(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 245215, 7788]*) (*NotebookOutlinePosition[ 245876, 7811]*) (* CellTagsIndexPosition[ 245832, 7807]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-05\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 1;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[ \(\(\[Alpha][1] = 0;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(L[1] = \[ScriptCapitalL];\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .25 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0535714 0.952381 [ [ 0 0 0 0 ] [ 1 .25 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .25 L 0 .25 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05357 m .97619 .05357 L s .5 Mabswid .2619 .00595 m .2619 .10119 L s .5 .00595 m .5 .10119 L s .7381 .00595 m .7381 .10119 L s 0 0 0 r 2 Mabswid .5 .05357 m .69048 .05357 L s .62698 .08532 m .69048 .05357 L s .62698 .02183 m .69048 .05357 L s .5 .05357 m .5 .24405 L s .46825 .18056 m .5 .24405 L s .53175 .18056 m .5 .24405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 72}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2 002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00QWoo00<007ooOol01Goo0P0027oo00<007ooOol0QGoo0026Ool00`00Oomoo`05Ool20008Ool0 0`00Oomoo`25Ool008Ioo`8000Ioo`8000Moo`8008Moo`00Qgoo00<007ooOol017oo0P001goo00<0 07ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03001o ogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00Oomo o`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo08Uo o`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool00`00Oomoo`020003Ool00`00Oomoo`2:Ool008]o o`800003Ool00000009oo`8008aoo`00S7oo00@007oo0000009oo`03001oogoo08]oo`00S7oo1000 00=oo`000000SGoo002=Ool300000goo001oo`2=Ool008eoo`D008ioo`00SWoo0`00Sgoo002>Ool3 002?Ool008ioo`80091oo`00SWoo0P00T7oo0000\ \>"], ImageRangeCache->{{{0, 287}, {71, 0}} -> {-0.0305511, -0.0562513, \ 0.00369722, 0.00369722}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(b[ 1]\)[\[Zeta]_] := \(-\[ScriptB]\) \((1 - UnitStep[\[Zeta] - L[1]\/2])\)\ e\_2\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] - \[ScriptB]\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]] + \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptB]\ \[Zeta]\^2\)\/2 - 1\/8\ \[ScriptB]\ \((\(-\[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]] - \[Zeta]\ \((\[ScriptB]\ \[Zeta] - \[ScriptB]\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]])\) - \[Zeta]\ \[ScriptCapitalC][2] + \[ScriptCapitalC][ 3]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] - \[ScriptB]\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]] + sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptB]\ \[Zeta]\^2\)\/2 - 1\/8\ \[ScriptB]\ \((\(-\[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]] - \[Zeta]\ \((\[ScriptB]\ \[Zeta] - \[ScriptB]\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]])\) - \[Zeta]\ sQo[1] + sMo[1]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{\(\[ScriptB]\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "\[ScriptB]"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Plus[ Times[ \[ScriptB], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Derivative[ 1][ sQ[ 1]][ \[Zeta]]], \[ScriptB]], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + 1\/2\ \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]] + \[ScriptCapitalC][2]\)}, {\(\(sM[1]\)[\[Zeta]] == 1\/8\ \((\(-4\)\ \[ScriptB]\ \[Zeta]\^2 + \[ScriptB]\ \((\ \[ScriptCapitalL] - 2\ \[Zeta])\)\^2\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]] - 8\ \[Zeta]\ \[ScriptCapitalC][2] + 8\ \[ScriptCapitalC][3])\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], Times[ Rational[ 1, 2], \[ScriptB], Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], \[ScriptCapitalC][ 2]]], Equal[ sM[ 1][ \[Zeta]], Times[ Rational[ 1, 8], Plus[ Times[ -4, \[ScriptB], Power[ \[Zeta], 2]], Times[ \[ScriptB], Power[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]], 2], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ -8, \[Zeta], \[ScriptCapitalC][ 2]], Times[ 8, \[ScriptCapitalC][ 3]]]]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + sQo[1] + 1\/2\ \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]]\)}, {\(\(sM[1]\)[\[Zeta]] == 1\/8\ \((\(-4\)\ \[ScriptB]\ \[Zeta]\^2 + 8\ sMo[1] - 8\ \[Zeta]\ sQo[ 1] + \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ \^2\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], sQo[ 1], Times[ Rational[ 1, 2], \[ScriptB], Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]]]], Equal[ sM[ 1][ \[Zeta]], Times[ Rational[ 1, 8], Plus[ Times[ -4, \[ScriptB], Power[ \[Zeta], 2]], Times[ 8, sMo[ 1]], Times[ -8, \[Zeta], sQo[ 1]], Times[ \[ScriptB], Power[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]], 2], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]]]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(cerniera[1]\)[meno], \(carrello[1]\)[ pi\[UGrave]]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(vincoli := \(Block[{carrello = carrelloV, cerniera = cernieraV, perno = pernoV, incastro = incastroV, saldatura = saldaturaV}, vincoliDef] // Flatten\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(cerniera[1]\)["-"], \(carrello[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{carrello = \((\((Null\ &)\)\ &)\), incastro = \((\((Null\ &)\)\ &)\), cerniera = \((\((Null\ &)\)\ &)\), perno = coll, saldatura = coll}, Complement[vincoliDef, {Null}]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(cerniera[1]\)["-"], \(carrello[1]\)["+"]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(vincoliFig := Block[{carrello = carrelloFig, cerniera = cernieraFig, perno = pernoFig, saldatura = saldaturaFig, incastro = incastroFig}, vincoliDef];\)\)], "Input"], Cell[BoxData[ \(vincolibFig := Block[{carrello = crosshairFig, cerniera = crosshairFig, perno = crosshairFig, saldatura = crosshairFig, incastro = crosshairFig}, vincoliDef]\)], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .27857 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0918367 0.816327 0.108673 0.816327 [ [ 0 0 0 0 ] [ 1 .27857 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .27857 L 0 .27857 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .09184 .10867 m .90816 .10867 L s 0 0 0 r .5 .10867 m .66327 .10867 L s .60884 .13588 m .66327 .10867 L s .60884 .08146 m .66327 .10867 L s .5 .10867 m .5 .27194 L s .47279 .21752 m .5 .27194 L s .52721 .21752 m .5 .27194 L s 0 g 1 Mabswid .02381 .10867 m .15986 .10867 L s .09184 .00663 m .09184 .21071 L s newpath .09184 .10867 .03265 0 365.73 arc s .84014 .10867 m .97619 .10867 L s .90816 .00663 m .90816 .21071 L s newpath .90816 .10867 .03265 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 80.1875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgEoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo 000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`00 6goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]o