\) \ /. \[InvisibleSpace]sol\) /. uval\) /. \[InvisibleSpace]lam\[EAcute]]}, ParametricPlot[ Evaluate[Join[xQ, x0Q]], {\[Xi], \(-\(1\/2\)\), 1\/2}, AspectRatio \[Rule] Automatic, Axes \[Rule] False]]];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.938306 0.5 0.938306 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .97619 m .06244 .97619 L .10458 .97619 L .14415 .97619 L .18221 .97619 L .22272 .97619 L .26171 .97619 L .30316 .97619 L .34309 .97619 L .3815 .97619 L .42237 .97619 L .46172 .97619 L .49955 .97619 L .53984 .97619 L .57861 .97619 L .61984 .97619 L .65954 .97619 L .69774 .97619 L .73838 .97619 L .77751 .97619 L .81909 .97619 L .85916 .97619 L .89771 .97619 L .93871 .97619 L .97619 .97619 L s .02381 .02381 m .02381 .06244 L .02381 .10458 L .02381 .14415 L .02381 .18221 L .02381 .22272 L .02381 .26171 L .02381 .30316 L .02381 .34309 L .02381 .3815 L .02381 .42237 L .02381 .46172 L .02381 .49955 L .02381 .53984 L .02381 .57861 L .02381 .61984 L .02381 .65954 L .02381 .69774 L .02381 .73838 L .02381 .77751 L .02381 .81909 L .02381 .85916 L .02381 .89771 L .02381 .93871 L .02381 .97619 L s .02381 .02381 m .06244 .02381 L .10458 .02381 L .14415 .02381 L .18221 .02381 L .22272 .02381 L .26171 .02381 L .30316 .02381 L .34309 .02381 L .3815 .02381 L .42237 .02381 L .46172 .02381 L .49955 .02381 L .53984 .02381 L .57861 .02381 L .61984 .02381 L .65954 .02381 L .69774 .02381 L .73838 .02381 L .77751 .02381 L .81909 .02381 L .85916 .02381 L .89771 .02381 L .93871 .02381 L .97619 .02381 L s .97619 .02381 m .97619 .06244 L .97619 .10458 L .97619 .14415 L .97619 .18221 L .97619 .22272 L .97619 .26171 L .97619 .30316 L .97619 .34309 L .97619 .3815 L .97619 .42237 L .97619 .46172 L .97619 .49955 L .97619 .53984 L .97619 .57861 L .97619 .61984 L .97619 .65954 L .97619 .69774 L .97619 .73838 L .97619 .77751 L .97619 .81909 L .97619 .85916 L .97619 .89771 L .97619 .93871 L .97619 .97619 L s .03085 .96915 m .06891 .96915 L .11042 .96915 L .14941 .96915 L .1869 .96915 L .22681 .96915 L .26523 .96915 L .30606 .96915 L .3454 .96915 L .38325 .96915 L .42351 .96915 L .46228 .96915 L .49956 .96915 L .53925 .96915 L .57745 .96915 L .61806 .96915 L .65719 .96915 L .69481 .96915 L .73486 .96915 L .77341 .96915 L .81438 .96915 L .85385 .96915 L .89183 .96915 L .93223 .96915 L .96915 .96915 L s .03085 .03085 m .03085 .06891 L .03085 .11042 L .03085 .14941 L .03085 .1869 L .03085 .22681 L .03085 .26523 L .03085 .30606 L .03085 .3454 L .03085 .38325 L .03085 .42351 L .03085 .46228 L .03085 .49956 L .03085 .53925 L .03085 .57745 L .03085 .61806 L .03085 .65719 L .03085 .69481 L .03085 .73486 L .03085 .77341 L .03085 .81438 L .03085 .85385 L .03085 .89183 L .03085 .93223 L .03085 .96915 L s .03085 .03085 m .06891 .03085 L .11042 .03085 L .14941 .03085 L .1869 .03085 L .22681 .03085 L .26523 .03085 L .30606 .03085 L .3454 .03085 L .38325 .03085 L .42351 .03085 L .46228 .03085 L .49956 .03085 L .53925 .03085 L .57745 .03085 L .61806 .03085 L .65719 .03085 L .69481 .03085 L .73486 .03085 L .77341 .03085 L .81438 .03085 L .85385 .03085 L .89183 .03085 L .93223 .03085 L .96915 .03085 L s .96915 .03085 m .96915 .06891 L .96915 .11042 L .96915 .14941 L .96915 .1869 L .96915 .22681 L .96915 .26523 L .96915 .30606 L .96915 .3454 L .96915 .38325 L .96915 .42351 L .96915 .46228 L .96915 .49956 L .96915 .53925 L .96915 .57745 L .96915 .61806 L .96915 .65719 L .96915 .69481 L .96915 .73486 L .96915 .77341 L .96915 .81438 L .96915 .85385 L .96915 .89183 L .96915 .93223 L .96915 .96915 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {287, 0}} -> {-0.532881, -0.532881, \ 0.00371345, 0.00371345}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Momento delle forze reattive", "Section"], Cell["Da moltiplicare per il volume", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(mT\ - mMa\/vol /. tens\) /. sol // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", "0", "0"}, {"0", "0", "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fa\)], "Input"], Cell[BoxData[ \({0, \(-L1\)\ L3\ p, 0}\)], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{646, 668}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 48, 0, 115, "Title"], Cell[1778, 54, 217, 5, 49, "Text"], Cell[CellGroupData[{ Cell[2020, 63, 35, 0, 59, "Section"], Cell[2058, 65, 192, 3, 70, "Input"], Cell[2253, 70, 35, 0, 33, "Text"], Cell[2291, 72, 68, 1, 30, "Input"], Cell[2362, 75, 32, 0, 33, "Text"], Cell[2397, 77, 71, 1, 30, "Input"], Cell[2471, 80, 23, 0, 33, "Text"], Cell[2497, 