(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 221691, 7160]*) (*NotebookOutlinePosition[ 222352, 7183]*) (* CellTagsIndexPosition[ 222308, 7179]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-02\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 1;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[ \(\(\[Alpha][1] = 0;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(L[1] = \[ScriptCapitalL];\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .25 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0535714 0.952381 [ [ 0 0 0 0 ] [ 1 .25 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .25 L 0 .25 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05357 m .97619 .05357 L s .5 Mabswid .2619 .00595 m .2619 .10119 L s .5 .00595 m .5 .10119 L s .7381 .00595 m .7381 .10119 L s 0 0 0 r 2 Mabswid .5 .05357 m .69048 .05357 L s .62698 .08532 m .69048 .05357 L s .62698 .02183 m .69048 .05357 L s .5 .05357 m .5 .24405 L s .46825 .18056 m .5 .24405 L s .53175 .18056 m .5 .24405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 72}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2 002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00QWoo00<007ooOol01Goo0P0027oo00<007ooOol0QGoo0026Ool00`00Oomoo`05Ool20008Ool0 0`00Oomoo`25Ool008Ioo`8000Ioo`8000Moo`8008Moo`00Qgoo00<007ooOol017oo0P001goo00<0 07ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03001o ogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00Oomo o`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo08Uo o`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool00`00Oomoo`020003Ool00`00Oomoo`2:Ool008]o o`800003Ool00000009oo`8008aoo`00S7oo00@007oo0000009oo`03001oogoo08]oo`00S7oo1000 00=oo`000000SGoo002=Ool300000goo001oo`2=Ool008eoo`D008ioo`00SWoo0`00Sgoo002>Ool3 002?Ool008ioo`80091oo`00SWoo0P00T7oo0000\ \>"], ImageRangeCache->{{{0, 287}, {71, 0}} -> {-0.0305511, -0.0562513, \ 0.00369722, 0.00369722}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(b[1]\)[\[Zeta]_] := \(-\[ScriptB]\)\ e\_2\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ \[ScriptCapitalC][2] + \[ScriptCapitalC][3]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ sQo[1] + sMo[1]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "\[ScriptB]"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 1]][ \[Zeta]], \[ScriptB]], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][ 2]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ \[ScriptCapitalC][ 2] + \(sM[1]\)[\[Zeta]] == \[ScriptCapitalC][3]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], \[ScriptCapitalC][ 2]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], \[ScriptCapitalC][ 2]], sM[ 1][ \[Zeta]]], \[ScriptCapitalC][ 3]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + sQo[1]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[1] + \(sM[ 1]\)[\[Zeta]] == sMo[1]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], sQo[ 1]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], sQo[ 1]], sM[ 1][ \[Zeta]]], sMo[ 1]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(incastro[1]\)[meno]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(vincoli := \(Block[{carrello = carrelloV, cerniera = cernieraV, perno = pernoV, incastro = incastroV, saldatura = saldaturaV}, vincoliDef] // Flatten\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Theta]b[1]\)["-"] \[Rule] 0, \(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{carrello = \((\((Null\ &)\)\ &)\), incastro = \((\((Null\ &)\)\ &)\), cerniera = \((\((Null\ &)\)\ &)\), perno = coll, saldatura = coll}, Complement[vincoliDef, {Null}]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(vincoliFig := Block[{carrello = carrelloFig, cerniera = cernieraFig, perno = pernoFig, saldatura = saldaturaFig, incastro = incastroFig}, vincoliDef];\)\)], "Input"], Cell[BoxData[ \(vincolibFig := Block[{carrello = crosshairFig, cerniera = crosshairFig, perno = crosshairFig, saldatura = crosshairFig, incastro = crosshairFig}, vincoliDef]\)], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .3 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0970696 0.879121 0.117033 0.879121 [ [ 0 0 0 0 ] [ 1 .3 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .3 L 0 .3 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .09707 .11703 m .97619 .11703 L s 0 0 0 r .53663 .11703 m .71245 .11703 L s .65385 .14634 m .71245 .11703 L s .65385 .08773 m .71245 .11703 L s .53663 .11703 m .53663 .29286 L s .50733 .23425 m .53663 .29286 L s .56593 .23425 m .53663 .29286 L s 0 g 1 Mabswid .02381 .11703 m .17033 .11703 L s .09707 .00714 m .09707 .22692 L s newpath .09707 .11703 .03516 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 86.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {85.375, 0}} -> {-0.115252, -0.133127, \ 0.00399711, 0.00399711}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .3 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.102381 0.952381 [ [ 0 0 0 0 ] [ 1 .3 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .3 L 0 .3 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .10238 m .97619 .10238 L s 0 0 0 r .5 .10238 m .69048 .10238 L s .62698 .13413 m .69048 .10238 L s .62698 .07063 m .69048 .10238 L s .5 .10238 m .5 .29286 L s .46825 .22937 m .5 .29286 L s .53175 .22937 m .5 .29286 L s 0 g .02381 .00714 m .02381 .19762 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 86.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00 SWoo0P00T7oo0026Ool00`00Oomoo`05Ool20008Ool00`00Oomoo`25Ool008Ioo`03001oogoo00Eo o`8000Qoo`03001oogoo08Eoo`00QWoo0P001Woo0P001goo0P00Qgoo0027Ool00`00Oomoo`04Ool2 0007Ool00`00Oomoo`26Ool008Moo`8000Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P00 1Woo00<007ooOol0Qgoo0028Ool20004Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eo o`03001oogoo08Qoo`00RGoo0P000goo0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<0 07ooOol0RGoo002:Ool20002Ool20003Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo 08Yoo`00Rgoo0P0000=oo`0000000Woo0P00S7oo002Ool3002? Ool008ioo`<008moo`00SWoo0P00T7oo002>Ool2002@Ool00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {85.375, 0}} -> {-0.0294635, -0.107502, \ 0.00368964, 0.00368964}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {"0"} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {\(\(ub\_d[1]\)["+"]\)}, {\(\(ub\_n[1]\)["+"]\)}, {\(\(\[Theta]b[1]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, 0}, { Subscript[ ub, d][ 1][ "+"], Subscript[ ub, n][ 1][ "+"], \[Theta]b[ 1][ "+"]}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(\[Theta]b[1]\)["-"] == 0\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ \[Theta]b[ 1][ "-"], 0]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["-"]\ \(wb\_d[1]\)[ "-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)["+"] + \(sb\_n[1]\)[ "-"]\ \(wb\_n[1]\)["-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(\[Omega]b[1]\)["-"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"] \[Rule] 0, \(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["+"], \(wb\_d[1]\)["+"], \(wb\_n[1]\)[ "+"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]] == 0, \(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)["+"] == 0, \(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2 + \[ScriptCapitalL]\ sQo[ 1] + \(mb[1]\)["+"] == sMo[1], \(sb\_d[1]\)["+"] == sNo[1], \(sb\_n[1]\)["+"] == \[ScriptB]\ \[ScriptCapitalL] + sQo[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{{\(-1\), 0, \[ScriptCapitalL]}, {0, \(-1\), 0}, {0, 0, \(-1\)}}, {\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\) - \ \(mb[1]\)["+"], \(-\(sb\_d[1]\)[ "+"]\), \[ScriptB]\ \[ScriptCapitalL] - \(sb\_n[1]\)[ "+"]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-1\), "0", "\[ScriptCapitalL]"}, {"0", \(-1\), "0"}, {"0", "0", \(-1\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\) - \(mb[1]\)[ "+"]\)}, {\(-\(sb\_d[1]\)["+"]\)}, {\(\[ScriptB]\ \[ScriptCapitalL] - \(sb\_n[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Plus[ Times[ Rational[ -1, 2], \[ScriptB], Power[ \[ScriptCapitalL], 2]], Times[ -1, mb[ 1][ "+"]]], Times[ -1, Subscript[ sb, d][ 1][ "+"]], Plus[ Times[ \[ScriptB], \[ScriptCapitalL]], Times[ -1, Subscript[ sb, n][ 1][ "+"]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, True, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 3\n nc \[Rule] 3\n nv \[Rule] 3\n nf \[Rule] 3\n rango \ \[Rule] 3"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli giusti (le forze attive al bordo possono essere \ qualsiasi)"\)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)[ "+"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(mb[1]\)["+"]\)}, {\(\(sb\_d[1]\)["+"]\)}, {\(\(sb\_n[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { mb[ 1][ "+"], Subscript[ sb, d][ 1][ "+"], Subscript[ sb, n][ 1][ "+"]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {\ };\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"], \(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] \[Rule] 0, \(sb\_d[1]\)["+"] \[Rule] 0, \(sb\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{0, 0, 0}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({1\/2\ \[ScriptCapitalL]\ \((\[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1])\) == sMo[1], sNo[1] == 0, \[ScriptB]\ \[ScriptCapitalL] + sQo[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\), sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\[ScriptB]\)\ \[ScriptCapitalL]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], \[ScriptB]\ \[Zeta] + sQo[1], \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) + sMo[1] - \[Zeta]\ sQo[1]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\), sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\[ScriptB]\)\ \[ScriptCapitalL]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[1] == \(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[ 1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\), "+", \(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)], "==", "0"}], ",", RowBox[{\(\(-\(1\/2\)\)\ \[ScriptB]\ \((\[ScriptCapitalL] - \ \[Zeta])\)\^2\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(1\/2\)\)\ \[ScriptB]\ \[ScriptCapitalL]\^2\ \ \[Zeta]\^2 + 1\/3\ \[ScriptB]\ \[ScriptCapitalL]\ \[Zeta]\^3 - \(\[ScriptB]\ \ \[Zeta]\^4\)\/12\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\) + \ \[ScriptCapitalD][2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\[ScriptB]\ \[Zeta]\^2 - 12\ sMo[1] + 4\ \[Zeta]\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[ScriptB]\ \[Zeta]\^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][ 3]\)\/\(6\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][ 1], \(\(-\[ScriptB]\)\ \[Zeta]\^2\ \((6\ \[ScriptCapitalL]\^2 - 4\ \ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\) + 24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \((\[ScriptCapitalD][2] + \[Zeta]\ \[ScriptCapitalD][3])\)\ \)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\), \(\(-\[ScriptB]\)\ \[Zeta]\ \ \((3\ \[ScriptCapitalL]\^2 - 3\ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\) + \ 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][3]\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(1\/2\)\)\ \[ScriptB]\ \[ScriptCapitalL]\^2\ \ \[Zeta]\^2 + 1\/3\ \[ScriptB]\ \[ScriptCapitalL]\ \[Zeta]\^3 - \(\[ScriptB]\ \ \[Zeta]\^4\)\/12\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(\[Theta][1]\)[0] == 