o`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol0 0`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<0 07ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001o ogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomo o`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0 iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eo o`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000HOol6002@Ool00`00Oomo o`1?Ool7000IOol001Ioo`8000=oo`03001oogoo008008eoo`@004eoo`8000=oo`05001oogooOol0 000HOol001Eoo`03001oogoo00=oo`03001oogoo009oo`8008aoo`D004Yoo`03001oogoo00=oo`03 001oogoo009oo`8001Ioo`0057oo00<007ooOol017oo00<007ooOol017oo00<007ooOol0Rgoo1@00 Agoo00<007ooOol017oo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomoo`04Ool00`00 Oomoo`04Ool00`00Oomoo`2=Ool40016Ool00`00Oomoo`04Ool00`00Oomoo`04Ool00`00Oomoo`0C Ool001=oo`03001oogoo00Eoo`03001oogoo00Eoo`03001oogoo08ioo`@004=oo`03001oogoo00Eo o`03001oogoo00Eoo`03001oogoo019oo`004Woo00<007ooOol01Woo00<007ooOol01Woo00<007oo Ool0SWoo1@00@7oo00<007ooOol01Woo00<007ooOol01Woo00<007ooOol04Goo000BOol00`00Oomo o`06Ool00`00Oomoo`06Ool00`00Oomoo`2@Ool5000nOol00`00Oomoo`06Ool00`00Oomoo`06Ool0 0`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo099oo`D003aoo`03 001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`0027ooo`0040002Goo000BOol00`00Oomo o`05OooZ0008Ool00`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo 06Moo`8002Moo`D003ioo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`004Woo00<0 07ooOol01Woo00<007ooOol01Woo00<007ooOol0Igoo0P009Goo1@00@7oo00<007ooOol01Woo00<0 07ooOol01Woo00<007ooOol04Goo000BOol00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`1W Ool2000TOol40012Ool00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`0AOol001=oo`03001o ogoo00Eoo`03001oogoo00Eoo`03001oogoo06Qoo`80029oo`@004Eoo`03001oogoo00Eoo`03001o ogoo00Eoo`03001oogoo019oo`004goo00<007ooOol01Goo00<007ooOol017oo00<007ooOol0JGoo 0P0087oo1@00AWoo00<007ooOol01Goo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomo o`04Ool00`00Oomoo`03Ool00`00Oomoo`1ZOol2000NOol50019Ool00`00Oomoo`04Ool00`00Oomo o`04Ool00`00Oomoo`0COol001Eoo`8000Aoo`03001oogoo009oo`03001oogoo06]oo`8001eoo`@0 04aoo`8000Aoo`03001oogoo009oo`8001Ioo`005goo2@00KWoo0P007Woo00<007ooOol0CWoo2@00 67oo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo 0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03 001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol0 6Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00Qgoo00<007ooOol017oo 0P001goo00<007ooOol0QWoo0027Ool00`00Oomoo`04Ool20007Ool00`00Oomoo`26Ool008Moo`80 00Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P001Woo00<007ooOol0Qgoo0028Ool20004 Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eoo`03001oogoo08Qoo`00RGoo0P000goo 0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<007ooOol0RGoo002:Ool20002Ool20003 Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo08Yoo`00Rgoo0P0000=oo`0000000Woo 0P00S7oo002Ool3002?Ool008ioo`<008moo`00SWoo0P00T7oo 002>Ool2002@Ool00001\ \>"], ImageRangeCache->{{{0, 287}, {79.1875, 0}} -> {-0.118401, -0.133126, \ 0.00430941, 0.00430941}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .26667 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.793651 0.101587 0.793651 [ [ 0 0 0 0 ] [ 1 .26667 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .26667 L 0 .26667 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .10317 .10159 m .89683 .10159 L s 0 0 0 r .5 .10159 m .65873 .10159 L s .60582 .12804 m .65873 .10159 L s .60582 .07513 m .65873 .10159 L s .5 .10159 m .5 .26032 L s .47354 .20741 m .5 .26032 L s .52646 .20741 m .5 .26032 L s 0 g .10317 .10159 m .02381 .02222 L .18254 .02222 L .10317 .10159 L s 1 g .10317 .10159 m .10317 .10159 .03175 0 365.73 arc F 0 g newpath .10317 .10159 .03175 0 365.73 arc s .89683 .10159 m .81746 .02222 L .97619 .02222 L .89683 .10159 L s .81746 .00635 m .97619 .00635 L s 1 g .89683 .10159 m .89683 .10159 .03175 0 365.73 arc F 0 g newpath .89683 .10159 .03175 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 76.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgQoobl000Uoo`00j7oo;`002Goo003oOolQOol00?moob5oo`001goo<000/Goo<00027oo0008 Ool^002cOol^0009Ool000Uoo`<002Ioo`<00;Eoo`<002Ioo`<000Yoo`002Woo0`0097oo0`00]goo 0`0097oo0`002goo000;Ool3000ROol3002iOol3000ROol3000Ool3000LOol3002oOol3000L Ool3000?Ool000moo`<001Yoo`<00<5oo`<001Yoo`<0011oo`0047oo0`0067oo0`00`goo0`0067oo 0`004Goo000AOol3000FOol30035Ool3000FOol3000BOol0019oo`8001Eoo`<00Ool5000kOol2000@Ool2000FOol001Aoo`80011oo`80091oo`D003Uoo`80015oo`03001o ogoo01Aoo`0057oo0P0047oodP0047oo0P005Woo000EOol00`00Oomoo`0>OooB000@Ool2000FOol0 01Eoo`8000moo`8006Ioo`8002Ioo`D003]oo`80011oo`8001Ioo`005Woo0P003Woo0P00IWoo0P00 8goo1P00?Goo0`003goo00<007ooOol05Goo000FOol2000>Ool2001VOol2000QOol60010Ool2000> Ool2000GOol001Moo`8000aoo`8006Moo`8001moo`D004Aoo`8000aoo`8001Qoo`0067oo0P002Goo 0`00J7oo0P007Goo1@00Agoo0P002Goo0`006Goo000HOol40006Ool4001XOol2000LOol40019Ool4 0006Ool4000IOol001Uoo`/006Yoo`8001eoo`03001oogoo04Yoo`/001]oo`006goo2000Jgoo0P00 K7oo200077oo000NOol00`00Oomoo`1]Ool2001_Ool00`00Oomoo`0NOol008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008io o`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@ Ool008Moo`03001oogoo00Aoo`8000Moo`03001oogoo08Ioo`00Qgoo00<007ooOol017oo0P001goo 00<007ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03 001oogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00 Oomoo`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo 08Uoo`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool200000goo00000002Ool2002Ool008ioo`<008moo`00SWoo0`00Sgoo002>Ool2002@Ool008ioo`80091oo`00 \ \>"], ImageRangeCache->{{{0, 287}, {75.75, 0}} -> {-0.13653, -0.128001, \ 0.00443574, 0.00443574}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {\(\(\[Theta]b[1]\)["-"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {\(\(ub\_d[1]\)["+"]\)}, {"0"}, {\(\(\[Theta]b[1]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, \[Theta]b[ 1][ "-"]}, { Subscript[ ub, d][ 1][ "+"], 0, \[Theta]b[ 1][ "+"]}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["+"] == 0\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "+"], 0]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["-"]\ \(wb\_d[1]\)[ "-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)["+"] + \(sb\_n[1]\)[ "-"]\ \(wb\_n[1]\)["-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(wb\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"], \(\[Omega]b[1]\)["+"], \(wb\_d[1]\)[ "+"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"] + \(sM[1]\)[0] == 0, \(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]] == 0, \(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({sMo[1] + \(mb[1]\)["-"] == 0, \(3\ \[ScriptB]\ \[ScriptCapitalL]\^2\)\/8 + \[ScriptCapitalL]\ \ sQo[1] + \(mb[1]\)["+"] == sMo[1], \(sb\_d[1]\)["+"] == sNo[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{{1, 0, 0}, {\(-1\), 0, \[ScriptCapitalL]}, {0, \(-1\), 0}}, {\(-\(mb[1]\)[ "-"]\), \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^2\)\/8\)\) - \ \(mb[1]\)["+"], \(-\(sb\_d[1]\)["+"]\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0"}, {\(-1\), "0", "\[ScriptCapitalL]"}, {"0", \(-1\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(-\(mb[1]\)["-"]\)}, {\(\(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^2\)\/8\)\) - \(mb[1]\)[ "+"]\)}, {\(-\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Times[ -1, mb[ 1][ "-"]], Plus[ Times[ Rational[ -3, 8], \[ScriptB], Power[ \[ScriptCapitalL], 2]], Times[ -1, mb[ 1][ "+"]]], Times[ -1, Subscript[ sb, d][ 1][ "+"]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, True, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 3\n nc \[Rule] 3\n nv \[Rule] 3\n nf \[Rule] 3\n rango \ \[Rule] 3"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli giusti (le forze attive al bordo possono essere \ qualsiasi)"\)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)[ "+"]\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(mb[1]\)["-"]\)}, {\(\(mb[1]\)["+"]\)}, {\(\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { mb[ 1][ "-"], mb[ 1][ "+"], Subscript[ sb, d][ 1][ "+"]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {\ };\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"], \(mb[1]\)["+"], \(sb\_d[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["-"] \[Rule] 0, \(mb[1]\)["+"] \[Rule] 0, \(sb\_d[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{0, 0, 0}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({sMo[1] == 0, \(3\ \[ScriptB]\ \[ScriptCapitalL]\^2\)\/8 + \[ScriptCapitalL]\ \ sQo[1] == sMo[1], sNo[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/8\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], \[ScriptB]\ \[Zeta] + sQo[1] + 1\/2\ \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \ \[Zeta]], 1\/8\ \((\(-4\)\ \[ScriptB]\ \[Zeta]\^2 + 8\ sMo[1] - 8\ \[Zeta]\ sQo[ 1] + \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^2\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/8\)\)}\)], \ "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), 1\/8\ \((\(-4\)\ \[ScriptB]\ \[Zeta]\^2 + 8\ sMo[1] - 8\ \[Zeta]\ sQo[ 1] + \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^2\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\) == \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \(\[Chi][1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(1\/8\ \((\(-4\)\ \[ScriptB]\ \[Zeta]\^2 + 8\ sMo[1] - 8\ \[Zeta]\ sQo[ 1] + \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^2\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \(\[Zeta]\^2\ sMo[1]\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[Zeta]\^3\ sQo[1]\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[ScriptB]\ \[ScriptCapitalL]\^3\ \ \((\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \(\[ScriptB]\ \[ScriptCapitalL]\^2\ \((\(-\ \[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\ \)\) + \[Zeta]]\)\/\(64\ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[ScriptB]\ \ \[ScriptCapitalL]\ \((\(-\[ScriptCapitalL]\^3\) + 8\ \[Zeta]\^3)\)\ UnitStep[\ \(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(96\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \(\[ScriptB]\ \((\(-\[ScriptCapitalL]\^4\) + 16\ \ \[Zeta]\^4)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(384\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)], "==", "0"}], ",", RowBox[{\(1\/8\ \[ScriptB]\ \((\((3\ \[ScriptCapitalL] - 4\ \[Zeta])\)\ \[Zeta] + \((\[ScriptCapitalL] - 2\ \ \[Zeta])\)\^2\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(1\/\(8\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \)\)\((\(-\(1\/2\)\)\ \[ScriptB]\ \[ScriptCapitalL]\ \[Zeta]\^3 + \ \(\[ScriptB]\ \[Zeta]\^4\)\/3 + 1\/6\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]] - 1\/8\ \[ScriptB]\ \[ScriptCapitalL]\^2\ \((\(-\ \[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] + 1\/12\ \[ScriptB]\ \[ScriptCapitalL]\ \((\(-\ \[ScriptCapitalL]\^3\) + 8\ \[Zeta]\^3)\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] - 1\/48\ \[ScriptB]\ \((\(-\[ScriptCapitalL]\^4\) + 16\ \[Zeta]\^4)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\ \)\) + \[Zeta]])\)\)\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(\(1\/\(384\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\((\ \[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^4\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] - 16\ \((\[ScriptB]\ \[Zeta]\^4 - 4\ \((3\ \[Zeta]\^2\ sMo[1] - \[Zeta]\^3\ sQo[1] + 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \[ScriptCapitalD][2] + 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Zeta]\ \ \[ScriptCapitalD][ 3])\))\))\)\), \(\[ScriptB]\ \[ScriptCapitalL]\^3\ \ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ DiracDelta[\[ScriptCapitalL] - 2\ \ \[Zeta]]\)\/\(48\ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[ScriptB]\ \ \[ScriptCapitalL]\^2\ \((\[ScriptCapitalL]\^2 - 4\ \[Zeta]\^2)\)\ DiracDelta[\ \[ScriptCapitalL] - 2\ \[Zeta]]\)\/\(32\ \[ScriptCapitalY]\[ScriptCapitalJ]\) \ + \(\[ScriptB]\ \[ScriptCapitalL]\ \((\[ScriptCapitalL]\^3 - 8\ \[Zeta]\^3)\)\ \ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]]\)\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) - \(\[ScriptB]\ \((\[ScriptCapitalL]\^4 - 16\ \[Zeta]\^4)\ \)\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]]\)\/\(192\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) - \(\[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^3\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] + 8\ \((\[ScriptB]\ \[Zeta]\ \^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \[ScriptCapitalD][3])\)\)\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][ 1], \(\[ScriptB]\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^4\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] + 8\ \((\[ScriptB]\ \((3\ \ \[ScriptCapitalL] - 2\ \[Zeta])\)\ \[Zeta]\^3 + 48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \((\[ScriptCapitalD][2] + \[Zeta]\ \ \[ScriptCapitalD][3])\))\)\)\/\(384\ \[ScriptCapitalY]\[ScriptCapitalJ]\), \(\ \(1\/\(8\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\((1\/6\ \[ScriptB]\ \ \[ScriptCapitalL]\^3\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] + \[ScriptB]\ \((\(-\(\[ScriptCapitalL]\^4\/4\)\ \) + \[ScriptCapitalL]\^2\ \[Zeta]\^2)\)\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] + 1\/6\ \[ScriptB]\ \[ScriptCapitalL]\ \((\[ScriptCapitalL]\^3 - 8\ \[Zeta]\^3)\)\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] - 1\/24\ \[ScriptB]\ \((\[ScriptCapitalL]\^4 - 16\ \[Zeta]\^4)\)\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] + 1\/6\ \[ScriptB]\ \((\((9\ \[ScriptCapitalL] - 8\ \[Zeta])\)\ \[Zeta]\^2 - \((\[ScriptCapitalL] - 2\ \ \[Zeta])\)\^3\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\))\)\) + \ \[ScriptCapitalD][3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \(\[Zeta]\^2\ sMo[1]\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[Zeta]\^3\ sQo[1]\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[ScriptB]\ \[ScriptCapitalL]\^3\ \ \((\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \(\[ScriptB]\ \[ScriptCapitalL]\^2\ \((\(-\ \[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\ \)\) + \[Zeta]]\)\/\(64\ \[ScriptCapitalY]\[ScriptCapitalJ]\) - \(\[ScriptB]\ \ \[ScriptCapitalL]\ \((\(-\[ScriptCapitalL]\^3\) + 8\ \[Zeta]\^3)\)\ UnitStep[\ \(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(96\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \(\[ScriptB]\ \((\(-\[ScriptCapitalL]\^4\) + 16\ \ \[Zeta]\^4)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]]\)\/\(384\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(1\/\(8\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \)\)\((\(-\(1\/2\)\)\ \[ScriptB]\ \[ScriptCapitalL]\ \[Zeta]\^3 + \ \(\[ScriptB]\ \[Zeta]\^4\)\/3 + 1\/6\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \((\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]] - 1\/8\ \[ScriptB]\ \[ScriptCapitalL]\^2\ \((\(-\ \[ScriptCapitalL]\^2\) + 4\ \[Zeta]\^2)\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] + 1\/12\ \[ScriptB]\ \[ScriptCapitalL]\ \((\(-\ \[ScriptCapitalL]\^3\) + 8\ \[Zeta]\^3)\)\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] - 1\/48\ \[ScriptB]\ \((\(-\[ScriptCapitalL]\^4\) + 16\ \[Zeta]\^4)\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\ \)\) + \[Zeta]])\)\)\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(u\_2[1]\)[\[ScriptCapitalL]] == 0}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(128\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalL]\ \[Theta]o[1] + uo\_2[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0"}, {"0", "1", "0"}, {"0", "1", "\[ScriptCapitalL]"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {\(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, Times[ Rational[ -3, 128], \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[ 1] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {\(\(\[ScriptB]\ \((\(-9\)\ \[ScriptCapitalL]\^3\ \[Zeta] + 24\ \[ScriptCapitalL]\ \[Zeta]\^3 - 16\ \[Zeta]\^4 + \[ScriptCapitalL]\^4\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] - 8\ \[ScriptCapitalL]\^3\ \[Zeta]\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] + 24\ \[ScriptCapitalL]\^2\ \[Zeta]\^2\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] - 32\ \[ScriptCapitalL]\ \[Zeta]\^3\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] + 16\ \[Zeta]\^4\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]])\)\)\/\(384\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)}, {\(\(\[ScriptB]\ \((\(-9\)\ \[ScriptCapitalL]\^3 + 72\ \[ScriptCapitalL]\ \[Zeta]\^2 - 64\ \[Zeta]\^3 + 2\ \[ScriptCapitalL]\^4\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] - 16\ \[ScriptCapitalL]\^3\ \[Zeta]\ DiracDelta[\ \[ScriptCapitalL] - 2\ \[Zeta]] + 48\ \[ScriptCapitalL]\^2\ \[Zeta]\^2\ DiracDelta[\ \[ScriptCapitalL] - 2\ \[Zeta]] - 64\ \[ScriptCapitalL]\ \[Zeta]\^3\ DiracDelta[\ \[ScriptCapitalL] - 2\ \[Zeta]] + 32\ \[Zeta]\^4\ DiracDelta[\[ScriptCapitalL] - 2\ \[Zeta]] - 8\ \[ScriptCapitalL]\^3\ \ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]] + 48\ \[ScriptCapitalL]\^2\ \[Zeta]\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] - 96\ \[ScriptCapitalL]\ \[Zeta]\^2\ UnitStep[\(-\(\ \[ScriptCapitalL]\/2\)\) + \[Zeta]] + 64\ \[Zeta]\^3\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]])\)\)\/\(384\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, Times[ Rational[ 1, 384], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ Times[ -9, Power[ \[ScriptCapitalL], 3], \[Zeta]], Times[ 24, \[ScriptCapitalL], Power[ \[Zeta], 3]], Times[ -16, Power[ \[Zeta], 4]], Times[ Power[ \[ScriptCapitalL], 4], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ -8, Power[ \[ScriptCapitalL], 3], \[Zeta], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ 24, Power[ \[ScriptCapitalL], 2], Power[ \[Zeta], 2], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ -32, \[ScriptCapitalL], Power[ \[Zeta], 3], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ 16, Power[ \[Zeta], 4], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]]]], Times[ Rational[ 1, 384], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ Times[ -9, Power[ \[ScriptCapitalL], 3]], Times[ 72, \[ScriptCapitalL], Power[ \[Zeta], 2]], Times[ -64, Power[ \[Zeta], 3]], Times[ 2, Power[ \[ScriptCapitalL], 4], DiracDelta[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]]]], Times[ -16, Power[ \[ScriptCapitalL], 3], \[Zeta], DiracDelta[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]]]], Times[ 48, Power[ \[ScriptCapitalL], 2], Power[ \[Zeta], 2], DiracDelta[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]]]], Times[ -64, \[ScriptCapitalL], Power[ \[Zeta], 3], DiracDelta[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]]]], Times[ 32, Power[ \[Zeta], 4], DiracDelta[ Plus[ \[ScriptCapitalL], Times[ -2, \[Zeta]]]]], Times[ -8, Power[ \[ScriptCapitalL], 3], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ 48, Power[ \[ScriptCapitalL], 2], \[Zeta], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ -96, \[ScriptCapitalL], Power[ \[Zeta], 2], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]], Times[ 64, Power[ \[Zeta], 3], UnitStep[ Plus[ Times[ Rational[ -1, 2], \[ScriptCapitalL]], \[Zeta]]]]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(Simplify[Collect[#1, {DiracDelta[__], UnitStep[__]}]] &\)], "Output"] }, Open ]], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] 0, sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/8\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[ 1] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(1\/8\ \[ScriptB]\ \((\(-3\)\ \ \[ScriptCapitalL] + 8\ \[Zeta] + 4\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta]])\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(1\/8\ \[ScriptB]\ \((\((3\ \[ScriptCapitalL] \ - 4\ \[Zeta])\)\ \[Zeta] + \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^2\ UnitStep[\ \(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(\[ScriptB]\ \((\(-9\)\ \[ScriptCapitalL]\^3\ \ \[Zeta] + 24\ \[ScriptCapitalL]\ \[Zeta]\^3 - 16\ \[Zeta]\^4 + \((\[ScriptCapitalL] - 2\ \ \[Zeta])\)\^4\ UnitStep[\(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\)\/\(384\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \((9\ \[ScriptCapitalL]\^3 - 72\ \[ScriptCapitalL]\ \[Zeta]\^2 + 64\ \[Zeta]\^3 + 8\ \((\[ScriptCapitalL] - 2\ \[Zeta])\)\^3\ UnitStep[\ \(-\(\[ScriptCapitalL]\/2\)\) + \[Zeta]])\)\)\/\(384\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, \(3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/8}\), \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/8}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptB] \[Rule] 100, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.01};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptB] \[Rule] 100, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0.01`}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(128\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({0, 