(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 229279, 7474]*) (*NotebookOutlinePosition[ 229940, 7497]*) (* CellTagsIndexPosition[ 229896, 7493]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-04\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 1;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[ \(\(\[Alpha][1] = 0;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(L[1] = \[ScriptCapitalL];\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .25 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0535714 0.952381 [ [ 0 0 0 0 ] [ 1 .25 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .25 L 0 .25 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05357 m .97619 .05357 L s .5 Mabswid .2619 .00595 m .2619 .10119 L s .5 .00595 m .5 .10119 L s .7381 .00595 m .7381 .10119 L s 0 0 0 r 2 Mabswid .5 .05357 m .69048 .05357 L s .62698 .08532 m .69048 .05357 L s .62698 .02183 m .69048 .05357 L s .5 .05357 m .5 .24405 L s .46825 .18056 m .5 .24405 L s .53175 .18056 m .5 .24405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 72}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2 002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00QWoo00<007ooOol01Goo0P0027oo00<007ooOol0QGoo0026Ool00`00Oomoo`05Ool20008Ool0 0`00Oomoo`25Ool008Ioo`8000Ioo`8000Moo`8008Moo`00Qgoo00<007ooOol017oo0P001goo00<0 07ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03001o ogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00Oomo o`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo08Uo o`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool00`00Oomoo`020003Ool00`00Oomoo`2:Ool008]o o`800003Ool00000009oo`8008aoo`00S7oo00@007oo0000009oo`03001oogoo08]oo`00S7oo1000 00=oo`000000SGoo002=Ool300000goo001oo`2=Ool008eoo`D008ioo`00SWoo0`00Sgoo002>Ool3 002?Ool008ioo`80091oo`00SWoo0P00T7oo0000\ \>"], ImageRangeCache->{{{0, 287}, {71, 0}} -> {-0.0305511, -0.0562513, \ 0.00369722, 0.00369722}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(b[1]\)[\[Zeta]_] := \(-\[ScriptB]\)\ e\_2\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ \[ScriptCapitalC][2] + \[ScriptCapitalC][3]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ sQo[1] + sMo[1]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "\[ScriptB]"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 1]][ \[Zeta]], \[ScriptB]], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][ 2]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ \[ScriptCapitalC][ 2] + \(sM[1]\)[\[Zeta]] == \[ScriptCapitalC][3]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], \[ScriptCapitalC][ 2]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], \[ScriptCapitalC][ 2]], sM[ 1][ \[Zeta]]], \[ScriptCapitalC][ 3]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + sQo[1]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[1] + \(sM[ 1]\)[\[Zeta]] == sMo[1]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], sQo[ 1]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], sQo[ 1]], sM[ 1][ \[Zeta]]], sMo[ 1]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(cerniera[1]\)[meno], \(carrello[1]\)[ pi\[UGrave]]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(vincoli := \(Block[{carrello = carrelloV, cerniera = cernieraV, perno = pernoV, incastro = incastroV, saldatura = saldaturaV}, vincoliDef] // Flatten\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(cerniera[1]\)["-"], \(carrello[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{carrello = \((\((Null\ &)\)\ &)\), incastro = \((\((Null\ &)\)\ &)\), cerniera = \((\((Null\ &)\)\ &)\), perno = coll, saldatura = coll}, Complement[vincoliDef, {Null}]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(cerniera[1]\)["-"], \(carrello[1]\)["+"]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(vincoliFig := Block[{carrello = carrelloFig, cerniera = cernieraFig, perno = pernoFig, saldatura = saldaturaFig, incastro = incastroFig}, vincoliDef];\)\)], "Input"], Cell[BoxData[ \(vincolibFig := Block[{carrello = crosshairFig, cerniera = crosshairFig, perno = crosshairFig, saldatura = crosshairFig, incastro = crosshairFig}, vincoliDef]\)], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .27857 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0918367 0.816327 0.108673 0.816327 [ [ 0 0 0 0 ] [ 1 .27857 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .27857 L 0 .27857 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .09184 .10867 m .90816 .10867 L s 0 0 0 r .5 .10867 m .66327 .10867 L s .60884 .13588 m .66327 .10867 L s .60884 .08146 m .66327 .10867 L s .5 .10867 m .5 .27194 L s .47279 .21752 m .5 .27194 L s .52721 .21752 m .5 .27194 L s 0 g 1 Mabswid .02381 .10867 m .15986 .10867 L s .09184 .00663 m .09184 .21071 L s newpath .09184 .10867 .03265 0 365.73 arc s .84014 .10867 m .97619 .10867 L s .90816 .00663 m .90816 .21071 L s newpath .90816 .10867 .03265 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 80.1875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgEoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo 000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`00 6goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]o o`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol0 0`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<0 07ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001o ogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomo o`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0 iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eo o`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000HOol6002@Ool00`00Oomo o`1?Ool7000IOol001Ioo`8000=oo`03001oogoo008008eoo`@004eoo`8000=oo`05001oogooOol0 000HOol001Eoo`03001oogoo00=oo`03001oogoo009oo`8008aoo`D004Yoo`03001oogoo00=oo`03 001oogoo009oo`8001Ioo`0057oo00<007ooOol017oo00<007ooOol017oo00<007ooOol0Rgoo1@00 Agoo00<007ooOol017oo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomoo`04Ool00`00 Oomoo`04Ool00`00Oomoo`2=Ool40016Ool00`00Oomoo`04Ool00`00Oomoo`04Ool00`00Oomoo`0C Ool001=oo`03001oogoo00Eoo`03001oogoo00Eoo`03001oogoo08ioo`@004=oo`03001oogoo00Eo o`03001oogoo00Eoo`03001oogoo019oo`004Woo00<007ooOol01Woo00<007ooOol01Woo00<007oo Ool0SWoo1@00@7oo00<007ooOol01Woo00<007ooOol01Woo00<007ooOol04Goo000BOol00`00Oomo o`06Ool00`00Oomoo`06Ool00`00Oomoo`2@Ool5000nOol00`00Oomoo`06Ool00`00Oomoo`06Ool0 0`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo099oo`D003aoo`03 001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`0027ooo`0040002Goo000BOol00`00Oomo o`05OooZ0008Ool00`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo 06Moo`8002Moo`D003ioo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`004Woo00<0 07ooOol01Woo00<007ooOol01Woo00<007ooOol0Igoo0P009Goo1@00@7oo00<007ooOol01Woo00<0 07ooOol01Woo00<007ooOol04Goo000BOol00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`1W Ool2000TOol40012Ool00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`0AOol001=oo`03001o ogoo00Eoo`03001oogoo00Eoo`03001oogoo06Qoo`80029oo`@004Eoo`03001oogoo00Eoo`03001o ogoo00Eoo`03001oogoo019oo`004goo00<007ooOol01Goo00<007ooOol017oo00<007ooOol0JGoo 0P0087oo1@00AWoo00<007ooOol01Goo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomo o`04Ool00`00Oomoo`03Ool00`00Oomoo`1ZOol2000NOol50019Ool00`00Oomoo`04Ool00`00Oomo o`04Ool00`00Oomoo`0COol001Eoo`8000Aoo`03001oogoo009oo`03001oogoo06]oo`8001eoo`@0 04aoo`8000Aoo`03001oogoo009oo`8001Ioo`005goo2@00KWoo0P007Woo00<007ooOol0CWoo2@00 67oo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo 0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03 001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol0 6Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00Qgoo00<007ooOol017oo 0P001goo00<007ooOol0QWoo0027Ool00`00Oomoo`04Ool20007Ool00`00Oomoo`26Ool008Moo`80 00Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P001Woo00<007ooOol0Qgoo0028Ool20004 Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eoo`03001oogoo08Qoo`00RGoo0P000goo 0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<007ooOol0RGoo002:Ool20002Ool20003 Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo08Yoo`00Rgoo0P0000=oo`0000000Woo 0P00S7oo002Ool3002?Ool008ioo`<008moo`00SWoo0P00T7oo 002>Ool2002@Ool00001\ \>"], ImageRangeCache->{{{0, 287}, {79.1875, 0}} -> {-0.118401, -0.133126, \ 0.00430941, 0.00430941}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .26667 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.793651 0.101587 0.793651 [ [ 0 0 0 0 ] [ 1 .26667 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .26667 L 0 .26667 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .10317 .10159 m .89683 .10159 L s 0 0 0 r .5 .10159 m .65873 .10159 L s .60582 .12804 m .65873 .10159 L s .60582 .07513 m .65873 .10159 L s .5 .10159 m .5 .26032 L s .47354 .20741 m .5 .26032 L s .52646 .20741 m .5 .26032 L s 0 g .10317 .10159 m .02381 .02222 L .18254 .02222 L .10317 .10159 L s 1 g .10317 .10159 m .10317 .10159 .03175 0 365.73 arc F 0 g newpath .10317 .10159 .03175 0 365.73 arc s .89683 .10159 m .81746 .02222 L .97619 .02222 L .89683 .10159 L s .81746 .00635 m .97619 .00635 L s 1 g .89683 .10159 m .89683 .10159 .03175 0 365.73 arc F 0 g newpath .89683 .10159 .03175 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 76.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgQoobl000Uoo`00j7oo;`002Goo003oOolQOol00?moob5oo`001goo<000/Goo<00027oo0008 Ool^002cOol^0009Ool000Uoo`<002Ioo`<00;Eoo`<002Ioo`<000Yoo`002Woo0`0097oo0`00]goo 0`0097oo0`002goo000;Ool3000ROol3002iOol3000ROol3000Ool3000LOol3002oOol3000L Ool3000?Ool000moo`<001Yoo`<00<5oo`<001Yoo`<0011oo`0047oo0`0067oo0`00`goo0`0067oo 0`004Goo000AOol3000FOol30035Ool3000FOol3000BOol0019oo`8001Eoo`<00Ool5000kOol2000@Ool2000FOol001Aoo`80011oo`80091oo`D003Uoo`80015oo`03001o ogoo01Aoo`0057oo0P0047oodP0047oo0P005Woo000EOol00`00Oomoo`0>OooB000@Ool2000FOol0 01Eoo`8000moo`8006Ioo`8002Ioo`D003]oo`80011oo`8001Ioo`005Woo0P003Woo0P00IWoo0P00 8goo1P00?Goo0`003goo00<007ooOol05Goo000FOol2000>Ool2001VOol2000QOol60010Ool2000> Ool2000GOol001Moo`8000aoo`8006Moo`8001moo`D004Aoo`8000aoo`8001Qoo`0067oo0P002Goo 0`00J7oo0P007Goo1@00Agoo0P002Goo0`006Goo000HOol40006Ool4001XOol2000LOol40019Ool4 0006Ool4000IOol001Uoo`/006Yoo`8001eoo`03001oogoo04Yoo`/001]oo`006goo2000Jgoo0P00 K7oo200077oo000NOol00`00Oomoo`1]Ool2001_Ool00`00Oomoo`0NOol008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008io o`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@ Ool008Moo`03001oogoo00Aoo`8000Moo`03001oogoo08Ioo`00Qgoo00<007ooOol017oo0P001goo 00<007ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03 001oogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00 Oomoo`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo 08Uoo`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool200000goo00000002Ool2002Ool008ioo`<008moo`00SWoo0`00Sgoo002>Ool2002@Ool008ioo`80091oo`00 \ \>"], ImageRangeCache->{{{0, 287}, {75.75, 0}} -> {-0.13653, -0.128001, \ 0.00443574, 0.00443574}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {\(\(\[Theta]b[1]\)["-"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {\(\(ub\_d[1]\)["+"]\)}, {"0"}, {\(\(\[Theta]b[1]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, \[Theta]b[ 1][ "-"]}, { Subscript[ ub, d][ 1][ "+"], 0, \[Theta]b[ 1][ "+"]}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["+"] == 0\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "+"], 0]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["-"]\ \(wb\_d[1]\)[ "-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)["+"] + \(sb\_n[1]\)[ "-"]\ \(wb\_n[1]\)["-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(wb\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"], \(\[Omega]b[1]\)["+"], \(wb\_d[1]\)[ "+"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"] + \(sM[1]\)[0] == 0, \(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]] == 0, \(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({sMo[1] + \(mb[1]\)["-"] == 0, \(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2 + \[ScriptCapitalL]\ sQo[ 1] + \(mb[1]\)["+"] == sMo[1], \(sb\_d[1]\)["+"] == sNo[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{{1, 0, 0}, {\(-1\), 0, \[ScriptCapitalL]}, {0, \(-1\), 0}}, {\(-\(mb[1]\)[ "-"]\), \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\) - \(mb[ 1]\)["+"], \(-\(sb\_d[1]\)["+"]\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0"}, {\(-1\), "0", "\[ScriptCapitalL]"}, {"0", \(-1\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(-\(mb[1]\)["-"]\)}, {\(\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\) - \(mb[1]\)[ "+"]\)}, {\(-\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Times[ -1, mb[ 1][ "-"]], Plus[ Times[ Rational[ -1, 