0}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \[Theta]o[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0"}, {"0", "1", "0"}, {"0", "0", "1"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {"0"} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, 0}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {\(-\(\(\[ScriptB]\ \[Zeta]\^2\ \((6\ \[ScriptCapitalL]\^2 - 4\ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\)\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}, {\(-\(\(\[ScriptB]\ \[Zeta]\ \((3\ \[ScriptCapitalL]\^2 - 3\ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\)\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, Times[ Rational[ -1, 24], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Power[ \[Zeta], 2], Plus[ Times[ 6, Power[ \[ScriptCapitalL], 2]], Times[ -4, \[ScriptCapitalL], \[Zeta]], Power[ \[Zeta], 2]]], Times[ Rational[ -1, 6], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Zeta], Plus[ Times[ 3, Power[ \[ScriptCapitalL], 2]], Times[ -3, \[ScriptCapitalL], \[Zeta]], Power[ \[Zeta], 2]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(#1 &\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\), sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\[ScriptB]\)\ \[ScriptCapitalL]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\[ScriptB]\ \((\(-\[ScriptCapitalL]\) + \ \[Zeta])\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(-\(1\/2\)\)\ \[ScriptB]\ \((\ \[ScriptCapitalL] - \[Zeta])\)\^2\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\^2\ \((6\ \ \[ScriptCapitalL]\^2 - 4\ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\)\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\ \((3\ \ \[ScriptCapitalL]\^2 - 3\ \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\)\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, \[ScriptB]\ \[ScriptCapitalL]}\), \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\), "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptB] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptB] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.1`}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(8\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\), \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[0]\), ",", \(\(u\_2[2]\)[0]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", "0", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[L[2]]\), ",", \(\(u\_2[2]\)[L[2]]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", \(L[2]\), "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(-\[ScriptB]\)\ \[ScriptCapitalL], \(-\(\(\[ScriptB]\ \ \[ScriptCapitalL]\^2\)\/2\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[0], \(sQ[2]\)[0], \(sM[2]\)[0]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[L[2]], \(sQ[2]\)[L[2]], \(sM[2]\)[L[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 1 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 0.0588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 0 .4 1 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 0.117721 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 0 .9 r .004 w .02381 .01472 m .06244 .0615 L .10458 .11032 L .14415 .15407 L .18221 .19422 L .22272 .2349 L .26171 .27205 L .30316 .30937 L .34309 .34321 L .3815 .37382 L .42237 .40428 L .46172 .43156 L .49955 .45589 L .53984 .47976 L .57861 .50074 L .61984 .52091 L .65954 .53825 L .69774 .553 L .73838 .56662 L .77751 .5777 L .81909 .5873 L .85916 .59443 L .87754 .597 L .89771 .59932 L .91765 .6011 L .92854 .60185 L .93871 .60241 L .94354 .60263 L .94878 .60283 L .95341 .60298 L .95832 .60311 L .96273 .6032 L .96524 .60324 L .9676 .60327 L .96976 .60329 L .97173 .60331 L .97277 .60331 L .97391 .60332 L .97509 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`000Imoo`2>Ool00`00O1ao o`1`Ool000moo`03001oogoo08ioo`04001oo`6O0In=Ool00`00Ooml701`Ool000moo`03001oogoo 08ioo`05001oogooOol1W`2Ool00`00Oomoo`08Ool20In4Ool00`00 Oomoo`03Ool00g`LOomoo`1ZOol000moo`03001oogoo08ioo`03001oogoo00Yoo`030Imoogoo085o o`03001oogoo00Aoo`03O1aoogoo06Uoo`003goo00<007ooOol0SWoo00<007ooOol02goo0P6OPGoo 00<007ooOol01Goo00=l77ooOol0J7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0=Ool00`6OOomo o`1nOol00`00Oomoo`06Ool00g`LOomoo`1WOol000moo`03001oogoo08ioo`03001oogoo00ioo`81 Wgioo`03001oogoo00Moo`03O1aoogoo06Ioo`003goo00<007ooOol0SWoo00<007ooOol047oo0P6O O7oo00<007ooOol01goo00=l77ooOol0IWoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0BOol00`6O Oomoo`1iOol00`00Oomoo`08Ool00g`LOomoo`1UOol000moo`03001oogoo08ioo`03001oogoo01=o o`81WgUoo`03001oogoo00Uoo`03O1aoogoo06Aoo`003goo00<007ooOol0SWoo00<007ooOol05Goo 0P6OMgoo00<007ooOol02Woo00=l77ooOol0Hgoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0GOol2 0ImeOol00`00Oomoo`0;Ool00g`LOomoo`1ROol000moo`03001oogoo08ioo`03001oogoo01Uoo`81 Wg=oo`03001oogoo00aoo`03O1aoogoo065oo`003goo00<007ooOol0SWoo00<007ooOol06goo00<1 WgooOol0L7oo00<007ooOol03Goo00=l77ooOol0H7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0L Ool20Im`Ool00`00Oomoo`0>Ool00g`LOomoo`1OOol000moo`03001oogoo08ioo`03001oogoo01io o`030Imoogoo06eoo`03001oogoo00moo`03O1aoogoo05ioo`003goo00<007ooOol0SWoo00<007oo Ool07goo0P6OKGoo00<007ooOol047oo00=l77ooOol0GGoo000?Ool00`00Oomoo`2>Ool00`00Oomo o`0QOol20Im[Ool00`00Oomoo`0AOol00g`LOomoo`1LOol000moo`03001oogoo08ioo`03001oogoo 02=oo`030Imoogoo06Qoo`03001oogoo019oo`03O1aoogoo05]oo`003goo00<007ooOol0SWoo00<0 07ooOol097oo0P6OJ7oo00<007ooOol04goo00=l77ooOol0FWoo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`0VOol00`6OOomoo`1UOol00`00Oomoo`0DOol00g`LOomoo`1IOol000moo`03001oogoo08io o`03001oogoo02Moo`81WfEoo`03001oogoo01Eoo`03O1aoogoo05Qoo`003goo00<007ooOol0SWoo 00<007ooOol0:Goo0P6OHgoo00<007ooOol05Woo00=l77ooOol0Egoo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`0[Ool00`6OOomoo`1POol00`00Oomoo`0GOol2O1aGOol000moo`03001oogoo08ioo`03 001oogoo02aoo`81Wf1oo`03001oogoo01Uoo`03O1aoogoo05Aoo`0037oo0`00H`?o0`00:goo00<0 07ooOol0;Woo00<1WgooOol0GGoo00<007ooOol06Woo00=l77ooOol0Dgoo000?Ool00`00Oomoo`2> Ool00`00Oomoo`0_Ool20ImMOol00`00Oomoo`0KOol00g`LOomoo`1BOol000moo`03001oogoo08io o`03001oogoo035oo`81We]oo`03001oogoo01aoo`9l759oo`003goo00<007ooOol0SWoo00<007oo Ool0Ool0 0`00Oomoo`0dOol20ImHOol00`00Oomoo`0OOol00g`LOomoo`1>Ool000moo`03001oogoo08ioo`03 001oogoo03Ioo`030Imoogoo05Eoo`03001oogoo021oo`03O1aoogoo04eoo`003goo00<007ooOol0 SWoo00<007ooOol0=goo00<1WgooOol0E7oo00<007ooOol08Goo00=l77ooOol0C7oo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`0hOol20ImDOol00`00Oomoo`0ROol00g`LOomoo`1;Ool000moo`03001o ogoo08ioo`03001oogoo03Yoo`81We9oo`03001oogoo02=oo`03O1aoogoo04Yoo`003goo00<007oo Ool0SWoo00<007ooOol0?7oo0P6OD7oo00<007ooOol097oo0W`LBWoo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`0nOol20Im>Ool00`00Oomoo`0VOol00g`LOomoo`17Ool000moo`03001oogoo08ioo`03 001oogoo041oo`030Imoogoo04]oo`03001oogoo02Moo`03O1aoogoo04Ioo`003goo00<007ooOol0 SWoo00<007ooOol0@Goo00<1WgooOol0BWoo00<007ooOol0:7oo0W`LAWoo000?Ool00`00Oomoo`2> Ool00`00Oomoo`12Ool20Im:Ool00`00Oomoo`0ZOol00g`LOomoo`13Ool000moo`03001oogoo08io o`03001oogoo04Aoo`81WdQoo`03001oogoo02]oo`9l74=oo`003goo00<007ooOol0SWoo00<007oo Ool0AWoo0P6OAWoo00<007ooOol0;Goo0W`L@Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`18Ool0 0`6OOomoo`13Ool00`00Oomoo`0_Ool00g`LOomoo`0nOol000moo`03001oogoo08ioo`03001oogoo 04Uoo`81Wd=oo`03001oogoo031oo`9l73ioo`003goo00<007ooOol0SWoo00<007ooOol0Bgoo00<1 WgooOol0@7oo00<007ooOol0goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1< Ool20Im0Ool00`00Oomoo`0cOol2O1`kOol000moo`03001oogoo08ioo`03001oogoo04ioo`81Wcio o`03001oogoo03Eoo`9l73Uoo`003goo00<007ooOol0SWoo00<007ooOol0D7oo00<1WgooOol0>goo 00<007ooOol0=goo0W`L=goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1AOol20IlkOol00`00Oomo o`0iOol3O1`dOol000moo`03001oogoo08ioo`03001oogoo05=oo`030Imoogoo03Qoo`03001oogoo 03aoo`9l739oo`003goo00<007ooOol0SWoo00<007ooOol0E7oo0P6O>7oo00<007ooOol0?Woo0g`L ;goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1FOol20IlfOol00`00Oomoo`11Ool3O1`/Ool000mo o`03001oogoo08ioo`03001oogoo05Qoo`030Imoogoo03=oo`03001oogoo04Aoo`9l72Yoo`003goo 00<007ooOol0SWoo00<007ooOol0FGoo0P6OOol00`00Oomoo`1KOol00`6OOomoo`0`Ool00`00Oomoo`19Ool4O1`SOol000moo`03001oogoo 08ioo`03001oogoo05aoo`81Wc1oo`03001oogoo04eoo`Ml71aoo`003goo00<007ooOol0RgooI000 0P6O0`00:7ooFP0037`L0`003Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1` Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`00ogooYGoo0000\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -1.10361, 0.0101328, 0.0327904}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -10.5164, 0.0101298, 0.163903}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -5.25901, 0.0101328, 0.0819758}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 .9 0 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 4.70883 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .60332 m .02499 .60332 L .02605 .60331 L .02729 .6033 L .02846 .60329 L .03053 .60326 L .03279 .60321 L .03527 .60315 L .0379 .60306 L .04262 .60287 L .05205 .6023 L .06244 .60143 L .07293 .60029 L .0842 .59878 L .10458 .59532 L .1458 .5856 L .18551 .57306 L .22371 .55833 L .26435 .54007 L .30348 .52022 L .34506 .49695 L .38513 .47267 L .42368 .44778 L .46468 .41989 L .50417 .39184 L .54214 .36393 L .58257 .33335 L .62148 .30324 L .66284 .27063 L .70268 .23876 L .74101 .20778 L .78179 .17457 L .82106 .14241 L .85881 .1114 L .89901 .0783 L .9377 .04643 L .97619 .01472 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 3.53162 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s .68 1 0 r .004 w .02381 .60332 m .06244 .53455 L .10458 .4659 L .14415 .4072 L .18221 .35577 L .22272 .30619 L .26171 .26324 L .30316 .22245 L .34309 .18762 L .3815 .15802 L .42237 .13046 L .46172 .1075 L .49955 .0885 L .53984 .07133 L .57861 .05754 L .61984 .04555 L .65954 .03635 L .69774 .02943 L .73838 .02388 L .77751 .02006 L .79892 .01851 L .81909 .01736 L .83917 .01647 L .85765 .01585 L .87647 .01539 L .88716 .0152 L .89713 .01505 L .90758 .01494 L .91748 .01485 L .92637 .0148 L .93139 .01478 L .93604 .01476 L .94067 .01475 L .94567 .01473 L .95038 .01473 L .95471 .01472 L .95719 .01472 L .9595 .01472 L .96203 .01472 L .96345 .01472 L .96474 .01472 L .96601 .01472 L .96735 .01472 L .96805 .01472 L .96882 .01472 L .96953 .01472 L .97018 .01472 L .97145 .01472 L .97216 .01472 L .97283 .01472 L Mistroke .97401 .01472 L .97531 .01472 L .97619 .01472 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOolHEn0@Ool000moo`03001oogoo08]oo`03001oogoo06Aoo`03OV1oogoo 02Aoo`03001oogoo04Ioo`QGh2Qoo`003goo00<007ooOol0Rgoo00<007ooOol0HWoo0WiP9goo00<0 07ooOol0@Goo1EOP<7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`1QOol00giPOomoo`0WOol00`00 Oomoo`0mOol4En0eOol000moo`03001oogoo08]oo`03001oogoo061oo`03OV1oogoo02Qoo`03001o ogoo03Yoo`=Gh3Uoo`003goo00<007ooOol0Rgoo00<007ooOol0Ggoo00=nH7ooOol0:Goo00<007oo Ool0>7oo0UOP?7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`1NOol00giPOomoo`0ZOol00`00Oomo o`0eOol3En0nOol000moo`03001oogoo08]oo`03001oogoo05eoo`03OV1oogoo02]oo`03001oogoo 03=oo`9Gh45oo`003goo00<007ooOol0Rgoo00<007ooOol0Fgoo0WiP;Woo00<007ooOol07oo00<007ooOol08Woo00=Gh7ooOol0DGoo 000?Ool00`00Oomoo`2;Ool00`00Oomoo`1?Ool00giPOomoo`0iOol00`00Oomoo`0QOol00eOPOomo o`1BOol000moo`03001oogoo08]oo`03001oogoo04eoo`9nH3aoo`03001oogoo021oo`03En1oogoo 05=oo`003goo00<007ooOol0Rgoo00<007ooOol0C7oo00=nH7ooOol0?7oo00<007ooOol07goo00=G h7ooOol0E7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`1;Ool00giPOomoo`0mOol00`00Oomoo`0N