0, \(\[ScriptB]\ \[ScriptCapitalL]\^3\ \((7 + 2\ \[ScriptCapitalL]\ \ DiracDelta[\[ScriptCapitalL]])\)\)\/\(384\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[0]\), ",", \(\(u\_2[2]\)[0]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", "0", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[L[2]]\), ",", \(\(u\_2[2]\)[L[2]]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", \(L[2]\), "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/8\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/8, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[0], \(sQ[2]\)[0], \(sM[2]\)[0]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[L[2]], \(sQ[2]\)[L[2]], \(sM[2]\)[L[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 1 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.456168 0.0117721 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .45617 m 1 .45617 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .45617 m .06244 .45617 L .10458 .45617 L .14415 .45617 L .18221 .45617 L .22272 .45617 L .26171 .45617 L .30316 .45617 L .34309 .45617 L .3815 .45617 L .42237 .45617 L .46172 .45617 L .49955 .45617 L .53984 .45617 L .57861 .45617 L .61984 .45617 L .65954 .45617 L .69774 .45617 L .73838 .45617 L .77751 .45617 L .81909 .45617 L .85916 .45617 L .89771 .45617 L .93871 .45617 L .97619 .45617 L s 0 .4 1 r .004 w .02381 .01472 m .06244 .06247 L .10458 .11455 L .14415 .16347 L .18221 .21051 L .22272 .26058 L .26171 .30878 L .30316 .36001 L .34309 .40936 L .3815 .45684 L .42237 .50736 L .46172 .556 L .48147 .58042 L .49012 .5911 L .49468 .59675 L .49719 .59985 L .49842 .60137 L .49955 .60276 L .50085 .60332 L .50154 .60332 L .50226 .60332 L .50471 .60332 L .5095 .60332 L .51896 .60332 L .53984 .60332 L .57781 .60332 L .61824 .60332 L .65714 .60332 L .6985 .60332 L .73835 .60332 L .77668 .60332 L .81746 .60332 L .85673 .60332 L .89448 .60332 L .93468 .60332 L .97337 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.0837125 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 1 0 .9 r .004 w .02381 .01472 m .06244 .13518 L .10458 .25084 L .14415 .34455 L .18221 .42104 L .22272 .48777 L .26171 .5377 L .28158 .55775 L .30316 .57539 L .31323 .58216 L .32392 .58831 L .33393 .59311 L .34309 .5967 L .3525 .59958 L .35734 .60075 L .36262 .60177 L .36748 .60248 L .36985 .60275 L .372 .60295 L .37422 .60311 L .37632 .60322 L .37747 .60326 L .37853 .60329 L .37969 .60331 L .38092 .60332 L .38214 .60331 L .38283 .6033 L .38347 .60329 L .38464 .60326 L .38588 .60321 L .38803 .60309 L .3904 .60291 L .39292 .60266 L .39564 .60232 L .40056 .60155 L .40522 .6006 L .41012 .59939 L .41889 .59668 L .42844 .59291 L .43863 .58797 L .457 .57663 L .47835 .55955 L .4985 .53956 L .53696 .4973 L .57788 .45235 L .61729 .40905 L .65517 .36743 L .69551 .3231 L .73434 .28045 L .77561 .23509 L Mistroke .81537 .19141 L .85362 .14939 L .89432 .10467 L .9335 .06162 L .97513 .01588 L .97619 .01472 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`00Ool1W`2> Ool00`00O1aoo`1NOol00g`LOomoo`0?Ool000moo`03001oogoo08ioo`03001oo`6O08ioo`03001l 77oo05eoo`03O1aoogoo011oo`003goo00<007ooOol0SWoo00@007ooOol1Wheoo`03001l77oo05ao o`03O1aoogoo015oo`003goo00<007ooOol0SWoo00D007ooOomoo`6O08aoo`03001oog`L05]oo`03 O1aoogoo019oo`003goo00<007ooOol0SWoo00<007ooOol00Woo00<1WgooOol0RGoo00<007ooO1`0 FWoo00=l77ooOol04goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`02Ool00`6OOomoo`29Ool00`00 Ooml701IOol00g`LOomoo`0DOol000moo`03001oogoo08ioo`03001oogoo00=oo`030Imoogoo08Qo o`03001oog`L05Uoo`03O1aoogoo01Aoo`003goo00<007ooOol0SWoo00<007ooOol017oo00<1Wgoo Ool0Qgoo00@007ooOoml75Moo`03O1aoogoo01Eoo`003goo00<007ooOol0SWoo00<007ooOol017oo 00<1WgooOol0Qgoo00@007ooOoml75Ioo`03O1aoogoo01Ioo`003goo00<007ooOol0SWoo00<007oo Ool01Goo00<1WgooOol0QWoo00@007ooOoml75Eoo`03O1aoogoo01Moo`003goo00<007ooOol0SWoo 00<007ooOol01Woo00<1WgooOol0QGoo00D007ooOomoog`L05=oo`03O1aoogoo01Qoo`003goo00<0 07ooOol0SWoo00<007ooOol01goo00<1WgooOol0Q7oo00D007ooOomoog`L059oo`03O1aoogoo01Uo o`003goo00<007ooOol0SWoo00<007ooOol01goo00<1WgooOol0Q7oo00D007ooOomoog`L055oo`03 O1aoogoo01Yoo`003goo00<007ooOol0SWoo00<007ooOol027oo00<1WgooOol0Pgoo00<007ooOol0 0Woo00=l77ooOol0CGoo00=l77ooOol06goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`09Ool00`6O Oomoo`22Ool00`00Oomoo`02Ool00g`LOomoo`1Ool00`00Oomoo`0;Ool00`6OOomoo`20Ool0 0`00Oomoo`03Ool00g`LOomoo`19Ool00g`LOomoo`0NOol000moo`03001oogoo08ioo`03001oogoo 00aoo`030Imoogoo07moo`03001oogoo00=oo`03O1aoogoo04Qoo`03O1aoogoo01moo`003goo00<0 07ooOol0SWoo00<007ooOol03Goo00<1WgooOol0OWoo00<007ooOol017oo00=l77ooOol0AWoo00=l 77ooOol087oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0>Ool00`6OOomoo`1mOol00`00Oomoo`04 Ool00g`LOomoo`15Ool00g`LOomoo`0QOol000moo`03001oogoo08ioo`03001oogoo00moo`030Imo ogoo07aoo`03001oogoo00Aoo`03O1aoogoo04Aoo`03O1aoogoo029oo`003goo00<007ooOol0SWoo 00<007ooOol03goo00<1WgooOol0O7oo00<007ooOol01Goo00=l77ooOol0@Woo00=l77ooOol08goo 000?Ool00`00Oomoo`2>Ool00`00Oomoo`0@Ool00`6OOomoo`1kOol00`00Oomoo`05Ool00g`LOomo o`11Ool00g`LOomoo`0TOol000moo`03001oogoo08ioo`03001oogoo015oo`030Imoogoo07Yoo`03 001oogoo00Eoo`03O1aoogoo041oo`03O1aoogoo02Eoo`003goo00<007ooOol0SWoo00<007ooOol0 4Woo00<1WgooOol0NGoo00<007ooOol01Woo00=l77ooOol0?Woo00=l77ooOol09Woo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`0COol00`6OOomoo`1hOol00`00Oomoo`06Ool00g`LOomoo`0mOol00g`L Oomoo`0WOol000moo`03001oogoo08ioo`03001oogoo01=oo`030Imoogoo07Qoo`03001oogoo00Mo o`03O1aoogoo03]oo`03O1aoogoo02Qoo`003goo00<007ooOol0SWoo00<007ooOol057oo00<1Wgoo Ool0Mgoo00<007ooOol01goo00=l77ooOol0>Woo00=l77ooOol0:Goo000Ool00`00Oomoo`0H Ool00`6OOomoo`1cOol00`00Oomoo`09Ool00g`LOomoo`0dOol00g`LOomoo`0]Ool000moo`03001o ogoo08ioo`03001oogoo01Uoo`030Imoogoo079oo`03001oogoo00Uoo`03O1aoogoo03Aoo`03O1ao ogoo02eoo`003goo00<007ooOol0SWoo00<007ooOol06Woo00<1WgooOol0LGoo00<007ooOol02Goo 00=l77ooOol0Ool00`00Oomoo`0KOol00`6OOomo o`1`Ool00`00Oomoo`0:Ool00g`LOomoo`0aOol00g`LOomoo`0_Ool000moo`03001oogoo08ioo`03 001oogoo01aoo`030Imoogoo06moo`03001oogoo00Yoo`03O1aoogoo031oo`03O1aoogoo031oo`00 3goo00<007ooOol0SWoo00<007ooOol077oo00<1WgooOol0Kgoo00<007ooOol02goo00=l77ooOol0 ;Woo00=l77ooOol0Ool00`00Oomoo`0MOol00`6OOomoo`1^Ool00`00 Oomoo`0;Ool00g`LOomoo`0]Ool00g`LOomoo`0bOol000moo`03001oogoo08ioo`03001oogoo01io o`030Imoogoo06eoo`03001oogoo00aoo`03O1aoogoo02]oo`03O1aoogoo03=oo`003goo00<007oo Ool0SWoo00<007ooOol07goo00<1WgooOol0K7oo00<007ooOol037oo00=l77ooOol0:Woo00=l77oo Ool0=7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0POol00`6OOomoo`1[Ool00`00Oomoo`0=Ool0 0g`LOomoo`0XOol00g`LOomoo`0eOol000moo`03001oogoo08ioo`03001oogoo021oo`030Imoogoo 06]oo`03001oogoo00ioo`03O1aoogoo02Moo`03O1aoogoo03Eoo`003goo00<007ooOol0SWoo00<0 07ooOol08Goo00<1WgooOol0JWoo00<007ooOol03Woo00=l77ooOol09Woo00=l77ooOol0=Woo000? Ool00`00Oomoo`2;OolX00000`6O0000000n000[Ool00`00Oomoo`0?Ool00g`LOomoo`0TOol00g`L Oomoo`0gOol000moo`03001oogoo08ioo`03001oogoo02=oo`030Imoogoo06Qoo`03001oogoo011o o`03O1aoogoo029oo`03O1aoogoo03Qoo`003goo00<007ooOol0SWoo00<007ooOol097oo00<1Wgoo Ool0Igoo00<007ooOol047oo00=l77ooOol08Goo00=l77ooOol0>Goo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`0TOol00`6OOomoo`1WOol00`00Oomoo`0AOol00g`LOomoo`0OOol00g`LOomoo`0jOol0 00moo`03001oogoo08ioo`03001oogoo02Eoo`030Imoogoo06Ioo`03001oogoo019oo`03O1aoogoo 01eoo`03O1aoogoo03]oo`003goo00<007ooOol0SWoo00<007ooOol09Woo00<1WgooOol0IGoo00<0 07ooOol04Woo00=l77ooOol077oo00=l77ooOol0?7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0W Ool00`6OOomoo`1TOol00`00Oomoo`0COol00g`LOomoo`0JOol00g`LOomoo`0mOol000moo`03001o ogoo08ioo`03001oogoo02Moo`030Imoogoo06Aoo`03001oogoo01Aoo`03O1aoogoo01Uoo`03O1ao ogoo03eoo`003goo00<007ooOol0SWoo00<007ooOol0:7oo00<1WgooOol0Hgoo00<007ooOol057oo 00=l77ooOol067oo00=l77ooOol0?Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0YOol00`6OOomo o`1ROol00`00Oomoo`0EOol00g`LOomoo`0FOol00g`LOomoo`0oOol000moo`03001oogoo08ioo`03 001oogoo02Uoo`030Imoogoo069oo`03001oogoo01Ioo`03O1aoogoo01Aoo`03O1aoogoo041oo`00 3goo00<007ooOol0SWoo00<007ooOol0:Woo00<1WgooOol0HGoo00<007ooOol05goo00=l77ooOol0 4Woo00=l77ooOol0@Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0[Ool00`6OOomoo`1POol00`00 Oomoo`0HOol2O1`AOol00g`LOomoo`12Ool000moo`03001oogoo08ioo`03001oogoo02aoo`030Imo ogoo05moo`03001oogoo01Yoo`9l70ioo`03O1aoogoo04=oo`003goo00<007ooOol0SWoo00<007oo Ool0;Goo00<1WgooOol0GWoo00<007ooOol077oo0W`L2Goo0g`LAWoo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`0]Oolc0Il^Ool00`00Oomoo`0NOol9O1a9Ool000moo`03001oogoo08ioo`03001oogoo 08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo003o OonUOol00001\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -1.10361, 0.0101328, 0.0327904}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -40.0819, 0.0101298, 0.819513}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -0.36425, 0.0101328, 0.115279}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 .9 0 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 8.96803 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .60332 m .06244 .51842 L .10458 .42829 L .14415 .34808 L .18221 .27666 L .22272 .20829 L .26171 .15109 L .30316 .10059 L .34309 .06266 L .36136 .04894 L .3815 .0365 L .40134 .02699 L .41232 .02291 L .42237 .01989 L .43232 .0176 L .43689 .01676 L .44177 .01603 L .44695 .01544 L .44926 .01523 L .45176 .01504 L .45329 .01495 L .4547 .01488 L .45602 .01482 L .45747 .01477 L .45877 .01474 L .45999 .01472 L .46128 .01472 L .462 .01472 L .46265 .01472 L .46383 .01473 L .46494 .01475 L .46615 .01478 L .46746 .01482 L .47012 .01495 L .47257 .0151 L .47703 .01549 L .48174 .01603 L .49165 .01763 L .5025 .02009 L .52211 .02637 L .54306 .03558 L .58456 .06098 L .62454 .09375 L .66301 .13216 L .70392 .17962 L .74333 .23091 L .78121 .28467 L .82155 .34588 L .86038 .40788 L .90166 .47627 L Mistroke .94142 .54372 L .97619 .60332 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.345805 1.41265 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .3458 m 1 .3458 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .3458 m .06244 .3458 L .10458 .3458 L .14415 .3458 L .18221 .3458 L .22272 .3458 L .26171 .3458 L .30316 .3458 L .34309 .3458 L .3815 .3458 L .42237 .3458 L .46172 .3458 L .49955 .3458 L .53984 .3458 L .57861 .3458 L .61984 .3458 L .65954 .3458 L .69774 .3458 L .73838 .3458 L .77751 .3458 L .81909 .3458 L .85916 .3458 L .89771 .3458 L .93871 .3458 L .97619 .3458 L s .68 1 0 r .004 w .02381 .01472 m .02499 .01472 L .02605 .01473 L .02729 .01475 L .02846 .01478 L .03053 .01485 L .03279 .01495 L .03527 .01509 L .0379 .01529 L .04262 .01573 L .05205 .01698 L .06244 .01892 L .07293 .02144 L .0842 .02476 L .10458 .03233 L .1458 .05323 L .18551 .07955 L .22371 .10963 L .26435 .14575 L .30348 .1835 L .34506 .22573 L .38513 .26739 L .42368 .30738 L .46468 .34876 L .50417 .38644 L .54214 .41993 L .58257 .4525 L .62148 .48084 L .66284 .50774 L .70268 .5305 L .74101 .54948 L .78179 .56653 L .82106 .57989 L .85881 .58991 L .87978 .59427 L .89901 .59752 L .91786 .60001 L .92745 .60101 L .9377 .60188 L .94302 .60225 L .94804 .60255 L .95293 .60279 L .95744 .60298 L .96172 .60312 L .96626 .60322 L .96861 .60326 L .97081 .60329 L .97207 .6033 L .97322 .60331 L .97385 .60331 L Mistroke .97455 .60332 L .97581 .60332 L .97619 .60332 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`00Oomoo`0=Ool2En1WOol000moo`03001oogoo08]oo`03001oogoo 01eoo`9nH1ioo`9nH4aoo`03001oogoo00moo`03En1oogoo06Aoo`003goo00<007ooOol0Rgoo00<0 07ooOol077oo00=nH7ooOol087oo00=nH7ooOol0BGoo00<007ooOol047oo00=Gh7ooOol0Hgoo000? Ool00`00Oomoo`2;Ool00`00Oomoo`0KOol00giPOomoo`0ROol00giPOomoo`18Ool00`00Oomoo`0A Ool2En1SOol000moo`03001oogoo08]oo`03001oogoo01Yoo`03OV1oogoo02Aoo`03OV1oogoo04Mo o`03001oogoo01=oo`03En1oogoo061oo`003goo00<007ooOol0Rgoo00<007ooOol06Woo00=nH7oo Ool097oo00=nH7ooOol0Agoo00<007ooOol057oo00=Gh7ooOol0Ggoo000?Ool00`00Oomoo`2;Ool0 0`00Oomoo`0IOol00giPOomoo`0VOol00giPOomoo`16Ool00`00Oomoo`0EOol2En1OOol000moo`03 001oogoo08]oo`03001oogoo01Qoo`03OV1oogoo02Qoo`03OV1oogoo04Eoo`03001oogoo01Moo`03 En1oogoo05aoo`003goo00<007ooOol0Rgoo00<007ooOol067oo00=nH7ooOol0:Goo00=nH7ooOol0 A7oo00<007ooOol067oo00=Gh7ooOol0Fgoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0GOol00giP Oomoo`0[Ool00giPOomoo`13Ool00`00Oomoo`0IOol00eOPOomoo`1JOol000moo`03001oogoo08]o o`03001oogoo01Ioo`03OV1oogoo02aoo`03OV1oogoo04=oo`03001oogoo01Yoo`03En1oogoo05Uo o`003goo00<007ooOol0Rgoo00<007ooOol05Woo00=nH7ooOol0;Goo00=nH7ooOol0@Woo00<007oo Ool06goo00=Gh7ooOol0F7oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0EOol00giPOomoo`0_Ool0 0giPOomoo`11Ool00`00Oomoo`0LOol00eOPOomoo`1GOol000moo`03001oogoo08]oo`03001oogoo 01Aoo`03OV1oogoo035oo`03OV1oogoo041oo`03001oogoo01eoo`03En1oogoo05Ioo`003goo00<0 07ooOol0Rgoo00<007ooOol057oo00=nH7ooOol0Woo00<007ooOol097oo00=Gh7ooOol0Cgoo000?Ool00`00Oomoo`2; Ool00`00Oomoo`0?Ool00giPOomoo`0mOol00giPOomoo`0iOol00`00Oomoo`0UOol00eOPOomoo`1> Ool000moo`03001oogoo08]oo`03001oogoo00ioo`03OV1oogoo03ioo`03OV1oogoo03Uoo`03001o ogoo02Ioo`03En1oogoo04eoo`003goo00<007ooOol0Rgoo00<007ooOol03Goo00=nH7ooOol0@7oo 00=nH7ooOol0>7oo00<007ooOol09goo00=Gh7ooOol0C7oo000?Ool00`00Oomoo`2;Ool00`00Oomo o`0=Ool00giPOomoo`11Ool00giPOomoo`0gOol00`00Oomoo`0WOol00eOPOomoo`1Goo00=Gh7ooOol0>Woo000?Ool00`00Oomoo`2;Ool00`00Oomoo`04Ool0 0giPOomoo`1EOol00giPOomoo`0/Ool00`00Oomoo`0jOol00eOPOomoo`0iOol000moo`03001oogoo 08]oo`03001oogoo00Aoo`03OV1oogoo05Eoo`03OV1oogoo02aoo`03001oogoo03]oo`9Gh3Uoo`00 3goo00<007ooOol0Rgoo00<007ooOol00goo00=nH7ooOol0Egoo00=nH7ooOol0:goo00<007ooOol0 ?Goo0UOP=goo000?Ool00`00Oomoo`2;Ool00`00Oomoo`03Ool00giPOomoo`1GOol00giPOomoo`0[ Ool00`00Oomoo`0oOol00eOPOomoo`0dOol000moo`03001oogoo08]oo`03001oogoo009oo`03OV1o ogoo05Uoo`03OV1oogoo02Yoo`03001oogoo041oo`03En1oogoo03=oo`003goo00<007ooOol0Rgoo 00<007ooOol00Woo00=nH7ooOol0FGoo00=nH7ooOol0:Woo00<007ooOol0@Goo0UOP"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -1.10435, 0.00959613, 0.0310537}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.0690582, 0.00959613, 0.00101908}, {{297.063, 406.563}, \ {69.3125, 1.6875}} -> {-2.87604, -0.256116, 0.00959613, 0.00646952}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.