2], \[ScriptB], Power[ \[ScriptCapitalL], 2]], Times[ -1, mb[ 1][ "+"]]], Times[ -1, Subscript[ sb, d][ 1][ "+"]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, True, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 3\n nc \[Rule] 3\n nv \[Rule] 3\n nf \[Rule] 3\n rango \ \[Rule] 3"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli giusti (le forze attive al bordo possono essere \ qualsiasi)"\)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)[ "+"]\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(mb[1]\)["-"]\)}, {\(\(mb[1]\)["+"]\)}, {\(\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { mb[ 1][ "-"], mb[ 1][ "+"], Subscript[ sb, d][ 1][ "+"]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {\ };\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"], \(mb[1]\)["+"], \(sb\_d[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"] \[Rule] 0, \(mb[1]\)["+"] \[Rule] 0, \(sb\_d[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{0, 0, 0}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({sMo[1] == 0, 1\/2\ \[ScriptCapitalL]\ \((\[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1])\) == sMo[1], sNo[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], \[ScriptB]\ \[Zeta] + sQo[1], \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) + sMo[1] - \[Zeta]\ sQo[1]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\)}\)], \ "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[1] == \(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[ 1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\), "+", \(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)], "==", "0"}], ",", RowBox[{\(1\/2\ \[ScriptB]\ \((\[ScriptCapitalL] - \[Zeta])\)\ \ \[Zeta]\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/6\)\)\ \[ScriptB]\ \ \[ScriptCapitalL]\ \[Zeta]\^3 + \(\[ScriptB]\ \[Zeta]\^4\)\/12\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\[ScriptB]\ \[Zeta]\^2 - 12\ sMo[1] + 4\ \[Zeta]\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[ScriptB]\ \[Zeta]\^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][ 3]\)\/\(6\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][ 1], \(\[ScriptB]\ \((2\ \[ScriptCapitalL] - \[Zeta])\)\ \[Zeta]\^3 + \ 24\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((\[ScriptCapitalD][2] + \[Zeta]\ \ \[ScriptCapitalD][3])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\), \(\ \[ScriptB]\ \((3\ \[ScriptCapitalL] - 2\ \[Zeta])\)\ \[Zeta]\^2 + 12\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][3]\)\/\(12\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/6\)\)\ \[ScriptB]\ \ \[ScriptCapitalL]\ \[Zeta]\^3 + \(\[ScriptB]\ \[Zeta]\^4\)\/12\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(u\_2[1]\)[\[ScriptCapitalL]] == 0}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \(\[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalL]\ \[Theta]o[1] + uo\_2[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0"}, {"0", "1", "0"}, {"0", "1", "\[ScriptCapitalL]"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, Times[ Rational[ -1, 24], \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[ 1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {\(-\(\(\[ScriptB]\ \[Zeta]\ \((\(-\[ScriptCapitalL]\) + \[Zeta])\)\ \ \((\(-\[ScriptCapitalL]\^2\) - \[ScriptCapitalL]\ \[Zeta] + \[Zeta]\^2)\)\)\ \/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}, {\(-\(\(\[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ \((\[ScriptCapitalL]\^2 + 2\ \[ScriptCapitalL]\ \[Zeta] - 2\ \[Zeta]\^2)\)\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, Times[ Rational[ -1, 24], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Zeta], Plus[ Times[ -1, \[ScriptCapitalL]], \[Zeta]], Plus[ Times[ -1, Power[ \[ScriptCapitalL], 2]], Times[ -1, \[ScriptCapitalL], \[Zeta]], Power[ \[Zeta], 2]]], Times[ Rational[ -1, 24], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]], Plus[ Power[ \[ScriptCapitalL], 2], Times[ 2, \[ScriptCapitalL], \[Zeta]], Times[ -2, Power[ \[Zeta], 2]]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(#1 &\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[ 1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\[ScriptB]\ \((\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta])\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(1\/2\ \[ScriptB]\ \((\[ScriptCapitalL] - \ \[Zeta])\)\ \[Zeta]\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\ \ \((\[ScriptCapitalL]\^3 - 2\ \[ScriptCapitalL]\ \[Zeta]\^2 + \ \[Zeta]\^3)\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \((\[ScriptCapitalL]\^3 - 6\ \[ScriptCapitalL]\ \[Zeta]\^2 + 4\ \[Zeta]\^3)\)\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2}\), \ \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptB] \[Rule] 50, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.01};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptB] \[Rule] 50, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.01`}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({0, 0, \(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[0]\), ",", \(\(u\_2[2]\)[0]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", "0", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[L[2]]\), ",", \(\(u\_2[2]\)[L[2]]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", \(L[2]\), "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[0], \(sQ[2]\)[0], \(sM[2]\)[0]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[L[2]], \(sQ[2]\)[L[2]], \(sM[2]\)[L[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 1 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.0117721 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 .4 1 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.0941767 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 1 0 .9 r .004 w .02381 .01472 m .06244 .10635 L .10458 .19746 L .14415 .27463 L .18221 .34117 L .22272 .40374 L .26171 .45593 L .30316 .50274 L .34309 .53941 L .3815 .56687 L .40095 .57785 L .42237 .58767 L .44268 .59479 L .45178 .59728 L .46172 .59952 L .4671 .60051 L .4721 .6013 L .47727 .60198 L .48196 .60248 L .48658 .60285 L .4887 .60299 L .49093 .60311 L .49332 .6032 L .49438 .60324 L .49552 .60327 L .49675 .60329 L .49789 .60331 L .49859 .60331 L .49925 .60332 L .50049 .60332 L .50163 .60331 L .50286 .6033 L .50401 .60328 L .50508 .60325 L .50754 .60317 L .51014 .60305 L .51268 .6029 L .51504 .60273 L .5204 .60224 L .5293 .60109 L .53882 .59941 L .54906 .59707 L .56016 .59392 L .58032 .58658 L .60019 .57726 L .62123 .56517 L .65912 .5376 L .69946 .50005 L .73829 .45593 L .77956 .40045 L Mistroke .81932 .33864 L .85757 .27144 L .89827 .19159 L .93745 .1066 L .97619 .01472 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol01000Ool1W`6O SGoo00<007`LOol0GWoo00=l77ooOol03goo000?Ool00`00Oomoo`2>Ool01@00Oomoogoo0Il0S7oo 00<007`LOol0GWoo00=l77ooOol03goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`02Ool00`6OOomo o`29Ool00`00Ooml701MOol00g`LOomoo`0@Ool000moo`03001oogoo08ioo`03001oogoo00=oo`81 WhUoo`03001oog`L05eoo`03O1aoogoo011oo`003goo00<007ooOol0SWoo00<007ooOol01Goo00<1 WgooOol0QWoo00<007ooO1`0GGoo00=l77ooOol047oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`06 Ool20In6Ool01000Oomoog`LFgoo00=l77ooOol04Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`08 Ool20In4Ool01000Oomoog`LFgoo00=l77ooOol04Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0: Ool00`6OOomoo`21Ool01@00OomoogooO1`0FGoo00=l77ooOol04Woo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`0;Ool20In1Ool01@00OomoogooO1`0FGoo00=l77ooOol04Woo000?Ool00`00Oomoo`2> Ool00`00Oomoo`0=Ool00`6OOomoo`1nOol01@00OomoogooO1`0FGoo00=l77ooOol04Woo000?Ool0 0`00Oomoo`2>Ool00`00Oomoo`0>Ool20ImnOol00`00Oomoo`02Ool00g`LOomoo`1EOol00g`LOomo o`0COol000moo`03001oogoo08ioo`03001oogoo011oo`81Wgaoo`03001oogoo009oo`03O1aoogoo 05Eoo`03O1aoogoo01=oo`003goo00<007ooOol0SWoo00<007ooOol04Woo00<1WgooOol0NGoo00<0 07ooOol00goo00=l77ooOol0Dgoo00=l77ooOol057oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0C Ool20ImiOol00`00Oomoo`03Ool00g`LOomoo`1COol00g`LOomoo`0DOol000moo`03001oogoo08io o`03001oogoo01Eoo`81WgMoo`03001oogoo00Aoo`03O1aoogoo055oo`03O1aoogoo01Eoo`003goo 00<007ooOol0SWoo00<007ooOol05goo0P6OMGoo00<007ooOol017oo00=l77ooOol0DGoo00=l77oo Ool05Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0IOol20ImcOol00`00Oomoo`05Ool00g`LOomo o`1?Ool00g`LOomoo`0FOol000moo`03001oogoo08ioo`03001oogoo01]oo`030Imoogoo071oo`03 001oogoo00Eoo`03O1aoogoo04moo`03O1aoogoo01Ioo`003goo00<007ooOol0SWoo00<007ooOol0 77oo0P6OL7oo00<007ooOol01Goo00=l77ooOol0CWoo00=l77ooOol05goo000?Ool00`00Oomoo`2> Ool00`00Oomoo`0NOol00`6OOomoo`1]Ool00`00Oomoo`06Ool00g`LOomoo`1=Ool00g`LOomoo`0G Ool000moo`03001oogoo08ioo`03001oogoo01moo`81Wfeoo`03001oogoo00Ioo`03O1aoogoo04ao o`03O1aoogoo01Qoo`003goo00<007ooOol0SWoo00<007ooOol08Goo0P6OJgoo00<007ooOol01goo 00=l77ooOol0Bgoo00=l77ooOol067oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0SOol00`6OOomo o`1XOol00`00Oomoo`07Ool00g`LOomoo`1:Ool00g`LOomoo`0IOol000moo`03001oogoo08ioo`03 001oogoo02Aoo`81WfQoo`03001oogoo00Qoo`03O1aoogoo04Uoo`03O1aoogoo01Uoo`003goo00<0 07ooOol0SWoo00<007ooOol09Woo00<1WgooOol0IGoo00<007ooOol027oo00=l77ooOol0B7oo00=l 77ooOol06Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0WOol20ImUOol00`00Oomoo`09Ool00g`L Oomoo`17Ool00g`LOomoo`0JOol000moo`03001oogoo08ioo`03001oogoo02Uoo`81Wf=oo`03001o ogoo00Yoo`03O1aoogoo04Eoo`03O1aoogoo01]oo`003goo00<007ooOol0SWoo00<007ooOol0:goo 00<1WgooOol0H7oo00<007ooOol02Woo00=l77ooOol0AGoo00=l77ooOol06goo000?Ool00`00Oomo o`2>Ool00`00Oomoo`0/Ool20ImPOol00`00Oomoo`0;Ool00g`LOomoo`13Ool00g`LOomoo`0LOol0 00aoo`<006<3o`<002Qooc@000030Il00000038002]oo`03001oogoo00]oo`03O1aoogoo04=oo`03 O1aoogoo01aoo`003goo00<007ooOol0SWoo00<007ooOol0;goo0P6OGGoo00<007ooOol037oo00=l 77ooOol0@Goo00=l77ooOol07Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0aOol20ImKOol00`00 Oomoo`0Ool00`00Oomoo`0fOol00`6OOomoo`1EOol00`00Oomoo`0>Ool00g`LOomo o`0mOol00g`LOomoo`0OOol000moo`03001oogoo08ioo`03001oogoo03Moo`030Imoogoo05Aoo`03 001oogoo00moo`03O1aoogoo03]oo`03O1aoogoo021oo`003goo00<007ooOol0SWoo00<007ooOol0 >7oo0P6OE7oo00<007ooOol03goo00=l77ooOol0>Woo00=l77ooOol08Goo000?Ool00`00Oomoo`2> Ool00`00Oomoo`0jOol20ImBOol00`00Oomoo`0@Ool00g`LOomoo`0iOol00g`LOomoo`0QOol000mo o`03001oogoo08ioo`03001oogoo03aoo`81We1oo`03001oogoo011oo`03O1aoogoo03Qoo`03O1ao ogoo029oo`003goo00<007ooOol0SWoo00<007ooOol0?Woo0P6OCWoo00<007ooOol04Goo00=l77oo Ool0=Woo00=l77ooOol08goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`10Ool00`6OOomoo`1;Ool0 0`00Oomoo`0BOol00g`LOomoo`0eOol00g`LOomoo`0SOol000moo`03001oogoo08ioo`03001oogoo 045oo`030Imoogoo04Yoo`03001oogoo01=oo`03O1aoogoo03=oo`03O1aoogoo02Aoo`003goo00<0 07ooOol0SWoo00<007ooOol0@Woo0P6OBWoo00<007ooOol04goo00=l77ooOol0Ool00`00Oomoo`14Ool20Im8Ool00`00Oomoo`0DOol00g`LOomoo`0a Ool00g`LOomoo`0UOol000moo`03001oogoo08ioo`03001oogoo04Ioo`81WdIoo`03001oogoo01Eo o`03O1aoogoo02moo`03O1aoogoo02Ioo`003goo00<007ooOol0SWoo00<007ooOol0B7oo00<1Wgoo Ool0@goo00<007ooOol05Woo00=l77ooOol0;Goo00=l77ooOol09goo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`19Ool20Im3Ool00`00Oomoo`0GOol00g`LOomoo`0[Ool00g`LOomoo`0XOol000moo`03 001oogoo08ioo`03001oogoo04]oo`030Imoogoo041oo`03001oogoo01Qoo`03O1aoogoo02Yoo`03 O1aoogoo02Qoo`003goo00<007ooOol0SWoo00<007ooOol0C7oo0P6O@7oo00<007ooOol06Goo00=l 77ooOol0:7oo00=l77ooOol0:Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1>Ool20IlnOol00`00 Oomoo`0JOol00g`LOomoo`0VOol00g`LOomoo`0ZOol000moo`03001oogoo08ioo`03001oogoo051o o`030Imoogoo03]oo`03001oogoo01]oo`03O1aoogoo02Aoo`03O1aoogoo02]oo`003goo00<007oo Ool0SWoo00<007ooOol0DGoo0P6O>goo00<007ooOol077oo00=l77ooOol08Woo00=l77ooOol0;7oo 000?Ool00`00Oomoo`2>Ool00`00Oomoo`1COol00`6OOomoo`0hOol00`00Oomoo`0MOol00g`LOomo o`0POol00g`LOomoo`0]Ool000moo`03001oogoo08ioo`03001oogoo05Aoo`81WcQoo`03001oogoo 01ioo`03O1aoogoo01ioo`03O1aoogoo02ioo`003goo00<007ooOol0SWoo00<007ooOol0EWoo0P6O =Woo00<007ooOol07goo00=l77ooOol06goo0W`LOol00`00Oomoo`1H Ool00`6OOomoo`0cOol00`00Oomoo`0POol2O1`IOol2O1`cOol000moo`03001oogoo08ioo`03001o ogoo05Uoo`81Wc=oo`03001oogoo029oo`03O1aoogoo01Aoo`9l73Eoo`003goo00<007ooOol0SWoo 00<007ooOol0Fgoo00<1WgooOol0<7oo00<007ooOol08goo0W`L4goo00=l77ooOol0=Goo000?Ool0 0`00Oomoo`2>Ool00`00Oomoo`1LOol20Il`Ool00`00Oomoo`0UOol2O1`=Ool4O1`hOol000moo`03 001oogoo08ioo`03001oogoo05ioo`81Wbioo`03001oogoo02Moo`el73aoo`003goo00<007ooOol0 SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00 Oomoo`1`Ool00?moojEoo`00\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -1.10361, 0.0101328, 0.0327904}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -27.5819, 0.0101298, 0.819513}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -0.323777, 