82, 268, 5, 30, "Input"], Cell[2768, 89, 43, 0, 33, "Text"], Cell[2814, 91, 72, 1, 30, "Input"], Cell[CellGroupData[{ Cell[2911, 96, 47, 1, 30, "Input"], Cell[2961, 99, 347, 8, 71, "Output"] }, Open ]], Cell[3323, 110, 38, 0, 33, "Text"], Cell[3364, 112, 330, 7, 57, "Input"], Cell[3697, 121, 27, 0, 33, "Text"], Cell[3727, 123, 131, 2, 30, "Input"], Cell[3861, 127, 54, 1, 30, "Input"], Cell[3918, 130, 28, 0, 33, "Text"], Cell[3949, 132, 146, 2, 30, "Input"], Cell[4098, 136, 43, 0, 33, "Text"], Cell[4144, 138, 71, 1, 30, "Input"], Cell[4218, 141, 35, 0, 33, "Text"], Cell[4256, 143, 131, 2, 30, "Input"], Cell[4390, 147, 54, 1, 30, "Input"], Cell[4447, 150, 28, 0, 33, "Text"], Cell[4478, 152, 160, 3, 70, "Input"], Cell[4641, 157, 46, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4712, 161, 50, 1, 30, "Input"], Cell[4765, 164, 67, 1, 29, "Output"] }, Open ]], Cell[4847, 168, 47, 0, 33, "Text"], Cell[CellGroupData[{ Cell[4919, 172, 265, 5, 47, "Input"], Cell[5187, 179, 192, 3, 44, "Output"] }, Open ]], Cell[5394, 185, 42, 0, 33, "Text"], Cell[5439, 187, 55, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[5531, 193, 50, 0, 39, "Section"], Cell[5584, 195, 116, 3, 33, "Text"], Cell[CellGroupData[{ Cell[5725, 202, 47, 1, 30, "Input"], Cell[5775, 205, 43, 1, 29, "Output"] }, Open ]], Cell[5833, 209, 169, 3, 33, "Text"], Cell[6005, 214, 53, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6095, 220, 36, 0, 39, "Section"], Cell[6134, 222, 44, 0, 33, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[6215, 227, 48, 0, 39, "Section"], Cell[CellGroupData[{ Cell[6288, 231, 102, 2, 42, "Input"], Cell[6393, 235, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6500, 241, 102, 2, 42, "Input"], Cell[6605, 245, 61, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6703, 251, 102, 2, 42, "Input"], Cell[6808, 255, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6915, 261, 102, 2, 42, "Input"], Cell[7020, 265, 61, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7118, 271, 102, 2, 42, "Input"], Cell[7223, 275, 70, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7330, 281, 102, 2, 42, "Input"], Cell[7435, 285, 61, 1, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[7545, 292, 50, 0, 39, "Section"], Cell[CellGroupData[{ Cell[7620, 296, 105, 2, 42, "Input"], Cell[7728, 300, 67, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7832, 306, 105, 2, 42, "Input"], Cell[7940, 310, 58, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8035, 316, 101, 2, 42, "Input"], Cell[8139, 320, 67, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8243, 326, 101, 2, 42, "Input"], Cell[8347, 330, 76, 1, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[8472, 337, 26, 0, 39, "Section"], Cell[CellGroupData[{ Cell[8523, 341, 38, 0, 47, "Subsection"], Cell[8564, 343, 50, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[8651, 349, 38, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[8714, 353, 216, 5, 70, "Input"], Cell[8933, 360, 59, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9029, 366, 66, 1, 30, "Input"], Cell[9098, 369, 59, 1, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[9206, 376, 69, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[9300, 380, 40, 1, 30, "Input"], Cell[9343, 383, 59, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9439, 389, 48, 1, 30, "Input"], Cell[9490, 392, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9562, 398, 35, 1, 30, "Input"], Cell[9600, 401, 49, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9686, 407, 54, 1, 30, "Input"], Cell[9743, 410, 146, 2, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9926, 417, 91, 1, 30, "Input"], Cell[10020, 420, 91, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10148, 426, 51, 1, 30, "Input"], Cell[10202, 429, 89, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10328, 435, 46, 1, 30, "Input"], Cell[10377, 438, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10449, 444, 132, 2, 30, "Input"], Cell[10584, 448, 87, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10708, 454, 58, 1, 30, "Input"], Cell[10769, 457, 329, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11135, 470, 44, 1, 30, "Input"], Cell[11182, 473, 47, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11266, 479, 59, 1, 30, "Input"], Cell[11328, 482, 322, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11687, 495, 45, 1, 30, "Input"], Cell[11735, 498, 47, 1, 29, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[11843, 506, 