`, 0.`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, 0.`}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = 0 \(\@\( xDiag . xDiag\)\) \((e\_2)\)\)], "Input"], Cell[BoxData[ \({0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.2", "0"}, {"0", "512"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{1.2012`, 0.512`}, {0.5`, 0.`}}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g .008 w .02381 .01015 Mdot .97619 .41609 Mdot 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .5 Mabswid .30179 .17348 m .30179 .25276 L s .5 .17348 m .5 .25276 L s .69821 .17348 m .69821 .25276 L s 0 0 0 r .5 .21312 m .65857 .21312 L s .60571 .23955 m .65857 .21312 L s .60571 .18669 m .65857 .21312 L s .5 .21312 m .5 .37169 L s .47357 .31883 m .5 .37169 L s .52643 .31883 m .5 .37169 L s 0 g 1 Mabswid .0375 .21312 m .16964 .21312 L s .10357 .11401 m .10357 .31223 L s newpath .10357 .21312 .03171 0 365.73 arc s .83036 .21312 m .9625 .21312 L s .89643 .11401 m .89643 .31223 L s newpath .89643 .21312 .03171 0 365.73 arc s 1 0 0 r .5 Mabswid .10357 .21312 m .13573 .20561 L .17081 .19765 L .20376 .19055 L .23544 .18424 L .26916 .1782 L .30162 .17314 L .33613 .16867 L .36937 .16532 L .38459 .16411 L .40135 .16301 L .41786 .16217 L .427 .16181 L .43537 .16154 L .44365 .16134 L .44746 .16126 L .45153 .1612 L .45584 .16115 L .45776 .16113 L .45984 .16111 L .46111 .1611 L .46229 .1611 L .46339 .16109 L .4646 .16109 L .46568 .16108 L .46669 .16108 L .46776 .16108 L .46836 .16108 L .46891 .16108 L .46989 .16108 L .47081 .16109 L .47182 .16109 L .47291 .16109 L .47513 .1611 L .47716 .16112 L .48088 .16115 L .4848 .1612 L .49305 .16134 L .50208 .16156 L .51841 .16211 L .53585 .16293 L .57039 .16517 L .60368 .16807 L .6357 .17147 L .66977 .17566 L .70257 .1802 L .73411 .18495 L .76769 .19036 L .80002 .19584 L .83438 .20189 L Mistroke .86748 .20785 L .89643 .21312 L Mfstroke .29611 .13347 m .30746 .21276 L s .50103 .12186 m .49897 .20114 L s .70389 .13993 m .69254 .21921 L s 0 g 1 Mabswid .0375 .21312 m .16964 .21312 L s .10357 .11401 m .10357 .31223 L s newpath .10357 .21312 .03171 0 365.73 arc s .83036 .21312 m .9625 .21312 L s .89643 .11401 m .89643 .31223 L s newpath .89643 .21312 .03171 0 365.73 arc s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooaMcW003001cW7>L0=mcW003001cW7>L01AcW0Uoo`001goo5g>L00<0 07>LLi`0gg>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW03OLi`00`00LiacW00DLi`9Ool0 00MooaMcW003001cW7>L06icW003O01cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>L Li`0KW>L00=l07>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00g`0Liac W01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03AcW003O01cW7>L03McW003O01cW7>L 06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0=7>L00=l07>LLi`0=g>L00=l07>LLi`0 KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00dLi`00g`0LiacW00gLi`00g`0LiacW00g Li`00g`0LiacW00dLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03AcW003O01cW7>L03Mc W003O01cW7>L03McW003O01cW7>L03AcW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0=G>L 00=l07>LLi`0=W>L00=l07>LLi`0=g>L00=l07>LLi`0=7>L00<007>LLi`057>L2Goo0007OolGLi`0 0`00LiacW00eLi`00g`0LiacW00fLi`00g`0LiacW00gLi`00g`0LiacW00dLi`00`00LiacW00DLi`9 Ool000MooaMcW003001cW7>L03EcW003O01cW7>L03IcW003O01cW7>L03IcW003O01cW7>L03EcW003 001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0=G>L00=l07>LLi`0=W>L00=l07>LLi`0=W>L00=l 07>LLi`0=G>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00eLi`00g`0LiacW00HLi`]O00Z Li`00g`0LiacW00eLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L03EcW003O01cW7>L00ec W0]l01icW003O01cW7>L00acW0Yl021cW003O01cW7>L03EcW003001cW7>L01AcW0Uoo`001goo5g>L 00<007>LLi`0=G>L00=l07>LLi`00g>L2W`0:G>L00=l07>LLi`05W>L2W`05W>L00=l07>LLi`0=G>L 00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW00cLi`8O00cLi`00g`0LiacW00PLi`9O00=Li`0 0g`0LiacW00eLi`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L02mcW0Al009cW003001l07>L 03IcW003O01cW7>L02UcW0Ul00AcW003O01cW7>L03EcW003001cW7>L01AcW0Uoo`001goo5g>L00<0 07>LLi`0:7>L1g`01W>L00<007`0Li`0=W>L00=l07>LLi`0L27`0=7>L00<007>LLi`057>L2Goo 0007OolDLi`6000PLi`8O00=Li`00`00O01cW00fLi`00g`0LiacW00eLi`00g`0001cW002Li`4O00] Li`7000CLi`9Ool000Mooa9cW08000=cW003001cW7>L008001YcW0Al01EcW003001l07>L03IcW003 O01cW7>L01]cW003001cW7>L01McW003O00007>L00IcW0Ml02EcW005001cW7>LLi`00003Li`00`00 LiacW00@Li`9Ool000Mooa5cW003001cW7>L00=cW003001cW7>L009cW08001=cW0El01UcW003001l 07>L03IcW003O01cW7>L01acW08001McW003O00007>L00ecW0Ml01acW08000AcW003001cW7>L009c W080011cW0Uoo`001goo47>L00<007>LLi`017>L00<007>LLi`017>L00<007>LLi`037>L17`07W>L 00<007`0Li`0=W>L00=l07>LLi`07W>L0P005G>L00=l0000Li`057>L1G`05W>L00<007>LLi`017>L 00<007>LLi`017>L00<007>LLi`03G>L2Goo0007Ool@Li`00`00LiacW004Li`00`00LiacW005Li`0 0`00LiacW006Li`5O00RLi`00`00O01cW00fLi`00g`0LiacW00PLi`2000CLi`00g`0001cW00ILi`7 O00?Li`00`00LiacW004Li`00`00LiacW005Li`00`00LiacW00L 00EcW003001cW7>L00EcW004001cW7>LLi`5O00WLi`00`00O01cW00fLi`00g`0LiacW00RLi`2000A Li`00g`0001cW00PLi`8O006Li`00`00LiacW005Li`00`00LiacW005Li`00`00LiacW00L00IcW003001cW7>L00EcW004001l07`0O00/Li`00`00Lial000fLi`00`00 LiacW00TLi`2000?Li`00g`0001cW00XLi`4O0000g>L001cW007Li`00`00LiacW006Li`00`00Liac W00;Li`9Ool000Moo`icW003001cW7>L00IcW003001cW7>L009cW0=l0003001cW7>L02ecW003001c W7`003IcW003001cW7>L02IcW08000acW003O01cW00002ecW004O00007`0O006Li`00`00LiacW006 Li`00`00LiacW00;Li`9Ool000Moo`icW003001cW7>L00IcW003001cW7`0009l00AcW003001cW7>L 02acW003001cW7`003IcW003001cW7>L02QcW08000YcW003O01cW00002icW003001cW7>L00Al009c W003001cW7>L00IcW003001cW7>L00]cW0Uoo`001goo17>LC@0000=l00000000J`0000=l00000000 B`000g>L2Goo0007Ool>Li`00`00LiacW005LibY00000g`00000000h0008Li`00`00LiacW00;Li`9 Ool000Moo`icW003001cW7>L00IcW003001cW7>L00EcW003001cW7>L02ecW003001cW7>L03IcW003 001cW7>L02EcW08000mcW003001cW7>L02acW003001cW7>L00IcW003001cW7>L00IcW003001cW7>L 00]cW0Uoo`001goo3W>L00<007>LLi`01W>L00<007>LLi`01G>L00<007>LLi`0;G>L00<007>LLi`0 =W>L00<007>LLi`08g>L0P004G>L00<007>LLi`0;G>L00<007>LLi`01G>L00<007>LLi`01W>L00<0 07>LLi`02g>L2Goo0007Ool?Li`00`00LiacW005Li`00`00LiacW004Li`00`00LiacW00^Li`00`00 LiacW00fLi`00`00LiacW00QLi`2000CLi`00`00LiacW00^Li`00`00LiacW004Li`00`00LiacW005 Li`00`00LiacW00L00EcW003001cW7>L00AcW003001cW7>L02ic W003001cW7>L03IcW003001cW7>L01mcW08001EcW003001cW7>L02icW003001cW7>L00AcW003001c W7>L00EcW003001cW7>L00acW0Uoo`001goo47>L00<007>LLi`017>L00<007>LLi`00g>L00<007>L Li`0;g>L00<007>LLi`0=W>L00<007>LLi`07G>L0P005g>L00<007>LLi`0;g>L00<007>LLi`00g>L 00<007>LLi`017>L00<007>LLi`03G>L2Goo0007OolALi`20004Li`00`00LiacW002Li`00`00Liac W00`Li`00`00LiacW00fLi`00`00LiacW00KLi`2000ILi`00`00LiacW00`Li`20003Li`00`00Liac W002Li`2000@Li`9Ool000Mooa=cW0<00004Li`007>LLi`2000cLi`00`00LiacW00fLi`00`00Liac W00fLi`00`00LiacW00bLi`200000g>L001cW002Li`00`00LiacW00@Li`9Ool000MooaIcW0@003Ec W003001cW7>L03IcW003001cW7>L03IcW003001cW7>L03AcW0D001=cW0Uoo`001goo5g>L00<007>L Li`0=G>L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>LLi`0=G>L00<007>LLi`057>L2Goo0007 