Ool00eOPOomoo`1EOol000moo`03001oogoo08]oo`03001oogoo04Yoo`03OV1oogoo03ioo`03001o ogoo01eoo`03En1oogoo05Ioo`003goo00<007ooOol0Rgoo00<007ooOol0B7oo0WiP@Goo00<007oo Ool077oo00=Gh7ooOol0Egoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`17Ool00giPOomoo`11Ool0 0`00Oomoo`0KOol00eOPOomoo`1HOol000moo`03001oogoo08]oo`03001oogoo04Ioo`03OV1oogoo 049oo`03001oogoo01Uoo`9Gh5]oo`003goo00<007ooOol0Rgoo00<007ooOol0AGoo00=nH7ooOol0 @goo00<007ooOol067oo00=Gh7ooOol0Fgoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`14Ool00giP Oomoo`14Ool00`00Oomoo`0GOol00eOPOomoo`1LOol000moo`03001oogoo08]oo`03001oogoo04=o o`03OV1oogoo04Eoo`03001oogoo01Ioo`03En1oogoo05eoo`003goo00<007ooOol0Rgoo00<007oo Ool0@Goo0WiPB7oo00<007ooOol05Goo00=Gh7ooOol0GWoo000?Ool00`00Oomoo`2;Ool00`00Oomo o`0oOol2OV1:Ool00`00Oomoo`0EOol00eOPOomoo`1NOol000moo`03001oogoo08]oo`03001oogoo 03ioo`03OV1oogoo04Yoo`03001oogoo01Aoo`03En1oogoo05moo`0037oo0`00JGn00P008goo00<0 07ooOol0?Goo00=nH7ooOol0Bgoo00<007ooOol04goo00=Gh7ooOol0H7oo000?Ool00`00Oomoo`2; Ool00`00Oomoo`0lOol00giPOomoo`1Woo00=nH7ooOol0CWoo00<007ooOol04Goo00=Gh7ooOol0HWoo 000?Ool00`00Oomoo`2;Ool00`00Oomoo`0iOol00giPOomoo`1?Ool00`00Oomoo`0@Ool00eOPOomo o`1SOol000moo`03001oogoo08]oo`03001oogoo03Moo`9nH59oo`03001oogoo00moo`03En1oogoo 06Aoo`003goo00<007ooOol0Rgoo00<007ooOol0=Woo00=nH7ooOol0DWoo00<007ooOol03Woo00=G h7ooOol0IGoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0dOol2OV1EOol00`00Oomoo`0=Ool00eOP Oomoo`1VOol000moo`03001oogoo08]oo`03001oogoo039oo`9nH5Moo`03001oogoo00aoo`03En1o ogoo06Moo`003goo00<007ooOol0Rgoo00<007ooOol0"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -1.10435, 0.00959613, 0.0310537}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.131522, 0.00959613, 0.00194086}, {{297.063, 406.563}, {69.3125, \ 1.6875}} -> {-2.87604, -0.175363, 0.00959613, 0.00258781}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.`, 0.`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, \(-0.125`\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = 0.1 \(\@\( xDiag . xDiag\)\) \((e\_2)\)\)], "Input"], Cell[BoxData[ \({0, 0.10088989047471504`}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.2", "0"}, {"0", "5"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{1.2012`, 0.63`}, {0.5`, 0.03838989047471504`}}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52448 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.2318 0.792858 [ [ 0 0 0 0 ] [ 1 .52448 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01249 m .02381 .51199 L .97619 .51199 L .97619 .01249 L F 0 g .008 w .02381 .01249 Mdot .97619 .51199 Mdot 2 Mabswid [ ] 0 setdash .10357 .2318 m .89643 .2318 L s .5 Mabswid .30179 .19216 m .30179 .27144 L s .5 .19216 m .5 .27144 L s .69821 .19216 m .69821 .27144 L s 0 0 0 r .5 .2318 m .65857 .2318 L s .60571 .25823 m .65857 .2318 L s .60571 .20537 m .65857 .2318 L s .5 .2318 m .5 .39037 L s .47357 .33751 m .5 .39037 L s .52643 .33751 m .5 .39037 L s 0 g 1 Mabswid .0375 .2318 m .16964 .2318 L s .10357 .13269 m .10357 .33091 L s newpath .10357 .2318 .03171 0 365.73 arc s 1 0 0 r .5 Mabswid .10357 .2318 m .10455 .2318 L .10544 .2318 L .10647 .2318 L .10744 .2318 L .10917 .23179 L .11104 .23178 L .11311 .23177 L .1153 .23176 L .11923 .23172 L .12708 .23163 L .13573 .23148 L .14446 .23129 L .15385 .23104 L .17081 .23045 L .20513 .22882 L .23819 .22671 L .26998 .22423 L .30382 .22115 L .3364 .21781 L .37101 .21389 L .40437 .2098 L .43646 .20561 L .4706 .20092 L .50347 .19619 L .53508 .19149 L .56874 .18634 L .60113 .18127 L .63556 .17578 L .66873 .17042 L .70064 .1652 L .73459 .15961 L .76728 .15419 L .79871 .14897 L .83218 .1434 L .86439 .13803 L .89643 .13269 L s .29797 .1817 m .30561 .26099 L s .49422 .15706 m .50578 .23634 L s .69171 .12596 m .70472 .20524 L s 0 g 1 Mabswid .0375 .2318 m .16964 .2318 L s .10357 .13269 m .10357 .33091 L s newpath .10357 .2318 .03171 0 365.73 arc s 0 0 m 1 0 L 1 .52448 L 0 .52448 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL0?mcW0mcW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OonoLi`00g`0LiacW01>Li`9Ool000MooaMcW003001cW7>L0:EcW003 O01cW7>L03EcW0=l01IcW0Uoo`001goo5g>L00<007>LLi`0YG>L00=l07>LLi`0L17`06G>L2Goo 0007OolGLi`00`00LiacW02VLi`00g`0LiacW00[Li`5O00MLi`9Ool000MooaMcW003001cW7>L0:Ic W003O01cW7>L02McW0Al029cW0Uoo`001goo5g>L00<007>LLi`0YW>L00=l07>LLi`087>L1g`09W>L 2Goo0007OolGLi`00`00LiacW02VLi`00g`0LiacW00HLi`8O00]Li`9Ool000MooaMcW003001cW7>L 0:IcW003O01cW7>L01AcW0Al03EcW0Uoo`001goo5g>L00<007>LLi`0K7>L00=l07>LLi`0=g>L00=l 07>LLi`03G>L1g`0>G>L2Goo0007OolGLi`00`00LiacW01/Li`00g`0LiacW00hLi`00g`0LiacW005 Li`7O010Li`9Ool000MooaMcW003001cW7>L06acW003O01cW7>L03QcW003O01cW7>L00El04McW0Uo o`001goo5g>L00<007>LLi`0KG>L00=l07>LLi`0L1g`0C7>L2Goo0007OolGLi`00`00LiacW01] Li`00g`0LiacW00/Li`7O004Li`00g`0LiacW01L06ecW003O01c W7>L02QcW0Al00]cW003O01cW7>L04acW0Uoo`001goo5g>L00<007>LLi`0KG>L00=l07>LLi`08G>L 1g`047>L00=l07>LLi`0Bg>L2Goo0007OolGLi`00`00LiacW00dLi`00g`0LiacW00fLi`00g`0Liac W00ILi`8O00GLi`00g`0LiacW01;Li`9Ool000MooaMcW003001cW7>L03AcW003O01cW7>L03IcW003 O01cW7>L01EcW0Al01mcW003O01cW7>L04]cW0Uoo`001goo5g>L00<007>LLi`0=7>L00=l07>LLi`0 =g>L00=l07>LLi`03G>L1g`08g>L00=l07>LLi`0Bg>L2Goo0007OolGLi`00`00LiacW00dLi`00g`0 001cW00gLi`00g`0LiacW005Li`8O00YLi`00`00O01cW01L03Ac W003O00007>L03McW004O01cW7>LLi`4O00aLi`00`00O01cW01L 03AcW003O00007>L03AcW0Ml03EcW003001cW7`004acW0Uoo`001goo57>L1P00=G>L00=l07>LLi`0 :W>L2G`00g>L00=l07>LLi`0=W>L00<007>LO000C7>L2Goo0007OolBLi`20003Li`00`00LiacW002 000cLi`00g`0LiacW00RLi`8O00L00=cW003001cW7>L009cW080035cW003O01cW7>L01icW0Al01AcW003 001l07>L01acW08001QcW003001cW7>L04acW0Uoo`001goo47>L00<007>LLi`017>L00<007>LLi`0 17>L00<007>LLi`0;W>L00=l07>LLi`05g>L1g`067>L00<007`0Li`07W>L0P005W>L00<007>LLi`0 C7>L2Goo0007Ool?Li`00`00LiacW005Li`00`00LiacW005Li`00`00LiacW00]Li`00g`0LiacW00= Li`:O00OLi`00`00O01cW00PLi`2000DLi`00`00LiacW01L00Ic W003001cW7>L00EcW003001cW7>L02ecW003O01cW7>L00=cW0Yl02UcW003001l07>L029cW080019c W003001cW7>L04acW0Uoo`001goo3W>L00<007>LLi`01W>L00<007>LLi`01G>L00<007>LLi`0:W>L 2G`0L00<007`0Li`097>L0P0047>L00<007>LLi`0C7>L2Goo0007Ool>Li`00`00LiacW006Li`0 0`00LiacW005Li`00`00LiacW00GLi`CO003Li`00g`0LiacW00fLi`00`00O01cW00VLi`2000>Li`0 0`00LiacW01L00IcW003001cW7>L00IcW003001cW7>L00EcW15l 01IcW003O01cW7>L03IcW003001cW7`002QcW08000acW003001cW7>L04acW0Uoo`001goo17>LB`00 00=l00000000>00000=l00000000K@005W>L2Goo0007Ool>Li`00`00LiacW005Li`i00000g`00000 000h00000g`00000001]000FLi`9Ool000Moo`icW003001cW7>L00IcW003001cW7>L00IcW003001c W7>L02acW003O01cW7>L03IcW003001cW7>L02EcW08000mcW003001cW7>L04acW0Uoo`001goo3W>L 00<007>LLi`01W>L00<007>LLi`01G>L00<007>LLi`0;G>L00<007`0Li`0=W>L00<007>LLi`08g>L 0P004G>L00<007>LLi`0C7>L2Goo0007Ool>Li`00`00LiacW006Li`00`00LiacW004Li`00`00Liac W00^Li`00`00O01cW00fLi`00`00LiacW00QLi`2000CLi`00`00LiacW01L00EcW003001cW7>L00AcW003001cW7>L02icW003001l07>L03IcW003001cW7>L01mcW080 01EcW003001cW7>L04acW0Uoo`001goo47>L00<007>LLi`017>L00<007>LLi`00g>L00<007>LLi`0 ;g>L00<007`0Li`0=W>L00<007>LLi`07G>L0P005g>L00<007>LLi`0C7>L2Goo0007OolALi`20004 Li`01000LiacW7>L0P00L00<007`0Li`0=W>L00<007>LLi`06g>L0P006G>L00<007>LLi`0C7>L 2Goo0007OolCLi`01@00LiacW7>L00000W>L00<007>LLi`0L00<007`0Li`0=W>L00<007>LLi`0 =W>L00<007>LLi`0C7>L2Goo0007OolDLi`6000eLi`00`00LiacW00fLi`00`00LiacW00fLi`00`00 LiacW01L03EcW003001cW7>L03IcW003001cW7>L03IcW003001c W7>L04acW0Uoo`001goo5g>L00<007>LLi`0=G>L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>L Li`0C7>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW025Li`9Ool000MooaMcW003001cW7>L 06icW003001cW7>L08EcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0QG>L2Goo0007OolG Li`00`00LiacW01^Li`00`00LiacW025Li`9Ool000MooaMcW003001cW7>L06icW003001cW7>L08Ec W0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0QG>L2Goo0007OolGLi`00`00LiacW01^Li`0 0`00LiacW025Li`9Ool000MooaMcW003001cW7>L06icW003001cW7>L08EcW0Uoo`001goo5g>L00<0 07>LLi`0KW>L00<007>LLi`0QG>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW025Li`9Ool0 00MooaMcW003001cW7>L06icW003001cW7>L08EcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>L Li`0QG>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW025Li`9Ool000MooaMcW003001cW7>L 06icW003001cW7>L08EcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0QG>L2Goo0007OolG Li`00`00LiacW01^Li`00`00LiacW025Li`9Ool000MooaMcW003001cW7>L06icW003001cW7>L08Ec W0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon0Li`00`00LiacW005Li`00`00LiacW005Li`0 0`00LiacW01mLi`9Ool000Mooh5cW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L07icW0Uo o`001gooPG>L00<007>LLi`017>L00<007>LLi`017>L00<007>LLi`0OW>L2Goo0007Oon2Li`00`00 LiacW003Li`00`00LiacW003Li`00`00LiacW01oLi`9Ool000Mooh9cW003001cW7>L00=cW003001c W7>L00=cW003001cW7>L07mcW0Uoo`001gooPg>L00<007>LLi`00W>L00<007>LLi`00W>L00<007>L Li`0P7>L2Goo0007Oon3Li`00`00LiacW002Li`00`00LiacW002Li`00`00LiacW020Li`9Ool000Mo ohAcW005001cW7>LLi`00003Li`00`00LiacW021Li`9Ool000MoohAcW005001cW7>LLi`00003Li`0 0`00LiacW021Li`9Ool000MoohEcW004001cW7>L0002Li`00`00LiacW022Li`9Ool000MoohEcW004 001cW7>L0002Li`00`00LiacW022Li`9Ool000MoohIcW005001cW000Li`00025Li`9Ool000MoohIc W005001cW000Li`00025Li`9Ool000MoohMcW0<008IcW0Uoo`001gooQg>L0`00QW>L2Goo0007Oon8 Li`00`00LiacW025Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L00<007ooOol01Woo003oOolHOol00`00Oomoo`06Ool00?mo ob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {150, 0}} -> {-0.13284, -0.29236, 0.00441004, \ 0.00441004}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52448 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.2318 0.792858 [ [ 0 0 0 0 ] [ 1 .52448 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01249 m .02381 .51199 L .97619 .51199 L .97619 .01249 L F 0 g .008 w .02381 .01249 Mdot .97619 .51199 Mdot 2 Mabswid [ ] 0 setdash .10357 .2318 m .89643 .2318 L s .5 Mabswid .30179 .19216 m .30179 .27144 L s .5 .19216 m .5 .27144 L s .69821 .19216 m .69821 .27144 L s 0 0 0 r .5 .2318 m .65857 .2318 L s .60571 .25823 m .65857 .2318 L s .60571 .20537 m .65857 .2318 L s .5 .2318 m .5 .39037 L s .47357 .33751 m .5 .39037 L s .52643 .33751 m .5 .39037 L s 0 g 2 Mabswid .10357 .15251 m .10357 .31109 L s 1 0 0 r .5 Mabswid .10357 .2318 m .10455 .2318 L .10544 .2318 L .10647 .2318 L .10744 .2318 L .10917 .23179 L .11104 .23178 L .11311 .23177 L .1153 .23176 L .11923 .23172 L .12708 .23163 L .13573 .23148 L .14446 .23129 L .15385 .23104 L .17081 .23045 L .20513 .22882 L .23819 .22671 L .26998 .22423 L .30382 .22115 L .3364 .21781 L .37101 .21389 L .40437 .2098 L .43646 .20561 L .4706 .20092 L .50347 .19619 L .53508 .19149 L .56874 .18634 L .60113 .18127 L .63556 .17578 L .66873 .17042 L .70064 .1652 L .73459 .15961 L .76728 .15419 L .79871 .14897 L .83218 .1434 L .86439 .13803 L .89643 .13269 L s .29797 .1817 m .30561 .26099 L s .49422 .15706 m .50578 .23634 L s .69171 .12596 m .70472 .20524 L s 0 g 2 Mabswid .10357 .15251 m .10357 .31109 L s 0 0 m 1 0 L 1 .52448 L 0 .52448 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL0?mcW0mcW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OonoLi`00g`0LiacW01>Li`9Ool000MookmcW003O01cW7>L03EcW0=l 01IcW0Uoo`001goo_g>L00=l07>LLi`0L17`06G>L2Goo0007Ooo0Li`00g`0LiacW00[Li`5O00M Li`9Ool000Mool1cW003O01cW7>L02McW0Al029cW0Uoo`001goo`7>L00=l07>LLi`087>L1g`09W>L 2Goo0007Ooo0Li`00g`0LiacW00HLi`8O00]Li`9Ool000MooaIcW0800:QcW003O01cW7>L01AcW0Al 03EcW0Uoo`001goo5W>L0P00KW>L00=l07>LLi`0=g>L00=l07>LLi`03G>L1g`0>G>L2Goo0007OolF Li`2001^Li`00g`0LiacW00hLi`00g`0LiacW005Li`7O010Li`9Ool000MooaIcW08006icW003O01c W7>L03QcW003O01cW7>L00El04McW0Uoo`001goo5W>L0P00Kg>L00=l07>LLi`0L1g`0C7>L2Goo 