58, 0, 39, "Section"], Cell[11904, 508, 243, 4, 52, "Input"], Cell[CellGroupData[{ Cell[12172, 516, 77, 1, 42, "Input"], Cell[12252, 519, 269, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12558, 532, 190, 4, 52, "Input"], Cell[12751, 538, 56, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[12856, 545, 27, 0, 39, "Section"], Cell[CellGroupData[{ Cell[12908, 549, 61, 1, 30, "Input"], Cell[12972, 552, 137, 2, 48, "Output"] }, Open ]], Cell[13124, 557, 382, 7, 57, "Input"], Cell[CellGroupData[{ Cell[13531, 568, 47, 1, 30, "Input"], Cell[13581, 571, 401, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14019, 584, 54, 1, 30, "Input"], Cell[14076, 587, 35, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14148, 593, 44, 1, 30, "Input"], Cell[14195, 596, 53, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14285, 602, 109, 2, 42, "Input"], Cell[14397, 606, 252, 4, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14686, 615, 176, 3, 86, "Input"], Cell[14865, 620, 186, 3, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15088, 628, 165, 3, 31, "Input"], Cell[15256, 633, 222, 4, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15515, 642, 57, 1, 30, "Input"], Cell[15575, 645, 269, 8, 71, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[15893, 659, 68, 0, 39, "Section"], Cell[CellGroupData[{ Cell[15986, 663, 36, 0, 47, "Subsection"], Cell[16025, 665, 185, 3, 44, "Input"], Cell[CellGroupData[{ Cell[16235, 672, 57, 1, 30, "Input"], Cell[16295, 675, 550, 13, 107, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[16894, 694, 49, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[16968, 698, 47, 1, 30, "Input"], Cell[17018, 701, 347, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17402, 714, 56, 1, 30, "Input"], Cell[17461, 717, 329, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17827, 730, 44, 1, 30, "Input"], Cell[17874, 733, 47, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17958, 739, 54, 1, 30, "Input"], Cell[18015, 742, 341, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18393, 755, 59, 1, 30, "Input"], Cell[18455, 758, 609, 13, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19101, 776, 79, 1, 30, "Input"], Cell[19183, 779, 706, 14, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19926, 798, 194, 4, 50, "Input"], Cell[20123, 804, 150, 2, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20310, 811, 189, 3, 31, "Input"], Cell[20502, 816, 483, 8, 80, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21022, 829, 79, 1, 30, "Input"], Cell[21104, 832, 549, 13, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21690, 850, 66, 1, 30, "Input"], Cell[21759, 853, 524, 13, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22320, 871, 73, 1, 30, "Input"], Cell[22396, 874, 291, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22724, 887, 87, 1, 30, "Input"], Cell[22814, 890, 47, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22898, 896, 108, 2, 30, "Input"], Cell[23009, 900, 333, 8, 97, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23379, 913, 86, 1, 30, "Input"], Cell[23468, 916, 308, 8, 97, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23813, 929, 107, 2, 30, "Input"], Cell[23923, 933, 269, 8, 71, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[24253, 948, 34, 0, 39, "Section"], Cell[CellGroupData[{ Cell[24312, 952, 127, 2, 30, "Input"], Cell[24442, 956, 218, 3, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24697, 964, 90, 1, 30, "Input"], Cell[24790, 967, 47, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24874, 973, 35, 1, 30, "Input"], Cell[24912, 976, 56, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25005, 982, 93, 1, 30, "Input"], Cell[25101, 985, 87, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25225, 991, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[25295, 995, 849, 14, 255, "Input"], Cell[26147, 1011, 19530, 445, 292, 3826, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[45726, 1462, 45, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[45796, 1466, 952, 15, 255, "Input"], Cell[46751, 1483, 19811, 449, 296, 3799, 247, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[66623, 1939, 47, 0, 39, "Section"], Cell[66673, 1941, 45, 0, 33, "Text"], Cell[CellGroupData[{ Cell[66743, 1945, 81, 1, 42, "Input"], Cell[66827, 1948, 266, 8, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[67130, 1961, 35, 1, 30, "Input"], Cell[67168, 1964, 56, 1, 29, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)