0.0101328, 0.10247}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 .9 0 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 9.04097 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .60332 m .06244 .52716 L .10458 .44578 L .14415 .37244 L .18221 .30594 L .22272 .24067 L .26171 .1842 L .30316 .13197 L .34309 .09002 L .3815 .058 L .40095 .04506 L .42237 .0334 L .44268 .02492 L .45178 .02194 L .46172 .01927 L .4671 .01808 L .4721 .01714 L .47727 .01632 L .48196 .01573 L .48658 .01528 L .4887 .01511 L .49093 .01497 L .49332 .01485 L .49438 .01481 L .49552 .01478 L .49675 .01475 L .49789 .01473 L .49859 .01472 L .49925 .01472 L .50049 .01472 L .50163 .01472 L .50286 .01474 L .50401 .01476 L .50508 .01479 L .50754 .01489 L .51014 .01503 L .51268 .01522 L .51504 .01542 L .5204 .01601 L .5293 .01739 L .53882 .0194 L .54906 .0222 L .56016 .02596 L .58032 .03471 L .60019 .04575 L .62123 .06 L .65912 .09211 L .69946 .13502 L .73829 .1842 L .77956 .24417 L Mistroke .81932 .30853 L .85757 .37554 L .89827 .45119 L .93745 .52695 L .97619 .60332 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 1.41265 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s .68 1 0 r .004 w .02381 .01472 m .02499 .01472 L .02605 .01472 L .02729 .01474 L .02846 .01476 L .03053 .0148 L .03279 .01487 L .03527 .01497 L .0379 .0151 L .04262 .01539 L .05205 .01624 L .06244 .01754 L .07293 .01925 L .0842 .02151 L .10458 .0267 L .1458 .04121 L .18551 .05986 L .22371 .08162 L .26435 .10839 L .30348 .13718 L .34506 .17045 L .38513 .20459 L .42368 .23887 L .46468 .27634 L .50417 .31288 L .54214 .34798 L .58257 .38479 L .62148 .41919 L .66284 .45409 L .70268 .48557 L .74101 .51337 L .78179 .53976 L .82106 .56156 L .85881 .5787 L .87978 .58645 L .89901 .59235 L .91786 .59697 L .92745 .59885 L .9377 .60051 L .94804 .60181 L .95744 .60264 L .96198 .60293 L .96436 .60305 L .96689 .60315 L .9691 .60322 L .97027 .60325 L .97153 .60328 L .97269 .6033 L .97374 .60331 L .9748 .60332 L Mistroke .97581 .60332 L .97619 .60332 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`00Oomoo`0:Ool2En1Z Ool000moo`03001oogoo08]oo`03001oogoo02Eoo`03OV1oogoo01Eoo`03OV1oogoo04]oo`03001o ogoo00aoo`9Gh6Qoo`003goo00<007ooOol0Rgoo00<007ooOol097oo00=nH7ooOol05goo00=nH7oo Ool0BWoo00<007ooOol03Woo0UOPIWoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0SOol00giPOomo o`0IOol00giPOomoo`19Ool00`00Oomoo`0@Ool2En1TOol000moo`03001oogoo08]oo`03001oogoo 025oo`9nH1eoo`9nH4Uoo`03001oogoo019oo`9Gh69oo`003goo00<007ooOol0Rgoo00<007ooOol0 87oo00=nH7ooOol07goo00=nH7ooOol0AWoo00<007ooOol057oo0UOPH7oo000?Ool00`00Oomoo`2; Ool00`00Oomoo`0OOol00giPOomoo`0QOol00giPOomoo`15Ool00`00Oomoo`0FOol2En1NOol000mo o`03001oogoo08]oo`03001oogoo01ioo`03OV1oogoo02=oo`03OV1oogoo04Aoo`03001oogoo01Qo o`03En1oogoo05]oo`003goo00<007ooOol0Rgoo00<007ooOol07Goo00=nH7ooOol09Goo00=nH7oo Ool0@goo00<007ooOol06Goo00=Gh7ooOol0FWoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0LOol0 0giPOomoo`0WOol00giPOomoo`12Ool00`00Oomoo`0JOol2En1JOol000moo`03001oogoo08]oo`03 001oogoo01]oo`03OV1oogoo02Uoo`03OV1oogoo045oo`03001oogoo01aoo`03En1oogoo05Moo`00 3goo00<007ooOol0Rgoo00<007ooOol06Woo00=nH7ooOol0:goo00=nH7ooOol0@7oo00<007ooOol0 7Goo00=Gh7ooOol0EWoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0IOol00giPOomoo`0]Ool00giP Oomoo`0oOol00`00Oomoo`0NOol00eOPOomoo`1EOol000moo`03001oogoo08]oo`03001oogoo01Uo o`03OV1oogoo02eoo`03OV1oogoo03moo`03001oogoo01moo`03En1oogoo05Aoo`003goo00<007oo Ool0Rgoo00<007ooOol067oo00=nH7ooOol0;goo00=nH7ooOol0?Woo00<007ooOol087oo00=Gh7oo Ool0Dgoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0GOol00giPOomoo`0aOol00giPOomoo`0mOol0 0`00Oomoo`0QOol00eOPOomoo`1BOol000moo`03001oogoo08]oo`03001oogoo01Ioo`03OV1oogoo 03=oo`03OV1oogoo03aoo`03001oogoo029oo`9Gh59oo`003goo00<007ooOol0Rgoo00<007ooOol0 5Woo00=nH7ooOol0Ool000moo`03001oogoo08]oo`03001oogoo01Eoo`03OV1oogoo03Ioo`03OV1oogoo03Yo o`03001oogoo02Ioo`03En1oogoo04eoo`003goo00<007ooOol0Rgoo00<007ooOol057oo00=nH7oo Ool0>7oo00=nH7ooOol0>Goo00<007ooOol09goo0UOPCGoo000?Ool00`00Oomoo`2;Ool00`00Oomo o`0DOol00giPOomoo`0hOol00giPOomoo`0iOol00`00Oomoo`0YOol00eOPOomoo`1:Ool000moo`03 001oogoo08]oo`03001oogoo01=oo`03OV1oogoo03Yoo`03OV1oogoo03Qoo`03001oogoo02Yoo`03 En1oogoo04Uoo`003goo00<007ooOol0Rgoo00<007ooOol04Woo00=nH7ooOol0?7oo00=nH7ooOol0 =goo00<007ooOol0:goo00=Gh7ooOol0B7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0BOol00giP Oomoo`0lOol00giPOomoo`0gOol00`00Oomoo`0/Ool00eOPOomoo`17Ool000moo`03001oogoo08]o o`03001oogoo015oo`03OV1oogoo03ioo`03OV1oogoo03Ioo`03001oogoo02eoo`03En1oogoo04Io o`003goo00<007ooOol0Rgoo00<007ooOol047oo00=nH7ooOol0?goo00=nH7ooOol0=Woo00<007oo Ool0;Woo00=Gh7ooOol0AGoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0?Ool00giPOomoo`11Ool0 0giPOomoo`0eOol00`00Oomoo`0_Ool2En15Ool000moo`03001oogoo08]oo`03001oogoo00moo`03 OV1oogoo045oo`03OV1oogoo03Eoo`03001oogoo035oo`03En1oogoo049oo`0037oo0`00JGn00P00 8goo00<007ooOol03Woo00=nH7ooOol0@goo00=nH7ooOol07oo00=Gh7ooOol0>goo000?Ool00`00Oomoo`2;Ool00`00 Oomoo`0:Ool00giPOomoo`1;Ool00giPOomoo`0`Ool00`00Oomoo`0iOol00eOPOomoo`0jOol000mo o`03001oogoo08]oo`03001oogoo00Uoo`03OV1oogoo04eoo`03OV1oogoo02moo`03001oogoo03Yo o`03En1oogoo03Uoo`003goo00<007ooOol0Rgoo00<007ooOol02Goo00=nH7ooOol0CGoo00=nH7oo Ool0;goo00<007ooOol0>goo00=Gh7ooOol0>7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`08Ool0 0giPOomoo`1?Ool00giPOomoo`0^Ool00`00Oomoo`0lOol2En0hOol000moo`03001oogoo08]oo`03 001oogoo00Qoo`03OV1oogoo04moo`03OV1oogoo02ioo`03001oogoo03ioo`03En1oogoo03Eoo`00 3goo00<007ooOol0Rgoo00<007ooOol01goo00=nH7ooOol0DGoo00=nH7ooOol0;Goo00<007ooOol0 ?goo00=Gh7ooOol0=7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`07Ool00giPOomoo`1AOol00giP Oomoo`0]Ool00`00Oomoo`10Ool00eOPOomoo`0cOol000moo`03001oogoo08]oo`03001oogoo00Io o`03OV1oogoo05=oo`03OV1oogoo02aoo`03001oogoo045oo`03En1oogoo039oo`003goo00<007oo Ool0Rgoo00<007ooOol01Woo00=nH7ooOol0Dgoo00=nH7ooOol0;7oo00<007ooOol0@Woo00=Gh7oo Ool0"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -1.10435, 0.00959613, 0.0310537}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.068501, 0.00959613, 0.00101086}, {{297.063, 406.563}, {69.3125, \ 1.6875}} -> {-2.87604, -0.230074, 0.00959613, 0.00646952}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.`, 0.`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, 0.`}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = 0 \(\@\( xDiag . xDiag\)\) \((e\_2)\)\)], "Input"], Cell[BoxData[ \({0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.2", "0"}, {"0", "512"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{1.2012`, 0.512`}, {0.5`, 0.`}}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g .008 w .02381 .01015 Mdot .97619 .41609 Mdot 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .5 Mabswid .30179 .17348 m .30179 .25276 L s .5 .17348 m .5 .25276 L s .69821 .17348 m .69821 .25276 L s 0 0 0 r .5 .21312 m .65857 .21312 L s .60571 .23955 m .65857 .21312 L s .60571 .18669 m .65857 .21312 L s .5 .21312 m .5 .37169 L s .47357 .31883 m .5 .37169 L s .52643 .31883 m .5 .37169 L s 0 g 1 Mabswid .0375 .21312 m .16964 .21312 L s .10357 .11401 m .10357 .31223 L s newpath .10357 .21312 .03171 0 365.73 arc s .83036 .21312 m .9625 .21312 L s .89643 .11401 m .89643 .31223 L s newpath .89643 .21312 .03171 0 365.73 arc s 1 0 0 r .5 Mabswid .10357 .21312 m .13573 .20644 L .17081 .1993 L .20376 .19287 L .23544 .18704 L .26916 .18132 L .30162 .17637 L .33613 .17178 L .36937 .16811 L .40135 .1653 L .41754 .16416 L .43537 .16314 L .45228 .1624 L .45986 .16214 L .46813 .1619 L .47261 .1618 L .47677 .16171 L .48108 .16164 L .48498 .16159 L .48883 .16155 L .49059 .16154 L .49245 .16152 L .49444 .16151 L .49532 .16151 L .49627 .16151 L .49729 .1615 L .49824 .1615 L .49882 .1615 L .49937 .1615 L .50041 .1615 L .50135 .1615 L .50238 .1615 L .50334 .16151 L .50423 .16151 L .50628 .16152 L .50844 .16153 L .51056 .16155 L .51252 .16156 L .51698 .16162 L .5244 .16174 L .53232 .16191 L .54084 .16216 L .55009 .16249 L .56686 .16326 L .58341 .16422 L .60093 .16547 L .63247 .16829 L .66605 .17205 L .69837 .17636 L .73274 .18162 L Mistroke .76584 .18727 L .79768 .19315 L .83156 .19978 L .86418 .20642 L .89643 .21312 L Mfstroke .29611 .1367 m .30746 .21599 L s .5 .12186 m .5 .20114 L s .70389 .1367 m .69254 .21599 L s 0 g 1 Mabswid .0375 .21312 m .16964 .21312 L s .10357 .11401 m .10357 .31223 L s newpath .10357 .21312 .03171 0 365.73 arc s .83036 .21312 m .9625 .21312 L s .89643 .11401 m .89643 .31223 L s newpath .89643 .21312 .03171 0 365.73 arc s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooaMcW003001cW7>L0=mcW003001cW7>L01AcW0Uoo`001goo5g>L00<0 07>LLi`0gg>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW03OLi`00`00LiacW00DLi`9Ool0 00MooaMcW003001cW7>L06icW003O01cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>L Li`0KW>L00=l07>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00g`0Liac W01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003O01cW7>L06icW003001cW7>L 01AcW0Uoo`001goo5g>L00<007>LLi`0=7>L00=l07>LLi`0=g>L00=l07>LLi`0=g>L00=l07>LLi`0 =7>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00dLi`00g`0LiacW00gLi`00g`0LiacW00g Li`00g`0LiacW00dLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03AcW003O01cW7>L03Mc W003O01cW7>L03McW003O01cW7>L03AcW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0=7>L 00=l07>LLi`0=g>L00=l07>LLi`0=g>L00=l07>LLi`0=7>L00<007>LLi`057>L2Goo0007OolGLi`0 0`00LiacW00eLi`00g`0LiacW00fLi`00g`0LiacW00fLi`00g`0LiacW00eLi`00`00LiacW00DLi`9 Ool000MooaMcW003001cW7>L03EcW003O01cW7>L03IcW003O01cW7>L03IcW003O01cW7>L03EcW003 001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0=G>L00=l07>LLi`0=W>L00=l07>LLi`0=W>L00=l 07>LLi`0=G>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00eLi`00g`0LiacW00RLi`ZO00S Li`00g`0LiacW00eLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03EcW003O01cW7>L01Ic W0al01AcW003O01cW7>L01=cW0al01McW003O01cW7>L03EcW003001cW7>L01AcW0Uoo`001goo5g>L 00<007>LLi`0=G>L00=l07>LLi`03G>L2G`087>L00=l07>LLi`07g>L2G`03W>L00=l07>LLi`0=G>L 00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00eLi`00g`0LiacW003Li`:O00YLi`00g`0Liac W00XLi`9O005Li`00g`0LiacW00eLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03=cW0Ql 03=cW003O01cW7>L035cW0Ql03EcW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0;g>L17`0 0W>L00<007`0Li`0=W>L00=l07>LLi`0=G>L00Al0000LiacW0Al035cW003001cW7>L01AcW0Uoo`00 1goo57>L1P00:7>L1g`01W>L00<007`0Li`0=W>L00=l07>LLi`0=G>L00=l0000Li`01G>L1g`09g>L 1`004g>L2Goo0007OolBLi`20003Li`00`00LiacW002000NLi`8O00=Li`00`00O01cW00fLi`00g`0 LiacW00KLi`00`00LiacW00GLi`00g`0001cW00L00000g>L00<007>L Li`047>L2Goo0007OolALi`00`00LiacW003Li`00`00LiacW002Li`2000HLi`4O00ELi`00`00O01c W00fLi`00g`0LiacW00LLi`2000GLi`00g`0001cW00DLi`4O00HLi`20004Li`00`00LiacW002Li`2 000@Li`9Ool000Mooa1cW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L011cW0El01UcW003 001l07>L03IcW003O01cW7>L01icW08001EcW003O00007>L01QcW0El019cW003001cW7>L00AcW003 001cW7>L00AcW003001cW7>L00ecW0Uoo`001goo47>L00<007>LLi`017>L00<007>LLi`01G>L00<0 07>LLi`02g>L17`07W>L00<007`0Li`0=W>L00=l07>LLi`087>L0P004g>L00=l0000Li`07G>L1G`0 3G>L00<007>LLi`017>L00<007>LLi`01G>L00<007>LLi`037>L2Goo0007Ool?Li`00`00LiacW005 Li`00`00LiacW005Li`00`00LiacW006Li`5O00RLi`00`00O01cW00fLi`00g`0LiacW00RLi`2000A Li`00g`0001cW00RLi`5O007Li`00`00LiacW005Li`00`00LiacW005Li`00`00LiacW00L00IcW003001cW7>L00EcW004001cW7>LLi`5O00WLi`00`00Lial000fLi`0 0`00LiacW00TLi`2000>Li`00g`0Li`0000XLi`4O002Li`00`00LiacW006Li`00`00LiacW006Li`0 0`00LiacW00;Li`9Ool000Moo`icW003001cW7>L00IcW003001cW7>L00AcW003O00007`0009l02ac W003001cW7`003IcW003001cW7>L02IcW08000acW003O01cW00002acW09l0003001l07`000IcW003 001cW7>L00IcW003001cW7>L00]cW0Uoo`001goo3W>L00<007>LLi`01W>L00<007>LLi`017`00W>L 00<007>LLi`0;7>L00<007>LO000=W>L00<007>LLi`0:7>L0P002W>L00=l07>L0000;W>L00<007>L Li`017`00W>L00<007>LLi`01W>L00<007>LLi`02g>L2Goo0007Ool4Lia=00000g`00000001[0000 0g`00000001;0003Li`9Ool000Moo`icW003001cW7>L00EcW>@000QcW003001cW7>L00]cW0Uoo`00 1goo3W>L00<007>LLi`01W>L00<007>LLi`01G>L00<007>LLi`0;G>L00<007>LLi`0=W>L00<007>L Li`09G>L0P003g>L00<007>LLi`0;7>L00<007>LLi`01W>L00<007>LLi`01W>L00<007>LLi`02g>L 2Goo0007Ool>Li`00`00LiacW006Li`00`00LiacW005Li`00`00LiacW00]Li`00`00LiacW00fLi`0 0`00LiacW00SLi`2000ALi`00`00LiacW00]Li`00`00LiacW005Li`00`00LiacW006Li`00`00Liac W00;Li`9Ool000Moo`mcW003001cW7>L00EcW003001cW7>L00AcW003001cW7>L02icW003001cW7>L 03IcW003001cW7>L025cW08001=cW003001cW7>L02icW003001cW7>L00AcW003001cW7>L00EcW003 001cW7>L00acW0Uoo`001goo3g>L00<007>LLi`01G>L00<007>LLi`017>L00<007>LLi`0;W>L00<0 07>LLi`0=W>L00<007>LLi`07g>L0P005G>L00<007>LLi`0;W>L00<007>LLi`017>L00<007>LLi`0 1G>L00<007>LLi`037>L2Goo0007Ool@Li`00`00LiacW004Li`00`00LiacW003Li`00`00LiacW00_ Li`00`00LiacW00fLi`00`00LiacW00MLi`2000GLi`00`00LiacW00_Li`00`00LiacW003Li`00`00 LiacW004Li`00`00LiacW00=Li`9Ool000Mooa5cW08000AcW003001cW7>L009cW003001cW7>L031c W003001cW7>L03IcW003001cW7>L01]cW08001UcW003001cW7>L031cW08000=cW003001cW7>L009c W080011cW0Uoo`001goo4g>L0`0000AcW000LiacW08003=cW003001cW7>L03IcW003001cW7>L03Ic W003001cW7>L039cW0800003Li`007>L009cW003001cW7>L011cW0Uoo`001goo5W>L1000=G>L00<0 07>LLi`0=W>L00<007>LLi`0=W>L00<007>LLi`0=7>L1@004g>L2Goo0007OolGLi`00`00LiacW00e Li`00`00LiacW00fLi`00`00LiacW00fLi`00`00LiacW00eLi`00`00LiacW00DLi`9Ool000MooaMc W003001cW7>L03EcW003001cW7>L03IcW003001cW7>L03IcW003001cW7>L03EcW003001cW7>L01Ac W0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`0 0`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003 001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<0 07>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool0 00MooaMcW003001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>L Li`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00`00Liac W01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003001cW7>L06icW003001cW7>L 01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolG Li`00`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06ic W003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L 00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9 Ool000MooaMcW003001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<0 07>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00`00 LiacW01^Li`00`00LiacW00DLi`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooP7>L00<007>L Li`01G>L00<007>LLi`01G>L00<007>LLi`0OG>L2Goo0007Oon1Li`00`00LiacW004Li`00`00Liac W004Li`00`00LiacW01nLi`9Ool000Mooh5cW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L 07icW0Uoo`001gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Og>L2Goo0007Oon2 Li`00`00LiacW003Li`00`00LiacW003Li`00`00LiacW01oLi`9Ool000Mooh=cW003001cW7>L009c W003001cW7>L009cW003001cW7>L081cW0Uoo`001gooPg>L00<007>LLi`00W>L00<007>LLi`00W>L 00<007>LLi`0P7>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon4 Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>L Li`0PW>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007Oon6Li`01@00Li`0 07>L0000QG>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo0007Oon7Li`30026Li`9Ool000Mo ohMcW0<008IcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L47>L00<007ooOol01goo0007OoooLi`@Li`00`00Oomoo`07Ool00?mo ob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g .008 w .02381 .01015 Mdot .97619 .41609 Mdot 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .5 Mabswid .30179 .17348 m .30179 .25276 L s .5 .17348 m .5 .25276 L s .69821 .17348 m .69821 .25276 L s 0 0 0 r .5 .21312 m .65857 .21312 L s .60571 .23955 m .65857 .21312 L s .60571 .18669 m .65857 .21312 L s .5 .21312 m .5 .37169 L s .47357 .31883 m .5 .37169 L s .52643 .31883 m .5 .37169 L s 0 g 2 Mabswid .10357 .21312 m .02429 .13383 L .18286 .13383 L .10357 .21312 L s 1 g .10357 .21312 m .10357 .21312 .03171 0 365.73 arc F 0 g newpath .10357 .21312 .03171 0 365.73 arc s .89643 .21312 m .81714 .13383 L .97571 .13383 L .89643 .21312 L s .81714 .11798 m .97571 .11798 L s 1 g .89643 .21312 m .89643 .21312 .03171 0 365.73 arc F 0 g newpath .89643 .21312 .03171 0 365.73 arc s 1 0 0 r .5 Mabswid .10357 .21312 m .13573 .20644 L .17081 .1993 L .20376 .19287 L .23544 .18704 L .26916 .18132 L .30162 .17637 L .33613 .17178 L .36937 .16811 L .40135 .1653 L .41754 .16416 L .43537 .16314 L .45228 .1624 L .45986 .16214 L .46813 .1619 L .47261 .1618 L .47677 .16171 L .48108 .16164 L .48498 .16159 L .48883 .16155 L .49059 .16154 L .49245 .16152 L .49444 .16151 L .49532 .16151 L .49627 .16151 L .49729 .1615 L .49824 .1615 L .49882 .1615 L .49937 .1615 L .50041 .1615 L .50135 .1615 L .50238 .1615 L .50334 .16151 L .50423 .16151 L .50628 .16152 L .50844 .16153 L .51056 .16155 L .51252 .16156 L .51698 .16162 L .5244 .16174 L .53232 .16191 L .54084 .16216 L .55009 .16249 L .56686 .16326 L .58341 .16422 L .60093 .16547 L .63247 .16829 L .66605 .17205 L .69837 .17636 L .73274 .18162 L Mistroke .76584 .18727 L .79768 .19315 L .83156 .19978 L .86418 .20642 L .89643 .21312 L Mfstroke .29611 .1367 m .30746 .21599 L s .5 .12186 m .5 .20114 L s .70389 .1367 m .69254 .21599 L s 0 g 2 Mabswid .10357 .21312 m .02429 .13383 L .18286 .13383 L .10357 .21312 L s 1 g .10357 .21312 m .10357 .21312 .03171 0 365.73 arc F 0 g newpath .10357 .21312 .03171 0 365.73 arc s .89643 .21312 m .81714 .13383 L .97571 .13383 L .89643 .21312 L s .81714 .11798 m .97571 .11798 L s 1 g .89643 .21312 m .89643 .21312 .03171 0 365.73 arc F 0 g newpath .89643 .21312 .03171 0 365.73 arc s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goohW>L;`0027oo0007OooRLi`_0008Ool000Mo ohQcW003O01cW7>L08EcW0Uoo`001gooR7>L00=l07>LLi`0QG>L2Goo0007Oon8Li`00g`0LiacW025 Li`9Ool000Iooc0005UcW003O01cW7>L05McW30000Moo`001goo;P0087>L00=l07>LLi`0=g>L00=l 07>LLi`0=g>L00=l07>LLi`07W>L;P0027oo0007Ool017>L000000009W>L0`008G>L00=l07>LLi`0 =g>L00=l07>LLi`0=g>L00=l07>LLi`07g>L0`009W>L0`002Goo0007Ool2Li`3000TLi`3000RLi`0 0g`0LiacW00gLi`00g`0LiacW00gLi`00g`0LiacW00PLi`3000TLi`300000g>LOomoo`07Ool000Mo o`=cW0<0029cW0<002=cW003O01cW7>L03McW003O01cW7>L03McW003O01cW7>L025cW0<0029cW0<0 009cW0Uoo`001goo17>L0`0087>L0`009G>L00=l07>LLi`0=W>L00=l07>LLi`0=W>L00=l07>LLi`0 8g>L0`0087>L0`000g>L2Goo0007Ool5Li`3000NLi`3000VLi`00g`0LiacW00fLi`00g`0LiacW00f Li`00g`0LiacW00TLi`3000NLi`30004Li`9Ool000Moo`IcW0<001acW0<002McW003O01cW7>L03Ic W003O01cW7>L03IcW003O01cW7>L02EcW0<001acW0<000EcW0Uoo`001goo1g>L0`006W>L0`00:7>L 00=l07>LLi`08W>L:W`08g>L00=l07>LLi`09W>L0`006W>L0`001W>L2Goo0007Ool8Li`3000HLi`3 000YLi`00g`0LiacW00FLi`L00ecW0Ul021cW003O01cW7>L01mcW0Ul 00icW003O01cW7>L02QcW0<001IcW0<000QcW0Uoo`001goo2W>L0`005G>L0P00:g>L00=l07>LLi`0 0g>L2W`0:G>L00=l07>LLi`0:7>L2G`01G>L00=l07>LLi`0:G>L0P005G>L0`002G>L2Goo0007Ool; Li`3000CLi`2000ZLi`8O00cLi`00g`0LiacW00aLi`8O00ZLi`2000CLi`3000:Li`9Ool000Moo`ac W0<0015cW0<002IcW0Al009cW003001l07>L03IcW003O01cW7>L03EcW004O00007>LLi`4O00VLi`3 000ALi`3000;Li`9Ool000Moo`ecW0<0009cW0X000=cW0<0021cW0Ml00IcW003001l07>L03IcW003 O01cW7>L03EcW003O00007>L00EcW0Ml021cW0<000=cW0T000=cW0<000acW0Uoo`001goo3W>L3`00 00AcW000000001UcW0Ql00ecW003001l07>L03IcW003O01cW7>L01]cW003001cW7>L01McW003O000 07>L00acW0Ql01UcW0l00004Li`00000000=Li`9Ool000Moo`mcW0@000Qoo`D001IcW0Al01EcW003 001l07>L03IcW003O01cW7>L01acW08001McW003O00007>L01AcW0Al01IcW0D000Moo`D000icW0Uo o`001goo47>L0P002Woo10004G>L1G`06G>L00<007`0Li`0=W>L00=l07>LLi`07W>L0P005G>L00=l 0000Li`067>L1G`04W>L0P002Woo10003W>L2Goo0007Ool?Li`2000=Ool2000=Li`4O00NLi`00`00 O01cW00fLi`00g`0LiacW00PLi`2000CLi`00g`0001cW00MLi`5O00Li`9Ool0 00Moo`icW08000ioo`8000QcW0El029cW003001l07>L03IcW003O01cW7>L029cW080015cW003O000 07>L029cW0El00IcW08000moo`8000ecW0Uoo`001goo3G>L0`003goo00@007>LLiacW0El02McW003 001cW7`003IcW003001cW7>L02AcW08000icW003O01cW00002QcW0Al0004Li`00000000@Ool00`00 LiacW00;Li`9Ool000Moo`ecW080011oo`80009l02acW003001cW7`003IcW003001cW7>L02IcW080 00acW003O01cW00002acW003O0000000011oo`8000ecW0Uoo`001goo3G>L0P004Goo00<007>LLi`0 ;7>L00<007>LO000=W>L00<007>LLi`0:7>L0P002W>L00=l07>L0000;G>L0P0047oo0P003G>L2Goo 0007Ool=Li`2000@Oolb00000g`00000001[00000g`00000000_000@Ool2000=Li`9Ool000Moo`ec W080011oom80011oo`8000ecW0Uoo`001goo3G>L0P0047oo0P00;W>L00<007>LLi`0=W>L00<007>L Li`09G>L0P003g>L00<007>LLi`0;7>L0P003goo0P003G>L2Goo0007Ool=Li`3000?Ool00`00Liac W00]Li`00`00LiacW00fLi`00`00LiacW00SLi`2000ALi`00`00LiacW00]Li`2000>Ool2000=Li`9 Ool000Moo`icW08000ioo`8002mcW003001cW7>L03IcW003001cW7>L025cW08001=cW003001cW7>L 02ecW08000ioo`8000ecW0Uoo`001goo3g>L0P0037oo0P00<7>L00<007>LLi`0=W>L00<007>LLi`0 7g>L0P005G>L00<007>LLi`0;W>L0P0037oo0P003W>L2Goo0007Ool@Li`2000:Ool2000aLi`00`00 LiacW00fLi`00`00LiacW00MLi`2000GLi`00`00LiacW00_Li`20009Ool3000?Li`9Ool000Mooa1c W0@000Ioo`@0035cW003001cW7>L03IcW003001cW7>L01]cW08001UcW003001cW7>L02mcW0@000Io o`@000mcW0Uoo`001goo4G>L3000L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>LLi`0<7>L 1P0000=oo`0000000P004G>L2Goo0007OolCLi`8000dLi`00`00LiacW00fLi`00`00LiacW00fLi`0 0`00LiacW00bLi`8000BLi`9Ool000MooaMcW08003IcW003001cW7>L03IcW003001cW7>L03IcW003 001cW7>L03EcW0<001AcW0Uoo`001gooCg>L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>LLi`0 C7>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L 00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uo o`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001c W7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000Mo ohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025 Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`0 0`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo 0007Oon0Li`00`00LiacW005Li`00`00LiacW005Li`00`00LiacW01mLi`9Ool000Mooh5cW003001c W7>L00AcW003001cW7>L00AcW003001cW7>L07icW0Uoo`001gooPG>L00<007>LLi`017>L00<007>L Li`017>L00<007>LLi`0OW>L2Goo0007Oon2Li`00`00LiacW003Li`00`00LiacW003Li`00`00Liac W01oLi`9Ool000Mooh9cW003001cW7>L00=cW003001cW7>L00=cW003001cW7>L07mcW0Uoo`001goo Pg>L00<007>LLi`00W>L00<007>LLi`00W>L00<007>LLi`0P7>L2Goo0007Oon3Li`00`00LiacW002 Li`00`00LiacW002Li`00`00LiacW020Li`9Ool000MoohAcW005001cW7>LLi`00003Li`00`00Liac W021Li`9Ool000MoohAcW005001cW7>LLi`00003Li`00`00LiacW021Li`9Ool000MoohEcW004001c W7>L0002Li`00`00LiacW022Li`9Ool000MoohEcW004001cW7>L0002Li`00`00LiacW022Li`9Ool0 00MoohIcW005001cW000Li`00025Li`9Ool000MoohIcW005001cW000Li`00025Li`9Ool000MoohMc W0<008IcW0Uoo`001gooQg>L0`00QW>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`@Li`00`00Oomoo`07Ool000MooomcW11cW003 001oogoo00Moo`00ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.01;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.03;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s 0 1 .4 r .5 Mabswid .10357 .21312 m .13573 .21312 L .17081 .21312 L .20376 .21312 L .23544 .21312 L .26916 .21312 L .30162 .21312 L .33613 .21312 L .36937 .21312 L .40135 .21312 L .43537 .21312 L .46813 .21312 L .49963 .21312 L .53317 .21312 L .56544 .21312 L .59976 .21312 L .63282 .21312 L .66462 .21312 L .69845 .21312 L .73103 .21312 L .76565 .21312 L .799 .21312 L .8311 .21312 L .86523 .21312 L .89643 .21312 L s .10357 .21312 m .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L s .89643 .21312 m .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001goo5g>L00<3k7>LLi`0gg>L00<3k7>LLi`057>L2Goo0007 OolFLi`00`000n`3k03Q0n`FLi`9Ool000MooaIcW>@001IcW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s 0 .4 1 r .5 Mabswid .10357 .41133 m .13573 .39525 L .17081 .37771 L .20376 .36124 L .23544 .3454 L .26916 .32854 L .30162 .31231 L .33613 .29506 L .36937 .27844 L .40135 .26245 L .43537 .24544 L .46813 .22906 L .49963 .21331 L .53317 .19654 L .56544 .1804 L .59976 .16324 L .63282 .14671 L .66462 .13081 L .69845 .11389 L .73103 .09761 L .76565 .0803 L .799 .06362 L .8311 .04757 L .86523 .03051 L .89643 .01491 L s .10357 .21312 m .10357 .22116 L .10357 .22993 L .10357 .23817 L .10357 .24609 L .10357 .25452 L .10357 .26263 L .10357 .27126 L .10357 .27957 L .10357 .28756 L .10357 .29607 L .10357 .30426 L .10357 .31213 L .10357 .32052 L .10357 .32859 L .10357 .33717 L .10357 .34543 L .10357 .35338 L .10357 .36184 L .10357 .36998 L .10357 .37864 L .10357 .38698 L .10357 .395 L .10357 .40354 L .10357 .41133 L s .89643 .21312 m .89643 .20508 L .89643 .19631 L .89643 .18807 L .89643 .18015 L .89643 .17172 L .89643 .16361 L .89643 .15498 L .89643 .14667 L .89643 .13868 L .89643 .13017 L .89643 .12198 L .89643 .11411 L .89643 .10572 L .89643 .09765 L .89643 .08907 L .89643 .08081 L .89643 .07286 L .89643 .0644 L .89643 .05626 L .89643 .0476 L .89643 .03926 L .89643 .03124 L .89643 .02271 L .89643 .01491 L s .86471 .09816 m .86471 .09944 L .86471 .10085 L .86471 .10216 L .86471 .10343 L .86471 .10478 L .86471 .10608 L .86471 .10746 L .86471 .10879 L .86471 .11007 L .86471 .11143 L .86471 .11274 L .86471 .114 L .86471 .11534 L .86471 .11663 L .86471 .118 L .86471 .11933 L .86471 .1206 L .86471 .12195 L .86471 .12325 L .86471 .12464 L .86471 .12597 L .86471 .12726 L .86471 .12862 L .86471 .12987 L s .11943 .31223 m .12071 .31223 L .12212 .31223 L .12344 .31223 L .1247 .31223 L .12605 .31223 L .12735 .31223 L .12873 .31223 L .13006 .31223 L .13134 .31223 L .1327 .31223 L .13401 .31223 L .13527 .31223 L .13661 .31223 L .1379 .31223 L .13928 .31223 L .1406 .31223 L .14187 .31223 L .14322 .31223 L .14453 .31223 L .14591 .31223 L .14725 .31223 L .14853 .31223 L .14989 .31223 L .15114 .31223 L s .84886 .11401 m .85014 .11401 L .85155 .11401 L .85286 .11401 L .85413 .11401 L .85548 .11401 L .85678 .11401 L .85816 .11401 L .85949 .11401 L .86077 .11401 L .86213 .11401 L .86344 .11401 L .8647 .11401 L .86604 .11401 L .86733 .11401 L .86871 .11401 L .87003 .11401 L .8713 .11401 L .87265 .11401 L .87396 .11401 L .87534 .11401 L .87667 .11401 L .87796 .11401 L .87932 .11401 L .88057 .11401 L s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL01EcW0Uo o`001goom7>L0P6O0g>L00<1Wg>LLi`057>L2Goo0007OoobLi`20Il5Li`00`6OLiacW00DLi`9Ool0 00Mooo1cW081W`McW0030ImcW7>L01AcW0Uoo`001gookW>L0P6O2G>L00<1Wg>LLi`057>L2Goo0007 Ooo/Li`20Il;Li`00`6OLiacW00DLi`9Ool000MoonYcW081W`ecW0030ImcW7>L01AcW0Uoo`001goo j7>L0P6O3g>L00<1Wg>LLi`057>L2Goo0007OooWLi`00`6OLiacW00?Li`00`6OLiacW00DLi`9Ool0 00MoonEcW081Wa9cW0030ImcW7>L01AcW0Uoo`001goohg>L0P6O57>L00<1Wg>LLi`057>L2Goo0007 OooQLi`20IlFLi`00`6OLiacW00DLi`9Ool000MoommcW081WaQcW0030ImcW7>L01AcW0Uoo`001goo gG>L0P6O6W>L00<1Wg>LLi`057>L2Goo0007OooKLi`20IlLLi`00`6OLiacW00DLi`9Ool000MoomUc W081WaicW0030ImcW7>L01AcW0Uoo`001gooeg>L0P6O87>L00<1Wg>LLi`057>L2Goo0007OooELi`2 0IlRLi`00`6OLiacW00DLi`9Ool000MoomAcW0030ImcW7>L029cW0030ImcW7>L01AcW0Uoo`001goo dW>L0P6O9G>L00<1Wg>LLi`057>L2Goo0007Ooo@Li`20IlWLi`00`6OLiacW00DLi`9Ool000Moolic W081WbUcW0030ImcW7>L01AcW0Uoo`001gooc7>L0P6O:g>L00<1Wg>LLi`057>L2Goo0007Ooo9Li`3 0IlTLi`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000MoolMcW081WbMcW0030ImcW7>L00IcW003 0ImcW7>L01AcW0Uoo`001gooaG>L0P6O:G>L00<1Wg>LLi`01W>L00<1Wg>LLi`057>L2Goo0007Ooo3 Li`20Il[Li`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000Mool5cW081WbUcW0X1W`=cW0030Imc W7>L01AcW0Uoo`001goo_g>L0P6O;g>L00<1Wg>LLi`01W>L00<1Wg>LLi`057>L2Goo0007OonmLi`2 0IlaLi`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000Mook]cW081Wc=cW0030ImcW7>L00IcW003 0ImcW7>L01AcW0Uoo`001goo^G>L0P6O=G>L00<1Wg>LLi`01W>L00<1Wg>LLi`057>L2Goo0007Oong Li`20IlgLi`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000MookEcW081Wd9cW0030ImcW7>L01Ac W0Uoo`001goo/g>L0P6OA7>L00<1Wg>LLi`057>L2Goo0007OonaLi`20Im6Li`00`6OLiacW00DLi`9 Ool000MoojmcW081WdQcW0030ImcW7>L01AcW0Uoo`001goo[G>L0P6OBW>L00<1Wg>LLi`057>L2Goo 0007Oon[Li`20ImL01AcW0Uoo`00 1gooYW>L0P6ODG>L00<1Wg>LLi`057>L2Goo0007OonTLi`20ImCLi`00`6OLiacW00DLi`9Ool000Mo oj9cW081WeEcW0030ImcW7>L01AcW0Uoo`001gooX7>L0P6OEg>L00<1Wg>LLi`057>L2Goo0007OonN Li`20ImILi`00`6OLiacW00DLi`9Ool000MooiacW081We]cW0030ImcW7>L01AcW0Uoo`001gooVg>L 00<1Wg>LLi`0Fg>L00<1Wg>LLi`057>L2Goo0007OonILi`20ImNLi`00`6OLiacW00DLi`9Ool000Mo oiMcW081Wf1cW0030ImcW7>L01AcW0Uoo`001gooUG>L0P6OHW>L00<1Wg>LLi`057>L2Goo0007OonC Li`20ImTLi`00`6OLiacW00DLi`9Ool000Mooi5cW081WfIcW0030ImcW7>L01AcW0Uoo`001gooSg>L 0P6OJ7>L00<1Wg>LLi`057>L2Goo0007Oon=Li`20ImZLi`00`6OLiacW00DLi`9Ool000Mooh]cW081 WfacW0030ImcW7>L01AcW0Uoo`001gooRG>L0P6OKW>L00<1Wg>LLi`057>L2Goo0007OolFLi`00`00 0Il0001^00020Im`00000`6OLiacW00DLi`9Ool000MooaIcW0030001W`0006`00081Wg<001IcW0Uo o`001goo5g>L00<1Wg>LLi`0JG>L0P6ORg>L2Goo0007OolGLi`00`6OLiacW01WLi`20In=Li`9Ool0 00MooaMcW0030ImcW7>L06EcW081WhmcW0Uoo`001goo5g>L00<1Wg>LLi`0Hg>L0P6OTG>L2Goo0007 OolGLi`00`6OLiacW01QLi`20InCLi`9Ool000MooaMcW0030ImcW7>L05mcW081WiEcW0Uoo`001goo 5g>L00<1Wg>LLi`0GG>L0P6OUg>L2Goo0007OolGLi`00`6OLiacW01LLi`00`6OLiacW02GLi`9Ool0 00MooaMcW0030ImcW7>L05YcW081WiYcW0Uoo`001goo5g>L00<1Wg>LLi`0F7>L0P6OW7>L2Goo0007 OolGLi`00`6OLiacW01FLi`20InNLi`9Ool000MooaMcW0030ImcW7>L05AcW081Wj1cW0Uoo`001goo 5g>L00<1Wg>LLi`0DG>L0`6OXW>L2Goo0007OolGLi`00`6OLiacW01?Li`20InULi`9Ool000MooaMc W0030ImcW7>L04ecW081WjMcW0Uoo`001goo5g>L00<1Wg>LLi`0Bg>L0P6OZG>L2Goo0007OolGLi`0 0`6OLiacW019Li`20In[Li`9Ool000MooaMcW0030ImcW7>L04McW081WjecW0Uoo`001goo5g>L00<1 Wg>LLi`0AG>L0P6O[g>L2Goo0007OolGLi`00`6OLiacW013Li`20InaLi`9Ool000MooaMcW0030Imc W7>L045cW081Wk=cW0Uoo`001goo5g>L00<1Wg>LLi`0?g>L0P6O]G>L2Goo0007OolGLi`00`6OLiac W00mLi`20IngLi`9Ool000MooaMcW0030ImcW7>L03]cW081WkUcW0Uoo`001goo5g>L00<1Wg>LLi`0 >G>L0P6O^g>L2Goo0007OolGLi`00`6OLiacW00gLi`20InmLi`9Ool000MooaMcW0040ImcW7>LLi`: 0IlZLi`20InoLi`9Ool000MooaMcW0030ImcW7>L03=cW081Wl5cW0Uoo`001goo5g>L00<1Wg>LLi`0 L0P6O`g>L2Goo0007OolGLi`00`6OLiacW00_Li`20Io5Li`9Ool000MooaMcW0030ImcW7>L02ec W081WlMcW0Uoo`001goo5g>L00<1Wg>LLi`0:g>L0P6ObG>L2Goo0007OolGLi`00`6OLiacW00YLi`2 0Io;Li`9Ool000MooaMcW0030ImcW7>L02IcW0<1WlecW0Uoo`001goo5g>L00<1Wg>LLi`097>L0P6O d7>L2Goo0007OolGLi`00`6OLiacW00RLi`20IoBLi`9Ool000MooaMcW0030ImcW7>L021cW081WmAc W0Uoo`001goo5g>L00<1Wg>LLi`07W>L0P6OeW>L2Goo0007OolGLi`00`6OLiacW00LLi`20IoHLi`9 Ool000MooaMcW0030ImcW7>L01YcW081WmYcW0Uoo`001goo5g>L00<1Wg>LLi`06G>L00<1Wg>LLi`0 fW>L2Goo0007OolGLi`00`6OLiacW00GLi`20IoMLi`9Ool000MooaMcW0030ImcW7>L01EcW081Wmmc W0Uoo`001goo5g>L00<1Wg>LLi`04g>L0P6OhG>L2Goo0007OolGLi`00`6OLiacW00ALi`20IoSLi`9 Ool000MooaMcW0030ImcW7>L011cW0030ImcW7>L0>=cW0Uoo`001goo5g>L00<1Wg>LLi`03W>L0P6O iW>L2Goo0007OolGLi`00`6OLiacW00L00YcW081WnYc W0Uoo`001goo5g>L00<1Wg>LLi`027>L0P6Ok7>L2Goo0007OolGLi`00`6OLiacW005Li`30Io^Li`9 Ool000MooaMcW0030ImcW7>L00=cW081Wo5cW0Uoo`001goo5g>L00@1Wg>LLiacW081Wo=cW0Uoo`00 1goo5g>L00@1Wg>L0Il1WoEcW0Uoo`001goo5g>L0P6Omg>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`00ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .8 0 1 r .5 Mabswid .10357 .21312 m .13573 .18998 L .17081 .16697 L .20376 .14748 L .23544 .13067 L .26916 .11487 L .30162 .10169 L .33613 .08986 L .36937 .0806 L .40135 .07367 L .41754 .07089 L .43537 .06841 L .45228 .06661 L .45986 .06598 L .46813 .06542 L .47261 .06517 L .47677 .06497 L .48108 .0648 L .48498 .06467 L .48883 .06458 L .49059 .06454 L .49245 .06451 L .49444 .06449 L .49532 .06448 L .49627 .06447 L .49729 .06447 L .49824 .06446 L .49882 .06446 L .49937 .06446 L .50041 .06446 L .50135 .06446 L .50238 .06446 L .50334 .06447 L .50423 .06448 L .50628 .0645 L .50844 .06453 L .51056 .06456 L .51252 .06461 L .51698 .06473 L .5244 .06502 L .53232 .06545 L .54084 .06604 L .55009 .06683 L .56686 .06869 L .58341 .07104 L .60093 .0741 L .63247 .08106 L .66605 .09054 L .69837 .10168 L .73274 .1157 L Mistroke .76584 .13131 L .79768 .14828 L .83156 .16845 L .86418 .18991 L .89643 .21312 L Mfstroke .10357 .21312 m .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L s .89643 .21312 m .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooOg>L56@OOG>L2Goo0007OomdLi`; I1lDLi`;I1mbLi`9Ool000MoofmcW0ET7bYcW0ET7fecW0Uoo`001gooJW>L1F@O=7>L1F@OJ7>L2Goo 0007OomVLi`4I1lnLi`4I1mTLi`9Ool000Moof5cW0ET7dIcW0AT7f1cW0Uoo`001gooG7>L1F@OCg>L 0f@OGG>L2Goo0007OomHLi`4I1mGLi`3I1mJLi`9Ool000MooeIcW09T7eicW0=T7eMcW0Uoo`001goo Dg>L0f@OHg>L0f@OE7>L2Goo0007OomALi`2I1mYLi`4I1m@Li`9Ool000MoodicW0=T7fmcW0=T7dec W0Uoo`001gooC7>L0V@OMG>L0V@OBg>L2Goo0007Oom:Li`2I1miLi`2I1m9Li`9Ool000MoodQcW09T 7gecW09T7dMcW0Uoo`001gooAG>L0f@OPG>L0f@OA7>L2Goo0007Oom3Li`2I1n7Li`2I1m2Li`9Ool0 00Mood1cW0=T7h]cW0=T7cmcW0Uoo`001goo?W>L0V@OTG>L0V@O?G>L2Goo0007OollLi`2I1nELi`2 I1lkLi`9Ool000MoocYcW09T7iUcW09T7cUcW0Uoo`001goo>7>L0V@OWG>L0V@O=g>L2Goo0007Oolf Li`2I1nQLi`2I1leLi`9Ool000MoocAcW09T7jEcW09T7c=cW0Uoo`001gooL00=T7g>LLi`0Yg>L 00=T7g>LLi`0<7>L2Goo0007OolaLi`2I1n[Li`2I1l`Li`9Ool000MoobmcW09T7jmcW09T7bicW0Uo o`001goo;G>L0V@O/g>L00=T7g>LLi`0:g>L2Goo0007Ool[Li`2I1nfLi`2I1l[Li`9Ool000MoobYc W003I1mcW7>L0;QcW09T7bUcW0Uoo`001goo:7>L0V@O_G>L00=T7g>LLi`09W>L2Goo0007OolWLi`0 0f@OLiacW02nLi`2I1lVLi`9Ool000MoobIcW003I1mcW7>L0<5cW003I1mcW7>L02=cW0Uoo`001goo 97>L0V@OaG>L0V@O8g>L2Goo0007OolSLi`00f@OLiacW037Li`00f@OLiacW00PLi`9Ool000Moob5c W09T7l]cW09T7b1cW0Uoo`001goo87>L00=T7g>LLi`0cG>L00=T7g>LLi`07G>L2Goo0007OolOLi`0 0f@OLiacW03?Li`00f@OLiacW00LLi`9Ool000MooaecW09T7m=cW09T7aacW0Uoo`001goo77>L00=T 7g>LLi`0eG>L00=T7g>LLi`06G>L2Goo0007OolKLi`00f@OLiacW03GLi`00f@OLiacW00HLi`9Ool0 00MooaUcW09T7m]cW09T7aQcW0Uoo`001goo5g>L0V@Ogg>L0V@O5W>L2Goo0007OolFLi`00`00I1l0 003P00000f@OLiacW00DLi`9Ool000MooaIcW>@001IcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo 8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-04\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({120, 51}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-04\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cerniera\"\>", \ "\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>"}, {"\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>", \ "\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>"}, {"\<\"cRnull\"\>", "\<\"crosshairFig\"\>", "\<\"cRsol\"\>", \ "\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>"}, {"\<\"d\"\>", "\<\"datinum\"\>", "\<\"datiO\"\>", "\<\"datip\"\>", \ "\<\"diaM\"\>", "\<\"diaMb\"\>"}, {"\<\"diaN\"\>", "\<\"diaNb\"\>", "\<\"diaNs\"\>", "\<\"diaQ\"\>", \ "\<\"diaQb\"\>", "\<\"diaQs\"\>"}, {"\<\"dsh\"\>", "\<\"e\"\>", "\<\"eqbil\"\>", "\<\"eqbilbd\"\>", \ "\<\"eqbilt\"\>", "\<\"eqnsp\"\>"}, {"\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>", \ "\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>"}, {"\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>", "\<\"fabdp1\"\>", \ "\<\"fbd\"\>", "\<\"figM\"\>"}, {"\<\"figMb\"\>", "\<\"figN\"\>", "\<\"figNb\"\>", "\<\"figNs\"\>", \ "\<\"figQ\"\>", "\<\"figQb\"\>"}, {"\<\"figQs\"\>", "\<\"forze\"\>", "\<\"frame\"\>", \ "\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>"}, {"\<\"g\"\>", "\<\"grad\"\>", "\<\"grNQM\"\>", \ "\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"i\"\>"}, {"\<\"imageH\"\>", "\<\"imageW\"\>", "\<\"incastro\"\>", \ "\<\"incastroFig\"\>", "\<\"incastroV\"\>", "\<\"it\"\>"}, {"\<\"ix\"\>", "\<\"j\"\>", "\<\"jx\"\>", "\<\"ker\"\>", \ "\<\"ker0\"\>", "\<\"L\"\>"}, {"\<\"Li\"\>", "\<\"Lo\"\>", "\<\"m\"\>", "\<\"M\"\>", \ "\<\"matbilbd\"\>", "\<\"matvin\"\>"}, {"\<\"maxL\"\>", "\<\"mb\"\>", "\<\"meno\"\>", "\<\"mU\"\>", \ "\<\"myTeXForm\"\>", "\<\"n\"\>"}, {"\<\"nc\"\>", "\<\"ndiv\"\>", "\<\"newsym\"\>", \ "\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", "\<\"newsymlist2\"\>"}, {"\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>", \ "\<\"newsymlist5\"\>", "\<\"newsymlist6\"\>", "\<\"nf\"\>", "\<\"no\"\>"}, {"\<\"nv\"\>", "\<\"org\"\>", "\<\"outputDir\"\>", "\<\"p\"\>", "\<\ \"perno\"\>", "\<\"pernoFig\"\>"}, {"\<\"pernoV\"\>", "\<\"phframe\"\>", "\<\"pi\[UGrave]\"\>", \ "\<\"pltD\"\>", "\<\"pltDbv\"\>", "\<\"pltDs\"\>"}, {"\<\"pltDv\"\>", "\<\"pltM\"\>", "\<\"pltN\"\>", "\<\"pltO\"\>", "\ \<\"pltOa\"\>", "\<\"pltOax\"\>"}, {"\<\"pltObv\"\>", "\<\"pltOs\"\>", "\<\"pltOv\"\>", \ "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>"}, {"\<\"potbdv\"\>", "\<\"pote\"\>", "\<\"pt1\"\>", "\<\"pt2\"\>", \ "\<\"rango\"\>", "\<\"risp\"\>"}, {"\<\"s\"\>", "\<\"saldatura\"\>", "\<\"saldaturaFig\"\>", \ "\<\"saldaturaV\"\>", "\<\"sb\"\>", "\<\"sc\"\>"}, {"\<\"scM\"\>", "\<\"scN\"\>", "\<\"scQ\"\>", "\<\"secD\"\>", \ "\<\"secO\"\>", "\<\"simplifyDirac\"\>"}, {"\<\"sM\"\>", "\<\"sMf\"\>", "\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\ \"\>", "\<\"sNo\"\>"}, {"\<\"sNQM\"\>", "\<\"spbd\"\>", "\<\"splist\"\>", \ "\<\"splistV\"\>", "\<\"spro\"\>", "\<\"spsol\"\>"}, {"\<\"spsolD\"\>", "\<\"spsolDO\"\>", "\<\"spsolO\"\>", "\<\"spuv\ \[Theta]\"\>", "\<\"sQ\"\>", "\<\"sQo\"\>"}, {"\<\"stFile\"\>", "\<\"svar\"\>", "\<\"texBil1\"\>", \ "\<\"texBil2\"\>", "\<\"texBil3\"\>", "\<\"texCDval\"\>"}, {"\<\"texCname\"\>", "\<\"texCval\"\>", "\<\"texDname\"\>", \ "\<\"texDval\"\>", "\<\"texeqbd\"\>", "\<\"texeqbdO\"\>"}, {"\<\"texm\"\>", "\<\"texM\"\>", "\<\"texMin\"\>", "\<\"texMn\"\>", \ "\<\"texN\"\>", "\<\"texNin\"\>"}, {"\<\"texNn\"\>", "\<\"texQ\"\>", "\<\"texQin\"\>", \ "\<\"texQn\"\>", "\<\"texs\"\>", "\<\"texsm\"\>"}, {"\<\"texsn\"\>", "\<\"texu1\"\>", "\<\"texu1in\"\>", "\<\"texu1inO\ \"\>", "\<\"texu1n\"\>", "\<\"texu2\"\>"}, {"\<\"texu2in\"\>", "\<\"texu2inO\"\>", "\<\"texu2n\"\>", \ "\<\"texvinc\"\>", "\<\"texvincO\"\>", "\<\"tex\[Theta]\"\>"}, {"\<\"tex\[Theta]in\"\>", "\<\"tex\[Theta]inO\"\>", \ "\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", "\<\"thetao\"\>", "\<\"ticksOption\"\ \>"}, {"\<\"travi\"\>", "\<\"trv\"\>", "\<\"trv1\"\>", "\<\"trv2\"\>", \ "\<\"u\"\>", "\<\"u1\"\>"}, {"\<\"u1o\"\>", "\<\"u2\"\>", "\<\"u2o\"\>", "\<\"ub\"\>", \ "\<\"uo\"\>", "\<\"vam\"\>"}, {"\<\"var\"\>", "\<\"vecOa1\"\>", "\<\"vecOa2\"\>", \ "\<\"vinBer\"\>", "\<\"vincoli\"\>", "\<\"vincolibFig\"\>"}, {"\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>", "\<\"vsp\"\>", "\<\"wb\ \"\>", "\<\"xC\"\>", "\<\"xCshift\"\>"}, {"\<\"xDiag\"\>", "\<\"xLowerL\"\>", "\<\"xMax\"\>", \ "\<\"xMin\"\>", "\<\"xUpperR\"\>", "\<\"y1\"\>"}, {"\<\"y2\"\>", "\<\"YA\"\>", "\<\"YJ\"\>", "\<\"\[ScriptA]\"\>", \ "\<\"\[ScriptB]\"\>", "\<\"\[ScriptC]\"\>"}, {"\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\"\>", "\<\"\ \[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\[ScriptCapitalL]\"\>", \ "\<\"\[ScriptCapitalM]\"\>"}, {"\<\"\[ScriptCapitalY]\[ScriptCapitalA]\"\>", "\<\"\ \[ScriptCapitalY]\[ScriptCapitalJ]\"\>", "\<\"\[Alpha]\"\>", \ "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>", "\<\"\[Zeta]\"\>"}, {"\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>", "\<\"\[Theta]b\"\>", "\<\"\ \[Theta]o\"\>", "\<\"\[Kappa]\"\>", "\<\"\[Xi]\"\>"}, {"\<\"\[Chi]\"\>", "\<\"\[Omega]b\"\>", "\<\"\"\>", "\<\"\"\>", "\<\ \"\"\>", "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cerniera", "cernieraFig", "cernieraV", "cNQM"}, {"cNQMb", "cNQMsol", "cNQMval", "col", "coll", "cRlist"}, {"cRnull", "crosshairFig", "cRsol", "cRsol0", "cRsol1", "cRval"}, {"d", "datinum", "datiO", "datip", "diaM", "diaMb"}, { "diaN", "diaNb", "diaNs", "diaQ", "diaQb", "diaQs"}, {"dsh", "e", "eqbil", "eqbilbd", "eqbilt", "eqnsp"}, {"eqnspO", "eqvin", "eqvinO", "exp", "expr1", "extraSimplify"}, {"f", "fabd", "fabdp", "fabdp1", "fbd", "figM"}, {"figMb", "figN", "figNb", "figNs", "figQ", "figQb"}, {"figQs", "forze", "frame", "frameb", "fromCtoNQM", "fromDtoU"}, {"g", "grad", "grNQM", "gruv\[Theta]", "g$", "i"}, { "imageH", "imageW", "incastro", "incastroFig", "incastroV", "it"}, { "ix", "j", "jx", "ker", "ker0", "L"}, {"Li", "Lo", "m", "M", "matbilbd", "matvin"}, {"maxL", "mb", "meno", "mU", "myTeXForm", "n"}, {"nc", "ndiv", "newsym", "newsymlist", "newsymlist1", "newsymlist2"}, {"newsymlist3", "newsymlist4", "newsymlist5", "newsymlist6", "nf", "no"}, {"nv", "org", "outputDir", "p", "perno", "pernoFig"}, {"pernoV", "phframe", "pi\[UGrave]", "pltD", "pltDbv", "pltDs"}, {"pltDv", "pltM", "pltN", "pltO", "pltOa", "pltOax"}, { "pltObv", "pltOs", "pltOv", "pltOx", "pltQ", "potbd"}, {"potbdv", "pote", "pt1", "pt2", "rango", "risp"}, {"s", "saldatura", "saldaturaFig", "saldaturaV", "sb", "sc"}, {"scM", "scN", "scQ", "secD", "secO", "simplifyDirac"}, {"sM", "sMf", "sMo", "sN", "sNf", "sNo"}, {"sNQM", "spbd", "splist", "splistV", "spro", "spsol"}, { "spsolD", "spsolDO", "spsolO", "spuv\[Theta]", "sQ", "sQo"}, { "stFile", "svar", "texBil1", "texBil2", "texBil3", "texCDval"}, { "texCname", "texCval", "texDname", "texDval", "texeqbd", "texeqbdO"}, {"texm", "texM", "texMin", "texMn", "texN", "texNin"}, { "texNn", "texQ", "texQin", "texQn", "texs", "texsm"}, {"texsn", "texu1", "texu1in", "texu1inO", "texu1n", "texu2"}, {"texu2in", "texu2inO", "texu2n", "texvinc", "texvincO", "tex\[Theta]"}, { "tex\[Theta]in", "tex\[Theta]inO", "tex\[Theta]n", "theta", "thetao", "ticksOption"}, {"travi", "trv", "trv1", "trv2", "u", "u1"}, {"u1o", "u2", "u2o", "ub", "uo", "vam"}, {"var", "vecOa1", "vecOa2", "vinBer", "vincoli", "vincolibFig"}, {"vincoliDef", "vincoliFig", "vsp", "wb", "xC", "xCshift"}, {"xDiag", "xLowerL", "xMax", "xMin", "xUpperR", "y1"}, {"y2", "YA", "YJ", "\[ScriptA]", "\[ScriptB]", "\[ScriptC]"}, { "\[ScriptCapitalC]", "\[ScriptD]", "\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]", "\[ScriptCapitalM]"}, { "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]", "\[Alpha]", "\[Gamma]", "\[Epsilon]", "\[Zeta]"}, {"\[Zeta]$", "\[Theta]", "\[Theta]b", "\[Theta]o", "\[Kappa]", "\[Xi]"}, {"\[Chi]", "\[Omega]b"}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{617, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 280, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2522, 81, 51, 1, 59, "Section", Evaluatable->False], Cell[2576, 84, 1127, 30, 252, "SmallText"], Cell[3706, 116, 1520, 27, 236, "SmallText"], Cell[5229, 145, 498, 12, 60, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[5764, 162, 57, 1, 39, "Section", Evaluatable->False], Cell[5824, 165, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[5955, 171, 56, 1, 30, "Input"], Cell[6014, 174, 91, 1, 70, "Output"] }, Open ]], Cell[6120, 178, 97, 2, 28, "SmallText"], Cell[6220, 182, 130, 2, 50, "Input"], Cell[6353, 186, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6885, 199, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7071, 209, 84, 2, 47, "Subsection"], Cell[7158, 213, 109, 2, 28, "SmallText"], Cell[7270, 217, 128, 4, 50, "Input"], Cell[7401, 223, 131, 4, 28, "SmallText"], Cell[7535, 229, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7817, 240, 103, 5, 31, "Subsection"], Cell[7923, 247, 46, 0, 28, "SmallText"], Cell[7972, 249, 101, 3, 46, "Input"], Cell[8076, 254, 364, 10, 60, "SmallText"], Cell[8443, 266, 107, 3, 46, "Input"], Cell[8553, 271, 319, 9, 60, "SmallText"], Cell[8875, 282, 116, 3, 46, "Input"], Cell[8994, 287, 215, 5, 66, "Input"], Cell[9212, 294, 130, 3, 28, "SmallText"], Cell[9345, 299, 129, 3, 46, "Input"], Cell[9477, 304, 121, 3, 28, "SmallText"], Cell[9601, 309, 199, 5, 58, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[9837, 319, 56, 0, 31, "Subsection"], Cell[9896, 321, 45, 0, 28, "SmallText"], Cell[9944, 323, 124, 3, 30, "Input"], Cell[10071, 328, 42, 0, 28, "SmallText"], Cell[10116, 330, 118, 2, 30, "Input"], Cell[10237, 334, 43, 1, 30, "Input"], Cell[10283, 337, 227, 4, 28, "SmallText"], Cell[10513, 343, 53, 1, 30, "Input"], Cell[10569, 346, 271, 5, 42, "Input"], Cell[10843, 353, 46, 0, 28, "SmallText"], Cell[10892, 355, 195, 4, 42, "Input"], Cell[11090, 361, 52, 0, 28, "SmallText"], Cell[11145, 363, 504, 9, 131, "Input"], Cell[11652, 374, 613, 11, 131, "Input"], Cell[12268, 387, 73, 0, 28, "SmallText"], Cell[12344, 389, 46, 1, 30, "Input"], Cell[12393, 392, 134, 3, 28, "SmallText"], Cell[12530, 397, 182, 4, 30, "Input"], Cell[12715, 403, 146, 3, 30, "Input"], Cell[12864, 408, 42, 0, 28, "SmallText"], Cell[12909, 410, 203, 4, 42, "Input"], Cell[13115, 416, 48, 0, 28, "SmallText"], Cell[13166, 418, 226, 5, 85, "Input"], Cell[13395, 425, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13637, 435, 111, 3, 50, "Subsection"], Cell[CellGroupData[{ Cell[13773, 442, 144, 2, 70, "Input"], Cell[13920, 446, 3821, 112, 80, 951, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17802, 565, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[17977, 575, 103, 5, 47, "Subsection"], Cell[18083, 582, 62, 1, 30, "Input"], Cell[18148, 585, 57, 1, 30, "Input"], Cell[18208, 588, 417, 11, 76, "SmallText"], Cell[18628, 601, 130, 3, 46, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[18795, 609, 210, 7, 66, "Subsection"], Cell[CellGroupData[{ Cell[19030, 620, 52, 1, 30, "Input"], Cell[19085, 623, 46, 1, 70, "Output"] }, Open ]], Cell[19146, 627, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[19481, 636, 50, 1, 30, "Input"], Cell[19534, 639, 46, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[19641, 647, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[19782, 654, 132, 3, 47, "Subsection"], Cell[19917, 659, 137, 3, 30, "Input"], Cell[20057, 664, 74, 1, 30, "Input"], Cell[20134, 667, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[21261, 699, 92, 1, 30, "Input"], Cell[21356, 702, 55, 1, 70, "Output"] }, Open ]], Cell[21426, 706, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[21556, 712, 174, 3, 30, "Input"], Cell[21733, 717, 334, 6, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[22116, 729, 64, 0, 31, "Subsection"], Cell[22183, 731, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[22488, 741, 87, 1, 30, "Input"], Cell[22578, 744, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22724, 751, 104, 2, 30, "Input"], Cell[22831, 755, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22926, 761, 190, 3, 50, "Input"], Cell[23119, 766, 139, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23295, 773, 264, 4, 71, "Input"], Cell[23562, 779, 154, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23753, 786, 65, 1, 30, "Input"], Cell[23821, 789, 269, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[24139, 800, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[24230, 804, 116, 2, 30, "Input"], Cell[24349, 808, 1176, 36, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25562, 849, 290, 5, 50, "Input"], Cell[25855, 856, 986, 28, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26878, 889, 289, 5, 50, "Input"], Cell[27170, 896, 855, 27, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[28086, 930, 62, 0, 39, "Section"], Cell[28151, 932, 71, 1, 30, "Input"], Cell[28225, 935, 146, 3, 28, "SmallText"], Cell[28374, 940, 408, 9, 70, "Input"], Cell[28785, 951, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[28880, 955, 198, 4, 30, "Input"], Cell[29081, 961, 174, 3, 70, "Output"] }, Open ]], Cell[29270, 967, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29365, 971, 198, 4, 30, "Input"], Cell[29566, 977, 174, 3, 70, "Output"] }, Open ]], Cell[29755, 983, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29844, 987, 190, 4, 30, "Input"], Cell[30037, 993, 151, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[30237, 1001, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[30390, 1010, 53, 0, 47, "Subsection"], Cell[30446, 1012, 110, 2, 30, "Input"], Cell[30559, 1016, 152, 3, 30, "Input"], Cell[30714, 1021, 249, 5, 50, "Input"], Cell[30966, 1028, 330, 6, 70, "Input"], Cell[31299, 1036, 193, 4, 30, "Input"], Cell[31495, 1042, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[31665, 1050, 103, 5, 31, "Subsection"], Cell[31771, 1057, 160, 4, 60, "SmallText"], Cell[31934, 1063, 49, 1, 30, "Input"], Cell[31986, 1066, 106, 2, 50, "Input"], Cell[32095, 1070, 119, 3, 28, "SmallText"], Cell[32217, 1075, 80, 2, 46, "Input"], Cell[32300, 1079, 505, 8, 92, "SmallText"], Cell[32808, 1089, 165, 4, 46, "Input"], Cell[32976, 1095, 224, 3, 110, "Input"], Cell[CellGroupData[{ Cell[33225, 1102, 40, 1, 30, "Input"], Cell[33268, 1105, 115, 2, 29, "Output"] }, Open ]], Cell[33398, 1110, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[33493, 1114, 137, 3, 30, "Input"], Cell[33633, 1119, 130, 2, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[33812, 1127, 56, 0, 31, "Subsection"], Cell[33871, 1129, 72, 0, 28, "SmallText"], Cell[33946, 1131, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[34015, 1136, 43, 1, 30, "Input"], Cell[34061, 1139, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34176, 1145, 280, 5, 90, "Input"], Cell[34459, 1152, 36, 1, 70, "Output"] }, Open ]], Cell[34510, 1156, 150, 3, 44, "SmallText"], Cell[34663, 1161, 43, 1, 30, "Input"], Cell[34709, 1164, 53, 1, 30, "Input"], Cell[34765, 1167, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[36067, 1197, 240, 4, 70, "Input"], Cell[36310, 1203, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[36383, 1209, 48, 1, 30, "Input"], Cell[36434, 1212, 396, 12, 70, "Output"] }, Open ]], Cell[36845, 1227, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[36960, 1233, 43, 1, 30, "Input"], Cell[37006, 1236, 78, 1, 70, "Output"] }, Open ]], Cell[37099, 1240, 222, 4, 90, "Input"], Cell[37324, 1246, 219, 4, 90, "Input"], Cell[37546, 1252, 67, 0, 28, "SmallText"], Cell[37616, 1254, 72, 1, 30, "Input"], Cell[37691, 1257, 82, 1, 30, "Input"], Cell[37776, 1260, 393, 7, 208, "Input"], Cell[38172, 1269, 403, 7, 208, "Input"], Cell[38578, 1278, 214, 4, 118, "Input"], Cell[38795, 1284, 717, 13, 338, "Input"], Cell[39515, 1299, 452, 8, 202, "Input"], Cell[39970, 1309, 213, 4, 90, "Input"], Cell[40186, 1315, 155, 3, 70, "Input"], Cell[40344, 1320, 57, 1, 30, "Input"], Cell[40404, 1323, 59, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[40500, 1329, 75, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[40600, 1333, 145, 2, 70, "Input"], Cell[40748, 1337, 5567, 141, 89, 1089, 81, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[46352, 1483, 144, 2, 70, "Input"], Cell[46499, 1487, 3980, 130, 85, 1228, 91, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[50528, 1623, 78, 0, 31, "Subsection"], Cell[50609, 1625, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[50865, 1633, 213, 4, 50, "Input"], Cell[51081, 1639, 902, 27, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[52020, 1671, 70, 1, 30, "Input"], Cell[52093, 1674, 490, 15, 70, "Output"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[52644, 1696, 89, 1, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[52758, 1701, 68, 1, 47, "Subsection", Evaluatable->False], Cell[52829, 1704, 119, 3, 28, "SmallText"], Cell[52951, 1709, 156, 3, 28, "SmallText"], Cell[53110, 1714, 356, 5, 95, "Input"], Cell[53469, 1721, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[53837, 1731, 37, 1, 30, "Input"], Cell[53877, 1734, 311, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[54225, 1744, 71, 1, 30, "Input"], Cell[54299, 1747, 551, 9, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[54899, 1762, 57, 0, 31, "Subsection"], Cell[54959, 1764, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[55078, 1770, 169, 3, 30, "Input"], Cell[55250, 1775, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[55402, 1782, 93, 1, 30, "Input"], Cell[55498, 1785, 115, 2, 70, "Output"] }, Open ]], Cell[55628, 1790, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[55714, 1794, 344, 6, 