0007OolFLi`2001_Li`00g`0LiacW00/Li`7O004Li`00g`0LiacW01L02QcW0Al00]cW003O01cW7>L04acW0Uoo`001goo5W>L0P00Kg>L00=l07>LLi`08G>L 1g`047>L00=l07>LLi`0Bg>L2Goo0007OolFLi`2000fLi`00g`0LiacW00fLi`00g`0LiacW00ILi`8 O00GLi`00g`0LiacW01;Li`9Ool000MooaIcW08003IcW003O01cW7>L03IcW003O01cW7>L01EcW0Al 01mcW003O01cW7>L04]cW0Uoo`001goo5W>L0P00=W>L00=l07>LLi`0=g>L00=l07>LLi`03G>L1g`0 8g>L00=l07>LLi`0Bg>L2Goo0007OolFLi`2000fLi`00g`0001cW00gLi`00g`0LiacW005Li`8O00Y Li`00`00O01cW01L03McW004O01cW7>LLi`4O00aLi`0 0`00O01cW01L03AcW0Ml03EcW003001cW7`004acW0Uo o`001goo5W>L0P00=g>L00=l07>LLi`0:W>L2G`00g>L00=l07>LLi`0=W>L00<007>LO000C7>L2Goo 0007OolFLi`2000gLi`00g`0LiacW00RLi`8O00L01icW0Al01AcW003001l07>L01acW08001Qc W003001cW7>L04acW0Uoo`001goo5W>L0P00=g>L00=l07>LLi`05g>L1g`067>L00<007`0Li`07W>L 0P005W>L00<007>LLi`0C7>L2Goo0007OolFLi`2000gLi`00g`0LiacW00=Li`:O00OLi`00`00O01c W00PLi`2000DLi`00`00LiacW01L00=cW0Yl02UcW003 001l07>L029cW080019cW003001cW7>L04acW0Uoo`001goo5W>L0P00=7>L2G`0L00<007`0Li`0 97>L0P0047>L00<007>LLi`0C7>L2Goo0007OolFLi`2000QLi`CO003Li`00g`0LiacW00fLi`00`00 O01cW00VLi`2000>Li`00`00LiacW01L03Ic W003001cW7`002QcW08000acW003001cW7>L04acW0Uoo`001goo5W>L0P0047`09`0000=l00000000 >00000=l00000000K@005W>L2Goo0007OolFLi`i00000g`00000000h00000g`00000001]000FLi`9 Ool000MooaIcW08003McW003O01cW7>L03IcW003001cW7>L02EcW08000mcW003001cW7>L04acW0Uo o`001goo5W>L0P00=g>L00<007`0Li`0=W>L00<007>LLi`08g>L0P004G>L00<007>LLi`0C7>L2Goo 0007OolFLi`2000gLi`00`00O01cW00fLi`00`00LiacW00QLi`2000CLi`00`00LiacW01L03IcW003001cW7>L01mcW08001EcW003001cW7>L04acW0Uoo`00 1goo5W>L0P00=g>L00<007`0Li`0=W>L00<007>LLi`07G>L0P005g>L00<007>LLi`0C7>L2Goo0007 OolFLi`2000gLi`00`00O01cW00fLi`00`00LiacW00KLi`2000ILi`00`00LiacW01L03IcW003001cW7>L03IcW003001cW7>L04acW0Uoo`001goo5W>L0P00 =g>L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>LLi`0C7>L2Goo0007OolFLi`2000gLi`00`00 LiacW00fLi`00`00LiacW00fLi`00`00LiacW01L03Ic W003001cW7>L03IcW003001cW7>L04acW0Uoo`001goo5W>L0P00L7>L00<007>LLi`0QG>L2Goo0007 OolFLi`2001`Li`00`00LiacW025Li`9Ool000MooaIcW080071cW003001cW7>L08EcW0Uoo`001goo 5W>L0P00L7>L00<007>LLi`0QG>L2Goo0007OolFLi`2001`Li`00`00LiacW025Li`9Ool000MooaIc W080071cW003001cW7>L08EcW0Uoo`001goo5W>L0P00L7>L00<007>LLi`0QG>L2Goo0007OolFLi`2 001`Li`00`00LiacW025Li`9Ool000MooaIcW080071cW003001cW7>L08EcW0Uoo`001goo5W>L0P00 L7>L00<007>LLi`0QG>L2Goo0007OolFLi`2001`Li`00`00LiacW025Li`9Ool000MooaIcW080071c W003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9 Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00 LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooP7>L00<007>LLi`01G>L00<007>L Li`01G>L00<007>LLi`0OG>L2Goo0007Oon1Li`00`00LiacW004Li`00`00LiacW004Li`00`00Liac W01nLi`9Ool000Mooh5cW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L07icW0Uoo`001goo PW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Og>L2Goo0007Oon2Li`00`00LiacW003 Li`00`00LiacW003Li`00`00LiacW01oLi`9Ool000Mooh=cW003001cW7>L009cW003001cW7>L009c W003001cW7>L081cW0Uoo`001gooPg>L00<007>LLi`00W>L00<007>LLi`00W>L00<007>LLi`0P7>L 2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon4Li`01@00LiacW7>L 00000g>L00<007>LLi`0PG>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007 Oon5Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo 0007Oon6Li`01@00Li`007>L0000QG>L2Goo0007Oon7Li`30026Li`9Ool000MoohMcW0<008IcW0Uo o`001gooR7>L00<007>LLi`0QG>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW003001oogoo00Ioo`00ogoo67oo00<007ooOol0 1Woo003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {150, 0}} -> {-0.13284, -0.29236, 0.00441004, \ 0.00441004}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.03;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.07;\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52448 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.2318 0.792858 [ [ 0 0 0 0 ] [ 1 .52448 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01249 m .02381 .51199 L .97619 .51199 L .97619 .01249 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .2318 m .89643 .2318 L s 0 1 .4 r .5 Mabswid .10357 .2318 m .13573 .2318 L .17081 .2318 L .20376 .2318 L .23544 .2318 L .26916 .2318 L .30162 .2318 L .33613 .2318 L .36937 .2318 L .40135 .2318 L .43537 .2318 L .46813 .2318 L .49963 .2318 L .53317 .2318 L .56544 .2318 L .59976 .2318 L .63282 .2318 L .66462 .2318 L .69845 .2318 L .73103 .2318 L .76565 .2318 L .799 .2318 L .8311 .2318 L .86523 .2318 L .89643 .2318 L s .10357 .2318 m .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L .10357 .2318 L s .89643 .2318 m .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L s 0 0 m 1 0 L 1 .52448 L 0 .52448 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolF Li`00`000n`3k03R0n`ELi`9Ool000MooaIcW>@001IcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo003oOolQOol00?moob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {150, 0}} -> {-0.13284, -0.29236, 0.00441004, \ 0.00441004}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52448 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.2318 0.792858 [ [ 0 0 0 0 ] [ 1 .52448 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01249 m .02381 .51199 L .97619 .51199 L .97619 .01249 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .2318 m .89643 .2318 L s 0 .4 1 r .5 Mabswid .10357 .46966 m .13573 .46001 L .17081 .44949 L .20376 .4396 L .23544 .4301 L .26916 .41998 L .30162 .41024 L .33613 .39989 L .36937 .38992 L .40135 .38032 L .43537 .37012 L .46813 .36029 L .49963 .35084 L .53317 .34078 L .56544 .3311 L .59976 .3208 L .63282 .31088 L .66462 .30134 L .69845 .29119 L .73103 .28142 L .76565 .27103 L .799 .26103 L .8311 .2514 L .86523 .24116 L .89643 .2318 L s .10357 .2318 m .10357 .24145 L .10357 .25197 L .10357 .26186 L .10357 .27136 L .10357 .28148 L .10357 .29122 L .10357 .30157 L .10357 .31154 L .10357 .32113 L .10357 .33134 L .10357 .34117 L .10357 .35062 L .10357 .36068 L .10357 .37036 L .10357 .38066 L .10357 .39057 L .10357 .40011 L .10357 .41026 L .10357 .42004 L .10357 .43042 L .10357 .44043 L .10357 .45006 L .10357 .4603 L .10357 .46966 L s .89643 .2318 m .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L s .11943 .35073 m .12071 .35073 L .12212 .35073 L .12344 .35073 L .1247 .35073 L .12605 .35073 L .12735 .35073 L .12873 .35073 L .13006 .35073 L .13134 .35073 L .1327 .35073 L .13401 .35073 L .13527 .35073 L .13661 .35073 L .1379 .35073 L .13928 .35073 L .1406 .35073 L .14187 .35073 L .14322 .35073 L .14453 .35073 L .14591 .35073 L .14725 .35073 L .14853 .35073 L .14989 .35073 L .15114 .35073 L s 0 0 m 1 0 L 1 .52448 L 0 .52448 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolF Li`00`000Il0003N00040IlELi`9Ool000MooaIcW0030001W`000=X000@1W`<001IcW0Uoo`001goo 5g>L00<1Wg>LLi`0eG>L106O7G>L2Goo0007OolGLi`00`6OLiacW03BLi`30IlQLi`9Ool000MooaMc W0030ImcW7>L0L00<1Wg>LLi`0c7>L0`6O9g>L2Goo0007OolGLi`0 0`6OLiacW039Li`30IlZLi`9Ool000MooaMcW0030ImcW7>L0L00<1 Wg>LLi`0`g>L0`6O<7>L2Goo0007OolGLi`00`6OLiacW030Li`30IlcLi`9Ool000MooaMcW0030Imc W7>L0;acW0@1WcIcW0Uoo`001goo5g>L00<1Wg>LLi`0^G>L0`6O>W>L2Goo0007OolGLi`00`6OLiac W02fLi`30IlmLi`9Ool000MooaMcW0030ImcW7>L0;9cW0@1Wd1cW0Uoo`001goo5g>L00<1Wg>LLi`0 [g>L0`6OA7>L2Goo0007OolGLi`00`6OLiacW02/Li`30Im7Li`9Ool000MooaMcW0030ImcW7>L0:Uc W0<1WdYcW0Uoo`001goo5g>L00<1Wg>LLi`0YW>L0`6OCG>L2Goo0007OolGLi`00`6OLiacW02SLi`3 0Im@Li`9Ool000MooaMcW0030ImcW7>L09mcW0@1We=cW0Uoo`001goo5g>L00<1Wg>LLi`0Vg>L106O Eg>L2Goo0007OolGLi`00`6OLiacW02GLi`40ImKLi`9Ool000MooaMcW0030ImcW7>L09=cW0@1Wemc W0Uoo`001goo5g>L00<1Wg>LLi`0T7>L0`6OHg>L2Goo0007OolGLi`00`6OLiacW02=Li`30ImVLi`9 Ool000MooaMcW0030ImcW7>L08YcW0<1WfUcW0Uoo`001goo5g>L00<1Wg>LLi`0Qg>L0`6OK7>L2Goo 0007OolGLi`00`6OLiacW023Li`40Im_Li`9Ool000MooaMcW0030ImcW7>L081cW0<1Wg=cW0Uoo`00 1goo5g>L00<1Wg>LLi`0OG>L0`6OMW>L2Goo0007OolGLi`00`6OLiacW01iLi`40ImiLi`9Ool000Mo oaMcW0030ImcW7>L07IcW0<1WgecW0Uoo`001goo5g>L00<1Wg>LLi`0Lg>L0`6OP7>L2Goo0007OolG Li`00`6OLiacW01`Li`30In3Li`9Ool000MooaMcW0040ImcW7>LLi`:0ImRLi`30In6Li`9Ool000Mo oaMcW0030ImcW7>L06YcW0<1WhUcW0Uoo`001goo5g>L00<1Wg>LLi`0Ig>L0`6OS7>L2Goo0007OolG Li`00`6OLiacW01SLi`40In?Li`9Ool000MooaMcW0030ImcW7>L05mcW0@1Wi=cW0Uoo`001goo5g>L 00<1Wg>LLi`0Fg>L106OUg>L2Goo0007OolGLi`00`6OLiacW01HLi`30InKLi`9Ool000MooaMcW003 0ImcW7>L05AcW0@1WiicW0Uoo`001goo5g>L00<1Wg>LLi`0DG>L0`6OXW>L2Goo0007OolGLi`00`6O LiacW01>Li`30InULi`9Ool000MooaMcW0030ImcW7>L04]cW0<1WjQcW0Uoo`001goo5g>L00<1Wg>L Li`0B7>L0`6OZg>L2Goo0007OolGLi`00`6OLiacW015Li`30In^Li`9Ool000MooaMcW0030ImcW7>L 045cW0@1Wk5cW0Uoo`001goo5g>L00<1Wg>LLi`0?W>L0`6O]G>L2Goo0007OolGLi`00`6OLiacW00k Li`30InhLi`9Ool000MooaMcW0030ImcW7>L03McW0@1Wk]cW0Uoo`001goo5g>L00<1Wg>LLi`0=7>L 0`6O_g>L2Goo0007OolGLi`00`6OLiacW00aLi`30Io2Li`9Ool000MooaMcW0030ImcW7>L02icW0<1 WlEcW0Uoo`001goo5g>L00<1Wg>LLi`0:g>L0`6Ob7>L2Goo0007OolGLi`00`6OLiacW00XLi`30Io; Li`9Ool000MooaMcW0030ImcW7>L02AcW0@1WlicW0Uoo`001goo5g>L00<1Wg>LLi`087>L106OdW>L 2Goo0007OolGLi`00`6OLiacW00LLi`40IoFLi`9Ool000MooaMcW0030ImcW7>L01QcW0@1WmYcW0Uo o`001goo5g>L00<1Wg>LLi`05G>L0`6OgW>L2Goo0007OolGLi`00`6OLiacW00BLi`30IoQLi`9Ool0 00MooaMcW0030ImcW7>L00mcW0<1WnAcW0Uoo`001goo5g>L00<1Wg>LLi`037>L0`6Oig>L2Goo0007 OolGLi`00`6OLiacW008Li`40IoZLi`9Ool000MooaMcW0030ImcW7>L00EcW0<1WnicW0Uoo`001goo 5g>L00<1Wg>LLi`00W>L0`6OlG>L2Goo0007OolGLi`00`6OLi`1W`020IodLi`9Ool000MooaMcW081 WoMcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo 8Goo003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {150, 0}} -> {-0.13284, -0.29236, 0.00441004, \ 0.00441004}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52448 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.2318 0.792858 [ [ 0 0 0 0 ] [ 1 .52448 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01249 m .02381 .51199 L .97619 .51199 L .97619 .01249 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .2318 m .89643 .2318 L s .8 0 1 r .5 Mabswid .10357 .5093 m .13573 .48724 L .17081 .46423 L .20376 .4436 L .23544 .42467 L .26916 .40549 L .30162 .38798 L .33613 .37039 L .36937 .35443 L .40135 .34 L .43537 .32564 L .46813 .31278 L .49963 .30131 L .53317 .29005 L .56544 .28016 L .59976 .27065 L .63282 .26248 L .66462 .25552 L .69845 .2491 L .73103 .24388 L .76565 .23935 L .799 .23599 L .8143 .23478 L .8311 .23368 L .84769 .23285 L .85676 .23249 L .86523 .23223 L .86924 .23213 L .87361 .23203 L .87746 .23196 L .88155 .2319 L .88522 .23186 L .88731 .23184 L .88928 .23182 L .89107 .23181 L .89272 .23181 L .89358 .2318 L .89453 .2318 L .89551 .2318 L .89643 .2318 L s .10357 .2318 m .10357 .24306 L .10357 .25533 L .10357 .26686 L .10357 .27795 L .10357 .28976 L .10357 .30112 L .10357 .31319 L .10357 .32483 L .10357 .33602 L .10357 .34793 L .10357 .3594 L .10357 .37042 L .10357 .38216 L .10357 .39346 L .10357 .40547 L .10357 .41704 L .10357 .42817 L .10357 .44001 L .10357 .45141 L .10357 .46353 L .10357 .4752 L .10357 .48643 L .10357 .49838 L .10357 .5093 L s .89643 .2318 m .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L .89643 .2318 L s 0 0 m 1 0 L 1 .52448 L 0 .52448 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolF Li`00`00I1l0003<000FI1lELi`9Ool000MooaIcW003001T7`000<4000]T7aD001IcW0Uoo`001goo 5g>L00=T7g>LLi`0]W>L2V@O=W>L2Goo0007OolGLi`00f@OLiacW02^Li`8I1m0Li`9Ool000MooaMc W003I1mcW7>L0:YcW0AT7dQcW0Uoo`001goo5g>L00=T7g>LLi`0YG>L1F@OC7>L2Goo0007OolGLi`0 0f@OLiacW02PLi`5I1mALi`9Ool000MooaMcW003I1mcW7>L09]cW0ET7eIcW0Uoo`001goo5g>L00=T 7g>LLi`0Ug>L16@OFg>L2Goo0007OolGLi`00f@OLiacW02BLi`5I1mOLi`9Ool000MooaMcW003I1mc W7>L08icW0AT7fAcW0Uoo`001goo5g>L00=T7g>LLi`0RW>L16@OJ7>L2Goo0007OolGLi`00f@OLiac W027Li`3I1m/Li`9Ool000MooaMcW003I1mcW7>L08=cW0AT7fmcW0Uoo`001goo5g>L00=T7g>LLi`0 Og>L16@OLg>L2Goo0007OolGLi`00f@OLiacW01jLi`5I1mgLi`9Ool000MooaMcW003I1mcW7>L07Ic W0AT7gacW0Uoo`001goo5g>L00=T7g>LLi`0M7>L0V@OP7>L2Goo0007OolGLi`00f@OLiacW01bLi`2 I1n2Li`9Ool000MooaMcW003I1mcW7>L071cW09T7hAcW0Uoo`001goo5g>L00=T7g>LLi`0KG>L0f@O QW>L2Goo0007OolGLi`00f@OLiacW01ZLi`3I1n9Li`9Ool000MooaMcW003I1mcW7>L06McW0=T7hac W0Uoo`001goo5g>L00=T7g>LLi`0I7>L0f@OSg>L2Goo0007OolGLi`00f@OLiacW01RLi`2I1nBLi`9 Ool000MooaMcW003I1mcW7>L061cW09T7iAcW0Uoo`001goo5g>L00=T7g>LLi`0GW>L0V@OUW>L2Goo 0007OolGLi`00f@OLiacW01KLi`3I1nHLi`9Ool000MooaMcW003I1mcW7>L05UcW09T7i]cW0Uoo`00 1goo5g>L00=T7g>LLi`0EW>L0f@OWG>L2Goo0007OolGLi`00f@OLiacW01DLi`2I1nPLi`9Ool000Mo oaMcW003I1mcW7>L055cW0=T7j9cW0Uoo`001goo5g>L00=T7g>LLi`0Cg>L0V@OYG>L2Goo0007OolG Li`00f@OLiacW01=Li`2I1nWLi`9Ool000MooaMcW003I1mcW7>L04]cW09T7jUcW0Uoo`001goo5g>L 00=T7g>LLi`0B7>L0f@OZg>L2Goo0007OolGLi`00f@OLiacW016Li`2I1n^Li`9Ool000MooaMcW003 I1mcW7>L04=cW0=T7k1cW0Uoo`001goo5g>L00=T7g>LLi`0@G>L0V@O/g>L2Goo0007OolGLi`00f@O LiacW00oLi`2I1neLi`9Ool000MooaMcW003I1mcW7>L03ecW09T7kMcW0Uoo`001goo5g>L00=T7g>L Li`0>g>L0V@O^G>L2Goo0007OolGLi`00f@OLiacW00iLi`2I1nkLi`9Ool000MooaMcW003I1mcW7>L 03McW09T7kecW0Uoo`001goo5g>L00=T7g>LLi`0=G>L0V@O_g>L2Goo0007OolGLi`00f@OLiacW00c Li`2I1o1Li`9Ool000MooaMcW003I1mcW7>L035cW09T7l=cW0Uoo`001goo5g>L00=T7g>LLi`0;g>L 0V@OaG>L2Goo0007OolGLi`00f@OLiacW00]Li`2I1o7Li`9Ool000MooaMcW003I1mcW7>L02acW003 I1mcW7>L0L00=T7g>LLi`0:W>L0V@ObW>L2Goo0007OolGLi`00f@OLiacW00X Li`2I1oL02McW003I1mcW7>L0L00=T7g>L Li`09G>L0V@Ocg>L2Goo0007OolGLi`00f@OLiacW00SLi`2I1oALi`9Ool000MooaMcW003I1mcW7>L 029cW003I1mcW7>L0=5cW0Uoo`001goo5g>L00=T7g>LLi`087>L0V@Oe7>L2Goo0007OolGLi`00f@O LiacW00NLi`2I1oFLi`9Ool000MooaMcW003I1mcW7>L01acW09T7mQcW0Uoo`001goo5g>L00=T7g>L Li`06W>L0V@OfW>L2Goo0007OolGLi`00f@OLiacW00ILi`00f@OLiacW03JLi`9Ool000MooaMcW003 I1mcW7>L01McW09T7mecW0Uoo`001goo5g>L00=T7g>LLi`05W>L00=T7g>LLi`0gG>L2Goo0007OolG Li`00f@OLiacW00DLi`2I1oPLi`9Ool000MooaMcW003I1mcW7>L01=cW003I1mcW7>L0>1cW0Uoo`00 1goo5g>L00=T7g>LLi`04G>L0V@Ohg>L2Goo0007OolGLi`00f@OLiacW00@Li`00f@OLiacW03SLi`9 Ool000MooaMcW003I1mcW7>L00icW09T7nIcW0Uoo`001goo5g>L00=T7g>LLi`03G>L00=T7g>LLi`0 iW>L2Goo0007OolGLi`00f@OLiacW00L00Yc W09T7nYcW0Uoo`001goo5g>L00=T7g>LLi`02G>L00=T7g>LLi`0jW>L2Goo0007OolGLi`00f@OLiac W007Li`2I1o]Li`9Ool000MooaMcW003I1mcW7>L00IcW003I1mcW7>L0>ecW0Uoo`001goo5g>L00=T 7g>LLi`017>L0V@Ol7>L2Goo0007OolGLi`00f@OLiacW003Li`00f@OLiacW03`Li`9Ool000MooaMc W004I1mcW7>LLi`2I1ocLi`9Ool000MooaMcW004I1mcW7>LI1oeLi`9Ool000MooaMcW0=T7oIcW0Uo o`001goo5g>L00=T7g>LLi`0mW>L2Goo0007OoooLi`ALi`9Ool00?moob5oo`00ogoo8Goo003oOolQ Ool00001\ \>"], ImageRangeCache->{{{0, 287}, {150, 0}} -> {-0.13284, -0.29236, 0.00441004, \ 0.00441004}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-02\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({120, 63}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-02\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cerniera\"\>", \ "\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>"}, {"\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>", \ "\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>"}, {"\<\"cRnull\"\>", "\<\"crosshairFig\"\>", "\<\"cRsol\"\>", \ "\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>"}, {"\<\"d\"\>", "\<\"datinum\"\>", "\<\"datiO\"\>", "\<\"datip\"\>", \ "\<\"diaM\"\>", "\<\"diaMb\"\>"}, {"\<\"diaN\"\>", "\<\"diaNb\"\>", "\<\"diaNs\"\>", "\<\"diaQ\"\>", \ "\<\"diaQb\"\>", "\<\"diaQs\"\>"}, {"\<\"dsh\"\>", "\<\"e\"\>", "\<\"eqbil\"\>", "\<\"eqbilbd\"\>", \ "\<\"eqbilt\"\>", "\<\"eqnsp\"\>"}, {"\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>", \ "\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>"}, {"\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>", "\<\"fabdp1\"\>", \ "\<\"fbd\"\>", "\<\"figM\"\>"}, {"\<\"figMb\"\>", "\<\"figN\"\>", "\<\"figNb\"\>", "\<\"figNs\"\>", \ "\<\"figQ\"\>", "\<\"figQb\"\>"}, {"\<\"figQs\"\>", "\<\"forze\"\>", "\<\"frame\"\>", \ "\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>"}, {"\<\"g\"\>", "\<\"grad\"\>", "\<\"grNQM\"\>", \ "\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"i\"\>"}, {"\<\"imageH\"\>", "\<\"imageW\"\>", "\<\"incastro\"\>", \ "\<\"incastroFig\"\>", "\<\"incastroV\"\>", "\<\"it\"\>"}, {"\<\"ix\"\>", "\<\"j\"\>", "\<\"jx\"\>", "\<\"ker\"\>", \ "\<\"ker0\"\>", "\<\"L\"\>"}, {"\<\"Li\"\>", "\<\"Lo\"\>", "\<\"m\"\>", "\<\"M\"\>", \ "\<\"matbilbd\"\>", "\<\"matvin\"\>"}, {"\<\"maxL\"\>", "\<\"mb\"\>", "\<\"meno\"\>", "\<\"mU\"\>", \ "\<\"myTeXForm\"\>", "\<\"n\"\>"}, {"\<\"nc\"\>", "\<\"ndiv\"\>", "\<\"newsym\"\>", \ "\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", "\<\"newsymlist2\"\>"}, {"\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>", \ "\<\"newsymlist5\"\>", "\<\"newsymlist6\"\>", "\<\"nf\"\>", "\<\"no\"\>"}, {"\<\"nv\"\>", "\<\"org\"\>", "\<\"outputDir\"\>", "\<\"p\"\>", "\<\ \"perno\"\>", "\<\"pernoFig\"\>"}, {"\<\"pernoV\"\>", "\<\"phframe\"\>", "\<\"pi\[UGrave]\"\>", \ "\<\"pltD\"\>", "\<\"pltDbv\"\>", "\<\"pltDs\"\>"}, {"\<\"pltDv\"\>", "\<\"pltM\"\>", "\<\"pltN\"\>", "\<\"pltO\"\>", "\ \<\"pltOa\"\>", "\<\"pltOax\"\>"}, {"\<\"pltObv\"\>", "\<\"pltOs\"\>", "\<\"pltOv\"\>", \ "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>"}, {"\<\"potbdv\"\>", "\<\"pote\"\>", "\<\"pt1\"\>", "\<\"pt2\"\>", \ "\<\"rango\"\>", "\<\"risp\"\>"}, {"\<\"s\"\>", "\<\"saldatura\"\>", "\<\"saldaturaFig\"\>", \ "\<\"saldaturaV\"\>", "\<\"sb\"\>", "\<\"sc\"\>"}, {"\<\"scM\"\>", "\<\"scN\"\>", "\<\"scQ\"\>", "\<\"secD\"\>", \ "\<\"secO\"\>", "\<\"simplifyDirac\"\>"}, {"\<\"sM\"\>", "\<\"sMf\"\>", "\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\ \"\>", "\<\"sNo\"\>"}, {"\<\"sNQM\"\>", "\<\"spbd\"\>", "\<\"splist\"\>", \ "\<\"splistV\"\>", "\<\"spro\"\>", "\<\"spsol\"\>"}, {"\<\"spsolD\"\>", "\<\"spsolDO\"\>", "\<\"spsolO\"\>", "\<\"spuv\ \[Theta]\"\>", "\<\"sQ\"\>", "\<\"sQo\"\>"}, {"\<\"stFile\"\>", "\<\"svar\"\>", "\<\"texBil1\"\>", \ "\<\"texBil2\"\>", "\<\"texBil3\"\>", "\<\"texCDval\"\>"}, {"\<\"texCname\"\>", "\<\"texCval\"\>", "\<\"texDname\"\>", \ "\<\"texDval\"\>", "\<\"texeqbd\"\>", "\<\"texeqbdO\"\>"}, {"\<\"texm\"\>", "\<\"texM\"\>", "\<\"texMin\"\>", "\<\"texMn\"\>", \ "\<\"texN\"\>", "\<\"texNin\"\>"}, {"\<\"texNn\"\>", "\<\"texQ\"\>", "\<\"texQin\"\>", \ "\<\"texQn\"\>", "\<\"texs\"\>", "\<\"texsm\"\>"}, {"\<\"texsn\"\>", "\<\"texu1\"\>", "\<\"texu1in\"\>", "\<\"texu1inO\ \"\>", "\<\"texu1n\"\>", "\<\"texu2\"\>"}, {"\<\"texu2in\"\>", "\<\"texu2inO\"\>", "\<\"texu2n\"\>", \ "\<\"texvinc\"\>", "\<\"texvincO\"\>", "\<\"tex\[Theta]\"\>"}, {"\<\"tex\[Theta]in\"\>", "\<\"tex\[Theta]inO\"\>", \ "\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", "\<\"thetao\"\>", "\<\"ticksOption\"\ \>"}, {"\<\"travi\"\>", "\<\"trv\"\>", "\<\"trv1\"\>", "\<\"trv2\"\>", \ "\<\"u\"\>", "\<\"u1\"\>"}, {"\<\"u1o\"\>", "\<\"u2\"\>", "\<\"u2o\"\>", "\<\"ub\"\>", \ "\<\"uo\"\>", "\<\"vam\"\>"}, {"\<\"var\"\>", "\<\"vecOa1\"\>", "\<\"vecOa2\"\>", \ "\<\"vinBer\"\>", "\<\"vincoli\"\>", "\<\"vincolibFig\"\>"}, {"\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>", "\<\"vsp\"\>", "\<\"wb\ \"\>", "\<\"xC\"\>", "\<\"xCshift\"\>"}, {"\<\"xDiag\"\>", "\<\"xLowerL\"\>", "\<\"xMax\"\>", \ "\<\"xMin\"\>", "\<\"xUpperR\"\>", "\<\"y1\"\>"}, {"\<\"y2\"\>", "\<\"YA\"\>", "\<\"YJ\"\>", "\<\"\[ScriptA]\"\>", \ "\<\"\[ScriptB]\"\>", "\<\"\[ScriptC]\"\>"}, {"\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\"\>", "\<\"\ \[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\[ScriptCapitalL]\"\>", \ "\<\"\[ScriptCapitalM]\"\>"}, {"\<\"\[ScriptCapitalY]\[ScriptCapitalA]\"\>", "\<\"\ \[ScriptCapitalY]\[ScriptCapitalJ]\"\>", "\<\"\[Alpha]\"\>", \ "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>", "\<\"\[Zeta]\"\>"}, {"\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>", "\<\"\[Theta]b\"\>", "\<\"\ \[Theta]o\"\>", "\<\"\[Kappa]\"\>", "\<\"\[Xi]\"\>"}, {"\<\"\[Chi]\"\>", "\<\"\[Omega]b\"\>", "\<\"\"\>", "\<\"\"\>", "\<\ \"\"\>", "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cerniera", "cernieraFig", "cernieraV", "cNQM"}, {"cNQMb", "cNQMsol", "cNQMval", "col", "coll", "cRlist"}, {"cRnull", "crosshairFig", "cRsol", "cRsol0", "cRsol1", "cRval"}, {"d", "datinum", "datiO", "datip", "diaM", "diaMb"}, { "diaN", "diaNb", "diaNs", "diaQ", "diaQb", "diaQs"}, {"dsh", "e", "eqbil", "eqbilbd", "eqbilt", "eqnsp"}, {"eqnspO", "eqvin", "eqvinO", "exp", "expr1", "extraSimplify"}, {"f", "fabd", "fabdp", "fabdp1", "fbd", "figM"}, {"figMb", "figN", "figNb", "figNs", "figQ", "figQb"}, {"figQs", "forze", "frame", "frameb", "fromCtoNQM", "fromDtoU"}, {"g", "grad", "grNQM", "gruv\[Theta]", "g$", "i"}, { "imageH", "imageW", "incastro", "incastroFig", "incastroV", "it"}, { "ix", "j", "jx", "ker", "ker0", "L"}, {"Li", "Lo", "m", "M", "matbilbd", "matvin"}, {"maxL", "mb", "meno", "mU", "myTeXForm", "n"}, {"nc", "ndiv", "newsym", "newsymlist", "newsymlist1", "newsymlist2"}, {"newsymlist3", "newsymlist4", "newsymlist5", "newsymlist6", "nf", "no"}, {"nv", "org", "outputDir", "p", "perno", "pernoFig"}, {"pernoV", "phframe", "pi\[UGrave]", "pltD", "pltDbv", "pltDs"}, {"pltDv", "pltM", "pltN", "pltO", "pltOa", "pltOax"}, { "pltObv", "pltOs", "pltOv", "pltOx", "pltQ", "potbd"}, {"potbdv", "pote", "pt1", "pt2", "rango", "risp"}, {"s", "saldatura", "saldaturaFig", "saldaturaV", "sb", "sc"}, {"scM", "scN", "scQ", "secD", "secO", "simplifyDirac"}, {"sM", "sMf", "sMo", "sN", "sNf", "sNo"}, {"sNQM", "spbd", "splist", "splistV", "spro", "spsol"}, { "spsolD", "spsolDO", "spsolO", "spuv\[Theta]", "sQ", "sQo"}, { "stFile", "svar", "texBil1", "texBil2", "texBil3", "texCDval"}, { "texCname", "texCval", "texDname", "texDval", "texeqbd", "texeqbdO"}, {"texm", "texM", "texMin", "texMn", "texN", "texNin"}, { "texNn", "texQ", "texQin", "texQn", "texs", "texsm"}, {"texsn", "texu1", "texu1in", "texu1inO", "texu1n", "texu2"}, {"texu2in", "texu2inO", "texu2n", "texvinc", "texvincO", "tex\[Theta]"}, { "tex\[Theta]in", "tex\[Theta]inO", "tex\[Theta]n", "theta", "thetao", "ticksOption"}, {"travi", "trv", "trv1", "trv2", "u", "u1"}, {"u1o", "u2", "u2o", "ub", "uo", "vam"}, {"var", "vecOa1", "vecOa2", "vinBer", "vincoli", "vincolibFig"}, {"vincoliDef", "vincoliFig", "vsp", "wb", "xC", "xCshift"}, {"xDiag", "xLowerL", "xMax", "xMin", "xUpperR", "y1"}, {"y2", "YA", "YJ", "\[ScriptA]", "\[ScriptB]", "\[ScriptC]"}, { "\[ScriptCapitalC]", "\[ScriptD]", "\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]", "\[ScriptCapitalM]"}, { "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]", "\[Alpha]", "\[Gamma]", "\[Epsilon]", "\[Zeta]"}, {"\[Zeta]$", "\[Theta]", "\[Theta]b", "\[Theta]o", "\[Kappa]", "\[Xi]"}, {"\[Chi]", "\[Omega]b"}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{672, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 280, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2522, 81, 51, 1, 59, "Section", Evaluatable->False], Cell[2576, 84, 1127, 30, 252, "SmallText"], Cell[3706, 116, 1520, 27, 236, "SmallText"], Cell[5229, 145, 498, 12, 60, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[5764, 162, 57, 1, 39, "Section", Evaluatable->False], Cell[5824, 165, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[5955, 171, 56, 1, 30, "Input"], Cell[6014, 174, 91, 1, 29, "Output"] }, Open ]], Cell[6120, 178, 97, 2, 28, "SmallText"], Cell[6220, 182, 130, 2, 50, "Input"], Cell[6353, 186, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6885, 199, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7071, 209, 84, 2, 47, "Subsection"], Cell[7158, 213, 109, 2, 28, "SmallText"], Cell[7270, 217, 128, 4, 50, "Input"], Cell[7401, 223, 131, 4, 28, "SmallText"], Cell[7535, 229, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7817, 240, 103, 5, 31, "Subsection"], Cell[7923, 247, 46, 0, 28, "SmallText"], Cell[7972, 249, 101, 3, 46, "Input"], Cell[8076, 254, 364, 10, 60, "SmallText"], Cell[8443, 266, 107, 3, 46, "Input"], Cell[8553, 271, 319, 9, 60, "SmallText"], Cell[8875, 282, 116, 3, 46, "Input"], Cell[8994, 287, 215, 5, 66, "Input"], Cell[9212, 294, 130, 3, 28, "SmallText"], Cell[9345, 299, 129, 3, 46, "Input"], Cell[9477, 304, 121, 3, 28, "SmallText"], Cell[9601, 309, 199, 5, 58, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[9837, 319, 56, 0, 31, "Subsection"], Cell[9896, 321, 45, 0, 28, "SmallText"], Cell[9944, 323, 124, 3, 30, "Input"], Cell[10071, 328, 42, 0, 28, "SmallText"], Cell[10116, 330, 118, 2, 30, "Input"], Cell[10237, 334, 43, 1, 30, "Input"], Cell[10283, 337, 227, 4, 28, "SmallText"], Cell[10513, 343, 53, 1, 30, "Input"], Cell[10569, 346, 271, 5, 42, "Input"], Cell[10843, 353, 46, 0, 28, "SmallText"], Cell[10892, 355, 195, 4, 42, "Input"], Cell[11090, 361, 52, 0, 28, "SmallText"], Cell[11145, 363, 504, 9, 131, "Input"], Cell[11652, 374, 613, 11, 131, "Input"], Cell[12268, 387, 73, 0, 28, "SmallText"], Cell[12344, 389, 46, 1, 30, "Input"], Cell[12393, 392, 134, 3, 28, "SmallText"], Cell[12530, 397, 182, 4, 30, "Input"], Cell[12715, 403, 146, 3, 30, "Input"], Cell[12864, 408, 42, 0, 28, "SmallText"], Cell[12909, 410, 203, 4, 42, "Input"], Cell[13115, 416, 48, 0, 28, "SmallText"], Cell[13166, 418, 226, 5, 85, "Input"], Cell[13395, 425, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13637, 435, 111, 3, 50, "Subsection"], Cell[CellGroupData[{ Cell[13773, 442, 144, 2, 70, "Input"], Cell[13920, 446, 3821, 112, 80, 951, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17802, 565, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[17977, 575, 103, 5, 47, "Subsection"], Cell[18083, 582, 62, 1, 30, "Input"], Cell[18148, 585, 57, 1, 30, "Input"], Cell[18208, 588, 417, 11, 76, "SmallText"], Cell[18628, 601, 130, 3, 46, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[18795, 609, 210, 7, 66, "Subsection"], Cell[CellGroupData[{ Cell[19030, 620, 52, 1, 30, "Input"], Cell[19085, 623, 46, 1, 70, "Output"] }, Open ]], Cell[19146, 627, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[19481, 636, 50, 1, 30, "Input"], Cell[19534, 639, 46, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[19641, 647, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[19782, 654, 132, 3, 47, "Subsection"], Cell[19917, 659, 137, 3, 30, "Input"], Cell[20057, 664, 74, 1, 30, "Input"], Cell[20134, 667, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[21261, 699, 92, 1, 30, "Input"], Cell[21356, 702, 55, 1, 70, "Output"] }, Open ]], Cell[21426, 706, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[21556, 712, 174, 3, 30, "Input"], Cell[21733, 717, 334, 6, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[22116, 729, 64, 0, 31, "Subsection"], Cell[22183, 731, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[22488, 741, 87, 1, 30, "Input"], Cell[22578, 744, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22724, 751, 104, 2, 30, "Input"], Cell[22831, 755, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22926, 761, 190, 3, 50, "Input"], Cell[23119, 766, 139, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23295, 773, 264, 4, 71, "Input"], Cell[23562, 779, 154, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23753, 786, 65, 1, 30, "Input"], Cell[23821, 789, 269, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[24139, 800, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[24230, 804, 116, 2, 30, "Input"], Cell[24349, 808, 1176, 36, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25562, 849, 290, 5, 50, "Input"], Cell[25855, 856, 986, 28, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26878, 889, 289, 5, 50, "Input"], Cell[27170, 896, 855, 27, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[28086, 930, 62, 0, 39, "Section"], Cell[28151, 932, 71, 1, 30, "Input"], Cell[28225, 935, 146, 3, 28, "SmallText"], Cell[28374, 940, 408, 9, 70, "Input"], Cell[28785, 951, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[28880, 955, 198, 4, 30, "Input"], Cell[29081, 961, 174, 3, 70, "Output"] }, Open ]], Cell[29270, 967, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29365, 971, 198, 4, 30, "Input"], Cell[29566, 977, 174, 3, 70, "Output"] }, Open ]], Cell[29755, 983, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29844, 987, 190, 4, 30, "Input"], Cell[30037, 993, 151, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[30237, 1001, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[30390, 1010, 53, 0, 47, "Subsection"], Cell[30446, 1012, 110, 2, 30, "Input"], Cell[30559, 1016, 152, 3, 30, "Input"], Cell[30714, 1021, 249, 5, 50, "Input"], Cell[30966, 1028, 330, 6, 70, "Input"], Cell[31299, 1036, 193, 4, 30, "Input"], Cell[31495, 1042, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[31665, 1050, 103, 5, 31, "Subsection"], Cell[31771, 1057, 160, 4, 60, "SmallText"], Cell[31934, 1063, 49, 1, 30, "Input"], Cell[31986, 1066, 106, 2, 50, "Input"], Cell[32095, 1070, 119, 3, 28, "SmallText"], Cell[32217, 1075, 80, 2, 46, "Input"], Cell[32300, 1079, 505, 8, 92, "SmallText"], Cell[32808, 1089, 124, 3, 46, "Input"], Cell[32935, 1094, 224, 3, 110, "Input"], Cell[CellGroupData[{ Cell[33184, 1101, 40, 1, 30, "Input"], Cell[33227, 1104, 119, 2, 70, "Output"] }, Open ]], Cell[33361, 1109, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[33456, 1113, 137, 3, 30, "Input"], Cell[33596, 1118, 134, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[33779, 1126, 56, 0, 31, "Subsection"], Cell[33838, 1128, 72, 0, 28, "SmallText"], Cell[33913, 1130, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[33982, 1135, 43, 1, 30, "Input"], Cell[34028, 1138, 56, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34121, 1144, 280, 5, 90, "Input"], Cell[34404, 1151, 36, 1, 70, "Output"] }, Open ]], Cell[34455, 1155, 150, 3, 44, "SmallText"], Cell[34608, 1160, 43, 1, 30, "Input"], Cell[34654, 1163, 53, 1, 30, "Input"], Cell[34710, 1166, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[36012, 1196, 240, 4, 70, "Input"], Cell[36255, 1202, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[36328, 1208, 48, 1, 30, "Input"], Cell[36379, 1211, 396, 12, 70, "Output"] }, Open ]], Cell[36790, 1226, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[36905, 1232, 43, 1, 30, "Input"], Cell[36951, 1235, 56, 1, 70, "Output"] }, Open ]], Cell[37022, 1239, 222, 4, 90, "Input"], Cell[37247, 1245, 219, 4, 90, "Input"], Cell[37469, 1251, 67, 0, 28, "SmallText"], Cell[37539, 1253, 72, 1, 30, "Input"], Cell[37614, 1256, 82, 1, 30, "Input"], Cell[37699, 1259, 393, 7, 208, "Input"], Cell[38095, 1268, 403, 7, 208, "Input"], Cell[38501, 1277, 214, 4, 118, "Input"], Cell[38718, 1283, 717, 13, 338, "Input"], Cell[39438, 1298, 452, 8, 202, "Input"], Cell[39893, 1308, 213, 4, 90, "Input"], Cell[40109, 1314, 155, 3, 70, "Input"], Cell[40267, 1319, 57, 1, 30, "Input"], Cell[40327, 1322, 59, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[40423, 1328, 75, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[40523, 1332, 145, 2, 70, "Input"], Cell[40671, 1336, 4375, 118, 70, 981, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[45083, 1459, 144, 2, 70, "Input"], Cell[45230, 1463, 3284, 99, 70, 873, 65, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[48563, 1568, 78, 0, 31, "Subsection"], Cell[48644, 1570, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[48900, 1578, 213, 4, 50, "Input"], Cell[49116, 1584, 906, 27, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[50059, 1616, 70, 1, 30, "Input"], Cell[50132, 1619, 486, 15, 70, "Output"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[50679, 1641, 89, 1, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[50793, 1646, 68, 1, 47, "Subsection", Evaluatable->False], Cell[50864, 1649, 119, 3, 28, "SmallText"], Cell[50986, 1654, 156, 3, 28, "SmallText"], Cell[51145, 1659, 356, 5, 95, "Input"], Cell[51504, 1666, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[51872, 1676, 37, 1, 30, "Input"], Cell[51912, 1679, 311, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[52260, 1689, 71, 1, 30, "Input"], Cell[52334, 1692, 551, 9, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[52934, 1707, 57, 0, 31, "Subsection"], Cell[52994, 1709, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[53113, 1715, 169, 3, 30, "Input"], Cell[53285, 1720, 119, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[53441, 1727, 93, 1, 30, "Input"], Cell[53537, 1730, 119, 2, 70, "Output"] }, Open ]], Cell[53671, 1735, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[53757, 1739, 344, 6, 90, "Input"], Cell[54104, 1747, 134, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[54275, 1754, 69, 1, 30, "Input"], Cell[54347, 1757, 104, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[54500, 1765, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[54590, 1769, 70, 1, 30, "Input"], Cell[54663, 1772, 322, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[55034, 1783, 105, 2, 31, "Subsection"], Cell[CellGroupData[{ Cell[55164, 1789, 195, 4, 30, "Input"], Cell[55362, 1795, 233, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[55632, 1804, 63, 1, 30, "Input"], Cell[55698, 1807, 255, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[56002, 1817, 88, 1, 31, "Subsection", Evaluatable->False], Cell[56093, 1820, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[56298, 1828, 37, 1, 30, "Input"], Cell[56338, 1831, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56433, 1837, 138, 4, 30, "Input"], Cell[56574, 1843, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56669, 1849, 103, 2, 30, "Input"], Cell[56775, 1853, 283, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57095, 1863, 134, 3, 30, "Input"], Cell[57232, 1868, 291, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57560, 1881, 134, 3, 30, "Input"], Cell[57697, 1886, 756, 22, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[58502, 1914, 78, 0, 31, "Subsection"], Cell[58583, 1916, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[58691, 1921, 45, 1, 30, "Input"], Cell[58739, 1924, 35, 1, 70, "Output"] }, Open ]], Cell[58789, 1928, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[59032, 1936, 51, 1, 30, "Input"], Cell[59086, 1939, 35, 1, 70, "Output"] }, Open ]], Cell[59136, 1943, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[59284, 1950, 53, 1, 30, "Input"], Cell[59340, 1953, 35, 1, 70, "Output"] }, Open ]], Cell[59390, 1957, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[59547, 1964, 51, 1, 30, "Input"], Cell[59601, 1967, 35, 1, 70, "Output"] }, Open ]], Cell[59651, 1971, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[59706, 1975, 134, 2, 30, "Input"], Cell[59843, 1979, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59932, 1985, 230, 5, 30, "Input"], Cell[60165, 1992, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[60249, 1999, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[60346, 2003, 461, 8, 19, "Input", CellOpen->False], Cell[60810, 