90, "Input"], Cell[56061, 1802, 130, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56228, 1809, 69, 1, 30, "Input"], Cell[56300, 1812, 108, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[56457, 1820, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[56547, 1824, 70, 1, 30, "Input"], Cell[56620, 1827, 302, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[56971, 1838, 105, 2, 31, "Subsection"], Cell[CellGroupData[{ Cell[57101, 1844, 195, 4, 30, "Input"], Cell[57299, 1850, 209, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57545, 1859, 63, 1, 30, "Input"], Cell[57611, 1862, 222, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[57882, 1872, 88, 1, 31, "Subsection", Evaluatable->False], Cell[57973, 1875, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[58178, 1883, 37, 1, 30, "Input"], Cell[58218, 1886, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58313, 1892, 138, 4, 30, "Input"], Cell[58454, 1898, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58549, 1904, 103, 2, 30, "Input"], Cell[58655, 1908, 248, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58940, 1917, 134, 3, 30, "Input"], Cell[59077, 1922, 288, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59402, 1935, 134, 3, 30, "Input"], Cell[59539, 1940, 637, 20, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[60225, 1966, 78, 0, 31, "Subsection"], Cell[60306, 1968, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[60414, 1973, 45, 1, 30, "Input"], Cell[60462, 1976, 35, 1, 70, "Output"] }, Open ]], Cell[60512, 1980, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[60755, 1988, 51, 1, 30, "Input"], Cell[60809, 1991, 35, 1, 70, "Output"] }, Open ]], Cell[60859, 1995, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[61007, 2002, 53, 1, 30, "Input"], Cell[61063, 2005, 35, 1, 70, "Output"] }, Open ]], Cell[61113, 2009, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[61270, 2016, 51, 1, 30, "Input"], Cell[61324, 2019, 35, 1, 70, "Output"] }, Open ]], Cell[61374, 2023, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[61429, 2027, 134, 2, 30, "Input"], Cell[61566, 2031, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61655, 2037, 230, 5, 30, "Input"], Cell[61888, 2044, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[61972, 2051, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[62069, 2055, 461, 8, 19, "Input", CellOpen->False], Cell[62533, 2065, 195, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[62765, 2075, 1993, 32, 19, "Input", CellOpen->False], Cell[64761, 2109, 186, 5, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[65008, 2121, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[65175, 2131, 56, 0, 47, "Subsection"], Cell[65234, 2133, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[65334, 2137, 92, 1, 50, "Input"], Cell[65429, 2140, 172, 3, 70, "Output"] }, Open ]], Cell[65616, 2146, 182, 3, 44, "SmallText"], Cell[65801, 2151, 248, 7, 50, "Input"], Cell[CellGroupData[{ Cell[66074, 2162, 71, 1, 30, "Input"], Cell[66148, 2165, 373, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[66570, 2183, 134, 5, 31, "Subsection"], Cell[66707, 2190, 420, 7, 76, "SmallText"], Cell[67130, 2199, 104, 3, 46, "Input"], Cell[67237, 2204, 313, 9, 44, "SmallText"], Cell[67553, 2215, 407, 8, 106, "Input"], Cell[67963, 2225, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[68078, 2231, 135, 3, 30, "Input"], Cell[68216, 2236, 36, 1, 70, "Output"] }, Open ]], Cell[68267, 2240, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[68419, 2247, 140, 3, 70, "Input"], Cell[68562, 2252, 85, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[68684, 2258, 182, 4, 50, "Input"], Cell[68869, 2264, 124, 2, 70, "Output"] }, Open ]], Cell[69008, 2269, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[69079, 2273, 46, 1, 30, "Input"], Cell[69128, 2276, 43, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[69220, 2283, 72, 0, 31, "Subsection"], Cell[69295, 2285, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[69461, 2292, 271, 7, 50, "Input"], Cell[69735, 2301, 45, 1, 70, "Output"] }, Open ]], Cell[69795, 2305, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[70005, 2313, 160, 4, 30, "Input"], Cell[70168, 2319, 36, 1, 70, "Output"] }, Open ]], Cell[70219, 2323, 524, 9, 110, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[70792, 2338, 88, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[70905, 2343, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[70982, 2347, 76, 1, 30, "Input"], Cell[71061, 2350, 166, 3, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[71276, 2359, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[71392, 2364, 571, 10, 70, "Input"], Cell[71966, 2376, 141, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[72144, 2384, 149, 2, 30, "Input"], Cell[72296, 2388, 163, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[72496, 2396, 40, 1, 30, "Input"], Cell[72539, 2399, 141, 3, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[72741, 2409, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[72882, 2416, 45, 0, 47, "Subsection"], Cell[72930, 2418, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[73096, 2425, 1094, 25, 50, "Input"], Cell[74193, 2452, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[75257, 2482, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[75347, 2486, 217, 4, 50, "Input"], Cell[75567, 2492, 186, 3, 70, "Output"] }, Open ]], Cell[75768, 2498, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[75872, 2502, 365, 9, 30, "Input"], Cell[76240, 2513, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[76609, 2527, 40, 0, 31, "Subsection"], Cell[76652, 2529, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[76819, 2536, 227, 3, 50, "Input"], Cell[77049, 2541, 320, 6, 70, "Output"] }, Open ]], Cell[77384, 2550, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[77517, 2557, 289, 4, 70, "Input"], Cell[77809, 2563, 773, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[78619, 2586, 246, 4, 70, "Input"], Cell[78868, 2592, 457, 8, 70, "Output"] }, Open ]], Cell[79340, 2603, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[79467, 2609, 330, 5, 70, "Input"], Cell[79800, 2616, 712, 17, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[80549, 2638, 244, 4, 70, "Input"], Cell[80796, 2644, 367, 6, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[81200, 2655, 169, 3, 30, "Input"], Cell[81372, 2660, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[81524, 2667, 76, 1, 30, "Input"], Cell[81603, 2670, 657, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82297, 2687, 75, 1, 30, "Input"], Cell[82375, 2690, 462, 7, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[82886, 2703, 64, 0, 31, "Subsection"], Cell[82953, 2705, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[83203, 2714, 190, 4, 50, "Input"], Cell[83396, 2720, 109, 2, 70, "Output"] }, Open ]], Cell[83520, 2725, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[83657, 2732, 311, 7, 90, "Input"], Cell[83971, 2741, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[84117, 2748, 257, 4, 50, "Input"], Cell[84377, 2754, 149, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[84563, 2761, 127, 2, 31, "Input"], Cell[84693, 2765, 164, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[84894, 2772, 60, 1, 30, "Input"], Cell[84957, 2775, 68, 1, 70, "Output"] }, Open ]], Cell[85040, 2779, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[85173, 2786, 61, 1, 30, "Input"], Cell[85237, 2789, 410, 7, 70, "Output"] }, Open ]], Cell[85662, 2799, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[85789, 2805, 59, 1, 30, "Input"], Cell[85851, 2808, 333, 6, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[86245, 2821, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[86348, 2826, 64, 1, 47, "Subsection", Evaluatable->False], Cell[86415, 2829, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[86591, 2836, 422, 8, 90, "Input"], Cell[87016, 2846, 122, 2, 70, "Output"] }, Open ]], Cell[87153, 2851, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[87369, 2859, 82, 1, 30, "Input"], Cell[87454, 2862, 223, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[87726, 2873, 78, 1, 31, "Subsection", Evaluatable->False], Cell[87807, 2876, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[87940, 2882, 93, 1, 30, "Input"], Cell[88036, 2885, 282, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88355, 2898, 93, 1, 30, "Input"], Cell[88451, 2901, 494, 14, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88982, 2920, 107, 2, 30, "Input"], Cell[89092, 2924, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[89164, 2930, 108, 2, 30, "Input"], Cell[89275, 2934, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[89348, 2940, 39, 1, 30, "Input"], Cell[89390, 2943, 68, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[89507, 2950, 55, 0, 31, "Subsection"], Cell[89565, 2952, 246, 4, 110, "Input"], Cell[89814, 2958, 244, 4, 110, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[90095, 2967, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[90200, 2972, 169, 3, 30, "Input"], Cell[90372, 2977, 140, 3, 70, "Output"] }, Open ]], Cell[90527, 2983, 42, 1, 30, "Input"], Cell[90572, 2986, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[90683, 2991, 88, 1, 30, "Input"], Cell[90774, 2994, 140, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90951, 3002, 221, 4, 30, "Input"], Cell[91175, 3008, 215, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[91427, 3018, 128, 2, 30, "Input"], Cell[91558, 3022, 1425, 35, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[93044, 3064, 123, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[93192, 3071, 140, 5, 47, "Subsection"], Cell[93335, 3078, 110, 2, 30, "Input"], Cell[93448, 3082, 78, 1, 30, "Input"], Cell[93529, 3085, 76, 1, 30, "Input"], Cell[93608, 3088, 59, 1, 30, "Input"], Cell[93670, 3091, 471, 8, 118, "Input"], Cell[94144, 3101, 65, 1, 30, "Input"], Cell[94212, 3104, 85, 1, 30, "Input"], Cell[94300, 3107, 150, 3, 30, "Input"], Cell[94453, 3112, 193, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[94671, 3120, 304, 5, 50, "Input"], Cell[94978, 3127, 38, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[95065, 3134, 64, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[95154, 3138, 91, 1, 30, "Input"], Cell[95248, 3141, 141, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[95426, 3149, 89, 1, 30, "Input"], Cell[95518, 3152, 215, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[95782, 3163, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[95843, 3167, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[95906, 3171, 297, 6, 90, "Input"], Cell[96206, 3179, 326, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[96581, 3195, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[96646, 3199, 292, 6, 90, "Input"], Cell[96941, 3207, 386, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[97376, 3224, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[97433, 3228, 292, 6, 90, "Input"], Cell[97728, 3236, 389, 11, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[98178, 3254, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[98236, 3258, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[98305, 3262, 289, 6, 70, "Input"], Cell[98597, 3270, 326, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[98972, 3286, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[99045, 3290, 289, 6, 70, "Input"], Cell[99337, 3298, 504, 13, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[99890, 3317, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[99949, 3321, 295, 6, 70, "Input"], Cell[100247, 3329, 521, 13, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[100829, 3349, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[100972, 3356, 58, 1, 30, "Input"], Cell[101033, 3359, 411, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[101481, 3376, 62, 0, 43, "Subsubsection"], Cell[101546, 3378, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[101630, 3382, 302, 5, 150, "Input"], Cell[101935, 3389, 417, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[102401, 3406, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[102490, 3410, 302, 5, 150, "Input"], Cell[102795, 3417, 331, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[103175, 3433, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[103252, 3437, 453, 8, 189, "Input"], Cell[103708, 3447, 337, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[104094, 3463, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[104173, 3467, 623, 11, 191, "Input"], Cell[104799, 3480, 330, 10, 