2013, 195, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61042, 2023, 1993, 32, 19, "Input", CellOpen->False], Cell[63038, 2057, 186, 5, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[63285, 2069, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[63452, 2079, 56, 0, 47, "Subsection"], Cell[63511, 2081, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[63611, 2085, 92, 1, 50, "Input"], Cell[63706, 2088, 160, 2, 70, "Output"] }, Open ]], Cell[63881, 2093, 182, 3, 44, "SmallText"], Cell[64066, 2098, 248, 7, 50, "Input"], Cell[CellGroupData[{ Cell[64339, 2109, 71, 1, 30, "Input"], Cell[64413, 2112, 391, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[64853, 2130, 134, 5, 31, "Subsection"], Cell[64990, 2137, 420, 7, 76, "SmallText"], Cell[65413, 2146, 104, 3, 46, "Input"], Cell[65520, 2151, 313, 9, 44, "SmallText"], Cell[65836, 2162, 407, 8, 106, "Input"], Cell[66246, 2172, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[66361, 2178, 135, 3, 30, "Input"], Cell[66499, 2183, 36, 1, 70, "Output"] }, Open ]], Cell[66550, 2187, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[66702, 2194, 140, 3, 70, "Input"], Cell[66845, 2199, 88, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[66970, 2205, 182, 4, 50, "Input"], Cell[67155, 2211, 127, 2, 70, "Output"] }, Open ]], Cell[67297, 2216, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[67368, 2220, 46, 1, 30, "Input"], Cell[67417, 2223, 43, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[67509, 2230, 72, 0, 31, "Subsection"], Cell[67584, 2232, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[67750, 2239, 271, 7, 50, "Input"], Cell[68024, 2248, 45, 1, 70, "Output"] }, Open ]], Cell[68084, 2252, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[68294, 2260, 160, 4, 30, "Input"], Cell[68457, 2266, 36, 1, 70, "Output"] }, Open ]], Cell[68508, 2270, 524, 9, 110, "Input"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[69081, 2285, 88, 1, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[69194, 2290, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[69271, 2294, 76, 1, 30, "Input"], Cell[69350, 2297, 198, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[69597, 2306, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[69713, 2311, 571, 10, 70, "Input"], Cell[70287, 2323, 182, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70506, 2331, 149, 2, 30, "Input"], Cell[70658, 2335, 163, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70858, 2343, 40, 1, 30, "Input"], Cell[70901, 2346, 182, 3, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[71144, 2356, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[71285, 2363, 45, 0, 47, "Subsection"], Cell[71333, 2365, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[71499, 2372, 1094, 25, 50, "Input"], Cell[72596, 2399, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[73660, 2429, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[73750, 2433, 217, 4, 50, "Input"], Cell[73970, 2439, 186, 3, 70, "Output"] }, Open ]], Cell[74171, 2445, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[74275, 2449, 365, 9, 30, "Input"], Cell[74643, 2460, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[75012, 2474, 40, 0, 31, "Subsection"], Cell[75055, 2476, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[75222, 2483, 227, 3, 50, "Input"], Cell[75452, 2488, 320, 6, 70, "Output"] }, Open ]], Cell[75787, 2497, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[75920, 2504, 289, 4, 70, "Input"], Cell[76212, 2510, 773, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[77022, 2533, 246, 4, 70, "Input"], Cell[77271, 2539, 457, 8, 70, "Output"] }, Open ]], Cell[77743, 2550, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[77870, 2556, 330, 5, 70, "Input"], Cell[78203, 2563, 715, 17, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[78955, 2585, 244, 4, 70, "Input"], Cell[79202, 2591, 398, 6, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[79637, 2602, 169, 3, 30, "Input"], Cell[79809, 2607, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[79961, 2614, 76, 1, 30, "Input"], Cell[80040, 2617, 657, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[80734, 2634, 75, 1, 30, "Input"], Cell[80812, 2637, 542, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[81403, 2651, 64, 0, 31, "Subsection"], Cell[81470, 2653, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[81720, 2662, 190, 4, 50, "Input"], Cell[81913, 2668, 109, 2, 70, "Output"] }, Open ]], Cell[82037, 2673, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[82174, 2680, 311, 7, 90, "Input"], Cell[82488, 2689, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82634, 2696, 257, 4, 50, "Input"], Cell[82894, 2702, 149, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[83080, 2709, 127, 2, 31, "Input"], Cell[83210, 2713, 164, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[83411, 2720, 60, 1, 30, "Input"], Cell[83474, 2723, 68, 1, 70, "Output"] }, Open ]], Cell[83557, 2727, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[83690, 2734, 61, 1, 30, "Input"], Cell[83754, 2737, 410, 7, 70, "Output"] }, Open ]], Cell[84179, 2747, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[84306, 2753, 59, 1, 30, "Input"], Cell[84368, 2756, 377, 6, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[84806, 2769, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[84909, 2774, 64, 1, 47, "Subsection", Evaluatable->False], Cell[84976, 2777, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[85152, 2784, 422, 8, 90, "Input"], Cell[85577, 2794, 110, 2, 70, "Output"] }, Open ]], Cell[85702, 2799, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[85918, 2807, 82, 1, 30, "Input"], Cell[86003, 2810, 83, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[86135, 2817, 78, 1, 31, "Subsection", Evaluatable->False], Cell[86216, 2820, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[86349, 2826, 93, 1, 30, "Input"], Cell[86445, 2829, 266, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[86748, 2842, 93, 1, 30, "Input"], Cell[86844, 2845, 250, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[87131, 2859, 107, 2, 30, "Input"], Cell[87241, 2863, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[87313, 2869, 108, 2, 30, "Input"], Cell[87424, 2873, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[87497, 2879, 39, 1, 30, "Input"], Cell[87539, 2882, 68, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[87656, 2889, 55, 0, 31, "Subsection"], Cell[87714, 2891, 246, 4, 110, "Input"], Cell[87963, 2897, 244, 4, 110, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[88244, 2906, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[88349, 2911, 169, 3, 30, "Input"], Cell[88521, 2916, 43, 1, 70, "Output"] }, Open ]], Cell[88579, 2920, 42, 1, 30, "Input"], Cell[88624, 2923, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[88735, 2928, 88, 1, 30, "Input"], Cell[88826, 2931, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88906, 2937, 221, 4, 30, "Input"], Cell[89130, 2943, 105, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[89272, 2950, 128, 2, 30, "Input"], Cell[89403, 2954, 1219, 30, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[90683, 2991, 123, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[90831, 2998, 140, 5, 47, "Subsection"], Cell[90974, 3005, 110, 2, 30, "Input"], Cell[91087, 3009, 78, 1, 30, "Input"], Cell[91168, 3012, 76, 1, 30, "Input"], Cell[91247, 3015, 59, 1, 30, "Input"], Cell[91309, 3018, 471, 8, 118, "Input"], Cell[91783, 3028, 65, 1, 30, "Input"], Cell[91851, 3031, 85, 1, 30, "Input"], Cell[91939, 3034, 150, 3, 30, "Input"], Cell[92092, 3039, 193, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[92310, 3047, 304, 5, 50, "Input"], Cell[92617, 3054, 38, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[92704, 3061, 64, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[92793, 3065, 91, 1, 30, "Input"], Cell[92887, 3068, 182, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[93106, 3076, 89, 1, 30, "Input"], Cell[93198, 3079, 105, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[93352, 3087, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[93413, 3091, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[93476, 3095, 297, 6, 90, "Input"], Cell[93776, 3103, 326, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[94151, 3119, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[94216, 3123, 292, 6, 90, "Input"], Cell[94511, 3131, 379, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[94939, 3148, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[94996, 3152, 292, 6, 90, "Input"], Cell[95291, 3160, 392, 11, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[95744, 3178, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[95802, 3182, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[95871, 3186, 289, 6, 70, "Input"], Cell[96163, 3194, 326, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[96538, 3210, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[96611, 3214, 289, 6, 70, "Input"], Cell[96903, 3222, 507, 13, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[97459, 3241, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[97518, 3245, 295, 6, 70, "Input"], Cell[97816, 3253, 503, 13, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[98380, 3273, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[98523, 3280, 58, 1, 30, "Input"], Cell[98584, 3283, 411, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[99032, 3300, 62, 0, 43, "Subsubsection"], Cell[99097, 3302, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[99181, 3306, 302, 5, 150, "Input"], Cell[99486, 3313, 388, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[99923, 3330, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[100012, 3334, 302, 5, 150, "Input"], Cell[100317, 3341, 384, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[100750, 3358, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[100827, 3362, 453, 8, 189, "Input"], Cell[101283, 3372, 337, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[101669, 3388, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[101748, 3392, 623, 11, 191, "Input"], Cell[102374, 3405, 330, 10, 70, "Output"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[102777, 3423, 131, 6, 39, "Section", Evaluatable->False], Cell[102911, 3431, 118, 3, 33, "Text"], Cell[103032, 3436, 218, 5, 46, "Input"], Cell[103253, 3443, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[103503, 3451, 132, 3, 50, "Input"], Cell[103638, 3456, 36, 1, 29, "Output"] }, Open ]], Cell[103689, 3460, 123, 3, 33, "Text"], Cell[103815, 3465, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[103942, 3472, 142, 3, 70, "Input"], Cell[104087, 3477, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[104160, 3483, 69, 1, 30, "Input"], Cell[104232, 3486, 174, 3, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[104455, 3495, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[104587, 3502, 33, 0, 47, "Subsection"], Cell[104623, 3504, 215, 4, 50, "Input"], Cell[104841, 3510, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[105092, 3519, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[105183, 3524, 67, 1, 30, "Input"], Cell[105253, 3527, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[105333, 3533, 68, 1, 30, "Input"], Cell[105404, 3536, 221, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[105662, 3544, 81, 1, 30, "Input"], Cell[105746, 3547, 238, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106021, 3557, 84, 1, 30, "Input"], Cell[106108, 3560, 249, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106394, 3570, 73, 1, 30, "Input"], Cell[106470, 3573, 125, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106632, 3580, 76, 1, 30, "Input"], Cell[106711, 3583, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106791, 3589, 73, 1, 30, "Input"], Cell[106867, 3592, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106980, 3598, 76, 1, 30, "Input"], Cell[107059, 3601, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[107193, 3608, 75, 1, 31, "Subsection", Evaluatable->False], Cell[107271, 3611, 384, 16, 28, "SmallText"], Cell[107658, 3629, 261, 12, 28, "SmallText"], Cell[107922, 3643, 1652, 33, 152, "Input"], Cell[109577, 3678, 1634, 32, 152, "Input"], Cell[111214, 3712, 393, 16, 50, "Text"], Cell[111610, 3730, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[111711, 3736, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[111828, 3741, 132, 3, 19, "Input", CellOpen->False], Cell[111963, 3746, 10442, 396, 77, 4909, 325, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[122454, 4148, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[122573, 4155, 155, 4, 19, "Input", CellOpen->False], Cell[122731, 4161, 11314, 428, 81, 5319, 351, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[134106, 4596, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[134296, 4606, 56, 0, 47, "Subsection"], Cell[134355, 4608, 136, 3, 28, "SmallText"], Cell[134494, 4613, 222, 5, 30, "Input"], Cell[134719, 4620, 446, 7, 84, "Input"], Cell[135168, 4629, 38, 0, 28, "SmallText"], Cell[135209, 4631, 328, 7, 50, "Input"], Cell[135540, 4640, 42, 0, 28, "SmallText"], Cell[135585, 4642, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[135839, 4651, 86, 1, 30, "Input"], Cell[135928, 4654, 161, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[136126, 4663, 88, 1, 30, "Input"], Cell[136217, 4666, 161, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[136427, 4676, 42, 0, 31, "Subsection"], Cell[136472, 4678, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[136729, 4686, 263, 5, 90, "Input"], Cell[136995, 4693, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[137076, 4699, 263, 5, 90, "Input"], Cell[137342, 4706, 52, 1, 70, "Output"] }, Open ]], Cell[137409, 4710, 86, 1, 30, "Input"], Cell[137498, 4713, 128, 2, 76, "Input"], Cell[137629, 4717, 112, 2, 30, "Input"], Cell[137744, 4721, 129, 3, 30, "Input"], Cell[137876, 4726, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[137980, 4732, 132, 5, 31, "Subsection"], Cell[138115, 4739, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[138321, 4748, 82, 1, 32, "Input"], Cell[138406, 4751, 59, 1, 29, "Output"] }, Open ]], Cell[138480, 4755, 180, 6, 41, "Input"], Cell[CellGroupData[{ Cell[138685, 4765, 62, 1, 30, "Input"], Cell[138750, 4768, 82, 1, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[138881, 4775, 28, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[138934, 4779, 221, 3, 70, "Input"], Cell[139158, 4784, 8988, 242, 159, 2009, 151, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[148183, 5031, 219, 3, 70, "Input"], Cell[148405, 5036, 7876, 218, 159, 1861, 139, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[156342, 5261, 159, 6, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[156526, 5271, 34, 0, 47, "Subsection"], Cell[156563, 5273, 136, 3, 28, "SmallText"], Cell[156702, 5278, 191, 4, 30, "Input"], Cell[156896, 5284, 36, 0, 28, "SmallText"], Cell[156935, 5286, 349, 8, 50, "Input"], Cell[157287, 5296, 46, 0, 28, "SmallText"], Cell[157336, 5298, 925, 20, 150, "Input"], Cell[158264, 5320, 122, 3, 30, "Input"], Cell[158389, 5325, 109, 2, 30, "Input"], Cell[158501, 5329, 109, 2, 30, "Input"], Cell[158613, 5333, 270, 5, 70, "Input"], Cell[158886, 5340, 191, 4, 30, "Input"], Cell[159080, 5346, 349, 8, 50, "Input"], Cell[159432, 5356, 925, 20, 150, "Input"], Cell[160360, 5378, 122, 3, 30, "Input"], Cell[160485, 5383, 109, 2, 30, "Input"], Cell[160597, 5387, 109, 2, 30, "Input"], Cell[160709, 5391, 270, 5, 70, "Input"], Cell[160982, 5398, 191, 4, 30, "Input"], Cell[161176, 5404, 349, 8, 50, "Input"], Cell[161528, 5414, 122, 3, 30, "Input"], Cell[161653, 5419, 109, 2, 30, "Input"], Cell[161765, 5423, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[162065, 5433, 128, 5, 31, "Subsection"], Cell[162196, 5440, 48, 1, 30, "Input"], Cell[162247, 5443, 48, 1, 30, "Input"], Cell[162298, 5446, 48, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[162383, 5452, 51, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[162459, 5456, 167, 2, 70, "Input"], Cell[162629, 5460, 4984, 171, 159, 1873, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[167662, 5637, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[167729, 5641, 167, 2, 70, "Input"], Cell[167899, 5645, 6789, 214, 159, 2313, 154, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[174737, 5865, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[174805, 5869, 167, 2, 70, "Input"], Cell[174975, 5873, 6927, 207, 159, 2147, 143, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[181963, 6087, 104, 1, 39, "Section"], Cell[CellGroupData[{ Cell[182092, 6092, 44, 1, 30, "Input"], Cell[182139, 6095, 91, 1, 70, "Output"] }, Open ]], Cell[182245, 6099, 137, 3, 70, "Input"], Cell[182385, 6104, 231, 4, 70, "Input"], Cell[182619, 6110, 237, 4, 70, "Input"], Cell[182859, 6116, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[182998, 6122, 328, 5, 72, "Input"], Cell[183329, 6129, 43, 1, 70, "Output"] }, Open ]], Cell[183387, 6133, 255, 4, 90, "Input"], Cell[183645, 6139, 257, 4, 90, "Input"], Cell[183905, 6145, 281, 5, 90, "Input"], Cell[184189, 6152, 254, 4, 90, "Input"], Cell[184446, 6158, 254, 4, 90, "Input"], Cell[184703, 6164, 254, 4, 90, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[184994, 6173, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[185320, 6187, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[185387, 6191, 44, 1, 30, "Input"], Cell[185434, 6194, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[185562, 6200, 69, 1, 30, "Input"], Cell[185634, 6203, 70, 1, 70, "Output"] }, Open ]], Cell[185719, 6207, 137, 3, 28, "SmallText"], Cell[185859, 6212, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[186399, 6226, 58, 1, 30, "Input"], Cell[186460, 6229, 411, 12, 70, "Output"] }, Open ]], Cell[186886, 6244, 226, 5, 44, "SmallText"], Cell[187115, 6251, 144, 3, 50, "Input"], Cell[187262, 6256, 191, 4, 28, "SmallText"], Cell[187456, 6262, 191, 5, 70, "Input"], Cell[187650, 6269, 347, 6, 70, "Input"], Cell[188000, 6277, 219, 4, 50, "Input"], Cell[188222, 6283, 548, 10, 110, "Input"], Cell[188773, 6295, 197, 3, 50, "Input"], Cell[188973, 6300, 381, 7, 70, "Input"], Cell[189357, 6309, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[189675, 6318, 259, 9, 31, "Subsection"], Cell[189937, 6329, 122, 3, 28, "SmallText"], Cell[190062, 6334, 193, 4, 31, "Input"], Cell[190258, 6340, 193, 4, 31, "Input"], Cell[190454, 6346, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[190672, 6354, 801, 15, 130, "Input"], Cell[191476, 6371, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[191571, 6378, 275, 9, 31, "Subsection"], Cell[191849, 6389, 175, 4, 30, "Input"], Cell[192027, 6395, 175, 4, 30, "Input"], Cell[192205, 6401, 175, 4, 30, "Input"], Cell[192383, 6407, 89, 1, 30, "Input"], Cell[192475, 6410, 89, 1, 30, "Input"], Cell[192567, 6413, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[192681, 6418, 759, 14, 130, "Input"], Cell[193443, 6434, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[193540, 6441, 260, 9, 31, "Subsection"], Cell[193803, 6452, 122, 3, 28, "SmallText"], Cell[193928, 6457, 214, 4, 31, "Input"], Cell[194145, 6463, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[194382, 6471, 446, 7, 110, "Input"], Cell[194831, 6480, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[194916, 6486, 450, 7, 110, "Input"], Cell[195369, 6495, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[195465, 6502, 268, 9, 31, "Subsection"], Cell[195736, 6513, 122, 3, 28, "SmallText"], Cell[195861, 6518, 224, 4, 31, "Input"], Cell[196088, 6524, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[196342, 6532, 449, 7, 110, "Input"], Cell[196794, 6541, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[196880, 6547, 446, 7, 110, "Input"], Cell[197329, 6556, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[197426, 6563, 262, 9, 31, "Subsection"], Cell[197691, 6574, 203, 4, 30, "Input"], Cell[197897, 6580, 216, 4, 30, "Input"], Cell[198116, 6586, 230, 4, 30, "Input"], Cell[198349, 6592, 201, 4, 30, "Input"], Cell[198553, 6598, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[198792, 6606, 469, 7, 110, "Input"], Cell[199264, 6615, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[199345, 6621, 465, 7, 90, "Input"], Cell[199813, 6630, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[199894, 6636, 471, 7, 110, "Input"], Cell[200368, 6645, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[200462, 6652, 272, 9, 31, "Subsection"], Cell[200737, 6663, 203, 4, 30, "Input"], Cell[200943, 6669, 203, 4, 30, "Input"], Cell[201149, 6675, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[201377, 6683, 751, 14, 130, "Input"], Cell[202131, 6699, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[202226, 6706, 293, 9, 31, "Subsection"], Cell[202522, 6717, 108, 3, 28, "SmallText"], Cell[202633, 6722, 206, 3, 50, "Input"], Cell[202842, 6727, 194, 4, 30, "Input"], Cell[203039, 6733, 204, 4, 30, "Input"], Cell[203246, 6739, 92, 1, 30, "Input"], Cell[203341, 6742, 92, 1, 30, "Input"], Cell[203436, 6745, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[203570, 6751, 780, 14, 130, "Input"], Cell[204353, 6767, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[204450, 6774, 274, 9, 31, "Subsection"], Cell[204727, 6785, 102, 2, 28, "SmallText"], Cell[204832, 6789, 202, 3, 50, "Input"], Cell[205037, 6794, 190, 4, 30, "Input"], Cell[205230, 6800, 202, 4, 30, "Input"], Cell[205435, 6806, 92, 1, 30, "Input"], Cell[205530, 6809, 92, 1, 30, "Input"], Cell[205625, 6812, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[205759, 6818, 776, 14, 130, "Input"], Cell[206538, 6834, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[206634, 6841, 266, 9, 31, "Subsection"], Cell[206903, 6852, 203, 4, 30, "Input"], Cell[207109, 6858, 203, 4, 30, "Input"], Cell[207315, 6864, 227, 4, 30, "Input"], Cell[207545, 6870, 92, 1, 30, "Input"], Cell[207640, 6873, 92, 1, 30, "Input"], Cell[207735, 6876, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[207869, 6882, 795, 15, 150, "Input"], Cell[208667, 6899, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[208761, 6906, 280, 9, 31, "Subsection"], Cell[209044, 6917, 51, 1, 30, "Input"], Cell[209098, 6920, 275, 5, 91, "Input"], Cell[209376, 6927, 280, 5, 91, "Input"], Cell[209659, 6934, 207, 4, 90, "Input"], Cell[209869, 6940, 212, 4, 90, "Input"], Cell[210084, 6946, 91, 1, 30, "Input"], Cell[210178, 6949, 84, 1, 30, "Input"], Cell[210265, 6952, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[211738, 6986, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[211828, 6991, 346, 8, 19, "Input", CellOpen->False], Cell[212177, 7001, 9474, 154, 807, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)