70, "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[105202, 3498, 131, 6, 39, "Section", Evaluatable->False], Cell[105336, 3506, 118, 3, 33, "Text"], Cell[105457, 3511, 219, 5, 46, "Input"], Cell[105679, 3518, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[105929, 3526, 132, 3, 50, "Input"], Cell[106064, 3531, 36, 1, 70, "Output"] }, Open ]], Cell[106115, 3535, 123, 3, 33, "Text"], Cell[106241, 3540, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[106368, 3547, 142, 3, 70, "Input"], Cell[106513, 3552, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106586, 3558, 69, 1, 30, "Input"], Cell[106658, 3561, 175, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[106882, 3570, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[107014, 3577, 33, 0, 47, "Subsection"], Cell[107050, 3579, 215, 4, 50, "Input"], Cell[107268, 3585, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[107519, 3594, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[107610, 3599, 67, 1, 30, "Input"], Cell[107680, 3602, 140, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107857, 3610, 68, 1, 30, "Input"], Cell[107928, 3613, 131, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108096, 3621, 81, 1, 30, "Input"], Cell[108180, 3624, 238, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108455, 3634, 84, 1, 30, "Input"], Cell[108542, 3637, 249, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108828, 3647, 73, 1, 30, "Input"], Cell[108904, 3650, 87, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109028, 3656, 76, 1, 30, "Input"], Cell[109107, 3659, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109222, 3665, 73, 1, 30, "Input"], Cell[109298, 3668, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109411, 3674, 76, 1, 30, "Input"], Cell[109490, 3677, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[109624, 3684, 75, 1, 31, "Subsection", Evaluatable->False], Cell[109702, 3687, 384, 16, 28, "SmallText"], Cell[110089, 3705, 261, 12, 28, "SmallText"], Cell[110353, 3719, 1652, 33, 152, "Input"], Cell[112008, 3754, 1634, 32, 152, "Input"], Cell[113645, 3788, 393, 16, 50, "Text"], Cell[114041, 3806, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[114142, 3812, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[114259, 3817, 132, 3, 19, "Input", CellOpen->False], Cell[114394, 3822, 11704, 425, 77, 5167, 341, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[126147, 4253, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[126266, 4260, 155, 4, 19, "Input", CellOpen->False], Cell[126424, 4266, 12677, 459, 81, 5597, 369, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[139162, 4732, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[139352, 4742, 56, 0, 47, "Subsection"], Cell[139411, 4744, 136, 3, 28, "SmallText"], Cell[139550, 4749, 222, 5, 30, "Input"], Cell[139775, 4756, 446, 7, 84, "Input"], Cell[140224, 4765, 38, 0, 28, "SmallText"], Cell[140265, 4767, 328, 7, 50, "Input"], Cell[140596, 4776, 42, 0, 28, "SmallText"], Cell[140641, 4778, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[140895, 4787, 86, 1, 30, "Input"], Cell[140984, 4790, 308, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[141329, 4803, 88, 1, 30, "Input"], Cell[141420, 4806, 308, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[141777, 4820, 42, 0, 31, "Subsection"], Cell[141822, 4822, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[142079, 4830, 263, 5, 90, "Input"], Cell[142345, 4837, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[142426, 4843, 263, 5, 90, "Input"], Cell[142692, 4850, 44, 1, 70, "Output"] }, Open ]], Cell[142751, 4854, 86, 1, 30, "Input"], Cell[142840, 4857, 128, 2, 76, "Input"], Cell[142971, 4861, 112, 2, 30, "Input"], Cell[143086, 4865, 129, 3, 30, "Input"], Cell[143218, 4870, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[143322, 4876, 132, 5, 31, "Subsection"], Cell[143457, 4883, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[143663, 4892, 80, 1, 32, "Input"], Cell[143746, 4895, 40, 1, 29, "Output"] }, Open ]], Cell[143801, 4899, 182, 6, 41, "Input"], Cell[CellGroupData[{ Cell[144008, 4909, 62, 1, 30, "Input"], Cell[144073, 4912, 66, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[144188, 4919, 28, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[144241, 4923, 221, 3, 70, "Input"], Cell[144465, 4928, 10335, 289, 131, 2538, 188, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[154837, 5222, 219, 3, 70, "Input"], Cell[155059, 5227, 9039, 291, 131, 2842, 210, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[164159, 5525, 159, 6, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[164343, 5535, 34, 0, 47, "Subsection"], Cell[164380, 5537, 136, 3, 28, "SmallText"], Cell[164519, 5542, 191, 4, 30, "Input"], Cell[164713, 5548, 36, 0, 28, "SmallText"], Cell[164752, 5550, 349, 8, 50, "Input"], Cell[165104, 5560, 46, 0, 28, "SmallText"], Cell[165153, 5562, 925, 20, 210, "Input"], Cell[166081, 5584, 122, 3, 30, "Input"], Cell[166206, 5589, 109, 2, 50, "Input"], Cell[166318, 5593, 109, 2, 50, "Input"], Cell[166430, 5597, 270, 5, 70, "Input"], Cell[166703, 5604, 191, 4, 30, "Input"], Cell[166897, 5610, 349, 8, 50, "Input"], Cell[167249, 5620, 925, 20, 210, "Input"], Cell[168177, 5642, 122, 3, 30, "Input"], Cell[168302, 5647, 109, 2, 50, "Input"], Cell[168414, 5651, 109, 2, 50, "Input"], Cell[168526, 5655, 270, 5, 70, "Input"], Cell[168799, 5662, 191, 4, 30, "Input"], Cell[168993, 5668, 349, 8, 50, "Input"], Cell[169345, 5678, 122, 3, 30, "Input"], Cell[169470, 5683, 109, 2, 50, "Input"], Cell[169582, 5687, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[169882, 5697, 128, 5, 31, "Subsection"], Cell[170013, 5704, 48, 1, 30, "Input"], Cell[170064, 5707, 48, 1, 30, "Input"], Cell[170115, 5710, 48, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[170200, 5716, 51, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[170276, 5720, 167, 2, 70, "Input"], Cell[170446, 5724, 4568, 165, 131, 1951, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[175063, 5895, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[175130, 5899, 167, 2, 70, "Input"], Cell[175300, 5903, 8198, 273, 131, 3139, 206, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[183547, 6182, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[183615, 6186, 167, 2, 70, "Input"], Cell[183785, 6190, 5705, 204, 131, 2444, 159, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[189551, 6401, 104, 1, 39, "Section"], Cell[CellGroupData[{ Cell[189680, 6406, 44, 1, 30, "Input"], Cell[189727, 6409, 91, 1, 70, "Output"] }, Open ]], Cell[189833, 6413, 137, 3, 70, "Input"], Cell[189973, 6418, 231, 4, 70, "Input"], Cell[190207, 6424, 237, 4, 70, "Input"], Cell[190447, 6430, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[190586, 6436, 328, 5, 72, "Input"], Cell[190917, 6443, 43, 1, 70, "Output"] }, Open ]], Cell[190975, 6447, 255, 4, 90, "Input"], Cell[191233, 6453, 257, 4, 90, "Input"], Cell[191493, 6459, 281, 5, 90, "Input"], Cell[191777, 6466, 254, 4, 90, "Input"], Cell[192034, 6472, 254, 4, 90, "Input"], Cell[192291, 6478, 254, 4, 90, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[192582, 6487, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[192908, 6501, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[192975, 6505, 44, 1, 30, "Input"], Cell[193022, 6508, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[193150, 6514, 69, 1, 30, "Input"], Cell[193222, 6517, 70, 1, 70, "Output"] }, Open ]], Cell[193307, 6521, 137, 3, 28, "SmallText"], Cell[193447, 6526, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[193987, 6540, 58, 1, 30, "Input"], Cell[194048, 6543, 411, 12, 70, "Output"] }, Open ]], Cell[194474, 6558, 226, 5, 44, "SmallText"], Cell[194703, 6565, 144, 3, 50, "Input"], Cell[194850, 6570, 191, 4, 28, "SmallText"], Cell[195044, 6576, 191, 5, 70, "Input"], Cell[195238, 6583, 347, 6, 70, "Input"], Cell[195588, 6591, 219, 4, 50, "Input"], Cell[195810, 6597, 548, 10, 110, "Input"], Cell[196361, 6609, 197, 3, 50, "Input"], Cell[196561, 6614, 381, 7, 70, "Input"], Cell[196945, 6623, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[197263, 6632, 259, 9, 31, "Subsection"], Cell[197525, 6643, 122, 3, 28, "SmallText"], Cell[197650, 6648, 193, 4, 31, "Input"], Cell[197846, 6654, 193, 4, 31, "Input"], Cell[198042, 6660, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[198260, 6668, 801, 15, 130, "Input"], Cell[199064, 6685, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[199159, 6692, 275, 9, 31, "Subsection"], Cell[199437, 6703, 175, 4, 30, "Input"], Cell[199615, 6709, 175, 4, 30, "Input"], Cell[199793, 6715, 175, 4, 30, "Input"], Cell[199971, 6721, 89, 1, 30, "Input"], Cell[200063, 6724, 89, 1, 30, "Input"], Cell[200155, 6727, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[200269, 6732, 759, 14, 130, "Input"], Cell[201031, 6748, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[201128, 6755, 260, 9, 31, "Subsection"], Cell[201391, 6766, 122, 3, 28, "SmallText"], Cell[201516, 6771, 214, 4, 31, "Input"], Cell[201733, 6777, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[201970, 6785, 446, 7, 110, "Input"], Cell[202419, 6794, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[202504, 6800, 450, 7, 110, "Input"], Cell[202957, 6809, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[203053, 6816, 268, 9, 31, "Subsection"], Cell[203324, 6827, 122, 3, 28, "SmallText"], Cell[203449, 6832, 224, 4, 31, "Input"], Cell[203676, 6838, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[203930, 6846, 449, 7, 110, "Input"], Cell[204382, 6855, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[204468, 6861, 446, 7, 110, "Input"], Cell[204917, 6870, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[205014, 6877, 262, 9, 31, "Subsection"], Cell[205279, 6888, 203, 4, 30, "Input"], Cell[205485, 6894, 216, 4, 30, "Input"], Cell[205704, 6900, 230, 4, 30, "Input"], Cell[205937, 6906, 201, 4, 30, "Input"], Cell[206141, 6912, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[206380, 6920, 469, 7, 110, "Input"], Cell[206852, 6929, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[206933, 6935, 465, 7, 90, "Input"], Cell[207401, 6944, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[207482, 6950, 471, 7, 110, "Input"], Cell[207956, 6959, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[208050, 6966, 272, 9, 31, "Subsection"], Cell[208325, 6977, 203, 4, 30, "Input"], Cell[208531, 6983, 203, 4, 30, "Input"], Cell[208737, 6989, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[208965, 6997, 751, 14, 130, "Input"], Cell[209719, 7013, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[209814, 7020, 293, 9, 31, "Subsection"], Cell[210110, 7031, 108, 3, 28, "SmallText"], Cell[210221, 7036, 206, 3, 50, "Input"], Cell[210430, 7041, 194, 4, 30, "Input"], Cell[210627, 7047, 204, 4, 30, "Input"], Cell[210834, 7053, 92, 1, 30, "Input"], Cell[210929, 7056, 92, 1, 30, "Input"], Cell[211024, 7059, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[211158, 7065, 780, 14, 130, "Input"], Cell[211941, 7081, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[212038, 7088, 274, 9, 31, "Subsection"], Cell[212315, 7099, 102, 2, 28, "SmallText"], Cell[212420, 7103, 202, 3, 50, "Input"], Cell[212625, 7108, 190, 4, 30, "Input"], Cell[212818, 7114, 202, 4, 30, "Input"], Cell[213023, 7120, 92, 1, 30, "Input"], Cell[213118, 7123, 92, 1, 30, "Input"], Cell[213213, 7126, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[213347, 7132, 776, 14, 130, "Input"], Cell[214126, 7148, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[214222, 7155, 266, 9, 31, "Subsection"], Cell[214491, 7166, 203, 4, 30, "Input"], Cell[214697, 7172, 203, 4, 30, "Input"], Cell[214903, 7178, 227, 4, 30, "Input"], Cell[215133, 7184, 92, 1, 30, "Input"], Cell[215228, 7187, 92, 1, 30, "Input"], Cell[215323, 7190, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[215457, 7196, 795, 15, 150, "Input"], Cell[216255, 7213, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[216349, 7220, 280, 9, 31, "Subsection"], Cell[216632, 7231, 51, 1, 30, "Input"], Cell[216686, 7234, 275, 5, 91, "Input"], Cell[216964, 7241, 280, 5, 91, "Input"], Cell[217247, 7248, 207, 4, 90, "Input"], Cell[217457, 7254, 212, 4, 90, "Input"], Cell[217672, 7260, 91, 1, 30, "Input"], Cell[217766, 7263, 84, 1, 30, "Input"], Cell[217853, 7266, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[219326, 7300, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[219416, 7305, 346, 8, 19, "Input", CellOpen->False], Cell[219765, 7315, 9474, 154, 70, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)