OolGLi`00`00LiacW00eLi`00`00LiacW00fLi`00`00LiacW00fLi`00`00LiacW00eLi`00`00Liac W00DLi`9Ool000MooaMcW003001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo 5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^ Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003001cW7>L06ic W003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L 2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMcW003 001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<0 07>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW01^Li`00`00 LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`00 1goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007OolGLi`00`00Liac W01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMcW003001cW7>L06icW003001cW7>L 06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L00<007>LLi`0KW>L00<007>LLi`0 57>L2Goo0007OolGLi`00`00LiacW01^Li`00`00LiacW01^Li`00`00LiacW00DLi`9Ool000MooaMc W003001cW7>L06icW003001cW7>L06icW003001cW7>L01AcW0Uoo`001goo5g>L00<007>LLi`0KW>L 00<007>LLi`0KW>L00<007>LLi`057>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000Mooh1cW003 001cW7>L00EcW003001cW7>L00EcW003001cW7>L07ecW0Uoo`001gooPG>L00<007>LLi`017>L00<0 07>LLi`017>L00<007>LLi`0OW>L2Goo0007Oon1Li`00`00LiacW004Li`00`00LiacW004Li`00`00 LiacW01nLi`9Ool000Mooh9cW003001cW7>L00=cW003001cW7>L00=cW003001cW7>L07mcW0Uoo`00 1gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Og>L2Goo0007Oon3Li`00`00Liac W002Li`00`00LiacW002Li`00`00LiacW020Li`9Ool000Mooh=cW003001cW7>L009cW003001cW7>L 009cW003001cW7>L081cW0Uoo`001gooQ7>L00D007>LLiacW00000=cW003001cW7>L085cW0Uoo`00 1gooQ7>L00D007>LLiacW00000=cW003001cW7>L085cW0Uoo`001gooQG>L00@007>LLi`0009cW003 001cW7>L089cW0Uoo`001gooQG>L00@007>LLi`0009cW003001cW7>L089cW0Uoo`001gooQW>L00D0 07>L001cW00008EcW0Uoo`001gooQW>L00D007>L001cW00008EcW0Uoo`001gooQg>L0`00QW>L2Goo 0007Oon7Li`30026Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW11cW003001oogoo00Moo`001gooog>L47>L00<007ooOol01goo 003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g .008 w .02381 .01015 Mdot .97619 .41609 Mdot 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .5 Mabswid .30179 .17348 m .30179 .25276 L s .5 .17348 m .5 .25276 L s .69821 .17348 m .69821 .25276 L s 0 0 0 r .5 .21312 m .65857 .21312 L s .60571 .23955 m .65857 .21312 L s .60571 .18669 m .65857 .21312 L s .5 .21312 m .5 .37169 L s .47357 .31883 m .5 .37169 L s .52643 .31883 m .5 .37169 L s 0 g 2 Mabswid .10357 .21312 m .02429 .13383 L .18286 .13383 L .10357 .21312 L s 1 g .10357 .21312 m .10357 .21312 .03171 0 365.73 arc F 0 g newpath .10357 .21312 .03171 0 365.73 arc s .89643 .21312 m .81714 .13383 L .97571 .13383 L .89643 .21312 L s .81714 .11798 m .97571 .11798 L s 1 g .89643 .21312 m .89643 .21312 .03171 0 365.73 arc F 0 g newpath .89643 .21312 .03171 0 365.73 arc s 1 0 0 r .5 Mabswid .10357 .21312 m .13573 .20561 L .17081 .19765 L .20376 .19055 L .23544 .18424 L .26916 .1782 L .30162 .17314 L .33613 .16867 L .36937 .16532 L .38459 .16411 L .40135 .16301 L .41786 .16217 L .427 .16181 L .43537 .16154 L .44365 .16134 L .44746 .16126 L .45153 .1612 L .45584 .16115 L .45776 .16113 L .45984 .16111 L .46111 .1611 L .46229 .1611 L .46339 .16109 L .4646 .16109 L .46568 .16108 L .46669 .16108 L .46776 .16108 L .46836 .16108 L .46891 .16108 L .46989 .16108 L .47081 .16109 L .47182 .16109 L .47291 .16109 L .47513 .1611 L .47716 .16112 L .48088 .16115 L .4848 .1612 L .49305 .16134 L .50208 .16156 L .51841 .16211 L .53585 .16293 L .57039 .16517 L .60368 .16807 L .6357 .17147 L .66977 .17566 L .70257 .1802 L .73411 .18495 L .76769 .19036 L .80002 .19584 L .83438 .20189 L Mistroke .86748 .20785 L .89643 .21312 L Mfstroke .29611 .13347 m .30746 .21276 L s .50103 .12186 m .49897 .20114 L s .70389 .13993 m .69254 .21921 L s 0 g 2 Mabswid .10357 .21312 m .02429 .13383 L .18286 .13383 L .10357 .21312 L s 1 g .10357 .21312 m .10357 .21312 .03171 0 365.73 arc F 0 g newpath .10357 .21312 .03171 0 365.73 arc s .89643 .21312 m .81714 .13383 L .97571 .13383 L .89643 .21312 L s .81714 .11798 m .97571 .11798 L s 1 g .89643 .21312 m .89643 .21312 .03171 0 365.73 arc F 0 g newpath .89643 .21312 .03171 0 365.73 arc s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goohW>L;`0027oo0007OooRLi`_0008Ool000Mo ohQcW003O01cW7>L08EcW0Uoo`001gooR7>L00=l07>LLi`0QG>L2Goo0007Oon8Li`00g`0LiacW025 Li`9Ool000Iooc0001mcW003O01cW7>L03McW003O01cW7>L05McW30000Moo`001goo;P0087>L00=l 07>LLi`0=g>L00=l07>LLi`0F7>L;P0027oo0007Ool017>L000000009W>L0`008G>L00=l07>LLi`0 =g>L00=l07>LLi`0=g>L00=l07>LLi`07g>L0`009W>L0`002Goo0007Ool2Li`3000TLi`3000RLi`0 0g`0LiacW00gLi`00g`0LiacW00gLi`00g`0LiacW00PLi`3000TLi`300000g>LOomoo`07Ool000Mo o`=cW0<0029cW0<002AcW003O01cW7>L03IcW003O01cW7>L03McW003O01cW7>L025cW0<0029cW0<0 009cW0Uoo`001goo17>L0`0087>L0`009G>L00=l07>LLi`0=W>L00=l07>LLi`0=g>L00=l07>LLi`0 8W>L0`0087>L0`000g>L2Goo0007Ool5Li`3000NLi`3000VLi`00g`0LiacW00fLi`00g`0LiacW00f Li`00g`0LiacW00TLi`3000NLi`30004Li`9Ool000Moo`IcW0<001acW0<002McW003O01cW7>L03Ic W003O01cW7>L03IcW003O01cW7>L02EcW0<001acW0<000EcW0Uoo`001goo1g>L0`006W>L0`00:7>L 00=l07>LLi`067>L;G`0:W>L00=l07>LLi`09W>L0`006W>L0`001W>L2Goo0007Ool8Li`3000HLi`3 000YLi`00g`0LiacW00=Li`;O00NLi`00g`0LiacW00L00=cW0Yl02UcW003O01cW7>L01IcW0Yl 01IcW003O01cW7>L02QcW0<001IcW0<000QcW0Uoo`001goo2W>L0`005G>L0P00:G>L27`0L00=l 07>LLi`087>L2G`03G>L00=l07>LLi`0:G>L0P005G>L0`002G>L2Goo0007Ool;Li`3000CLi`2000V Li`4O002Li`00`00O01cW00fLi`00g`0LiacW00YLi`9O004Li`00g`0LiacW00ZLi`2000CLi`3000: Li`9Ool000Moo`acW0<0015cW0<001mcW0Ml00IcW003001l07>L03IcW003O01cW7>L039cW0Ql02Uc W0<0015cW0<000]cW0Uoo`001goo3G>L0`000W>L2P000g>L0`0067>L27`03G>L00<007`0Li`0=W>L 00=l07>LLi`0=G>L00=l0000Li`00W>L17`09W>L0`000g>L2@000g>L0`0037>L2Goo0007Ool>Li`? 000017>L000000005G>L17`05G>L00<007`0Li`0=W>L00=l07>LLi`06g>L00<007>LLi`05g>L00=l 0000Li`01W>L1g`087>L3`0000AcW000000000ecW0Uoo`001goo3g>L100027oo1@004G>L1G`06G>L 00<007`0Li`0=W>L00=l07>LLi`077>L0P005g>L00=l0000Li`03G>L1g`06W>L1@001goo1@003W>L 2Goo0007Ool@Li`2000:Ool4000=Li`4O00NLi`00`00O01cW00fLi`00g`0LiacW00NLi`2000ELi`0 0g`0001cW00DLi`5O00FLi`2000:Ool4000>Li`9Ool000Moo`mcW08000eoo`8000QcW0El029cW003 001l07>L03IcW003O01cW7>L021cW08001=cW003O00007>L01UcW0Ml00icW08000eoo`8000icW0Uo o`001goo3W>L0P003Woo0P000g>L1G`09g>L00<007`0Li`0=W>L00=l07>LLi`08W>L0P004G>L00=l 0000Li`087>L27`01G>L0P003goo0P003G>L2Goo0007Ool=Li`3000?Ool01000O01l07`0;7>L00<0 07>LO000=W>L00<007>LLi`097>L0P003g>L00=l0000Li`0:7>L17`00`0047oo00<007>LLi`02g>L 2Goo0007Ool=Li`2000@Ool2000^Li`00`00Lial000fLi`00`00LiacW00VLi`2000L02acW003001cW7`003IcW003 001cW7>L02QcW08000YcW003O01cW00002ecW080011oo`8000ecW0Uoo`001goo3G>L0P0047ooL2Goo0007Ool=Li`2000@OonP00000g`00000 000_000@Ool2000=Li`9Ool000Moo`ecW080011oo`8002icW003001cW7>L03IcW003001cW7>L02Ec W08000mcW003001cW7>L02acW08000moo`8000ecW0Uoo`001goo3G>L0`003goo00<007>LLi`0;G>L 00<007>LLi`0=W>L00<007>LLi`08g>L0P004G>L00<007>LLi`0;G>L0P003Woo0P003G>L2Goo0007 Ool>Li`2000>Ool2000_Li`00`00LiacW00fLi`00`00LiacW00QLi`2000CLi`00`00LiacW00]Li`2 000>Ool2000=Li`9Ool000Moo`mcW08000aoo`80031cW003001cW7>L03IcW003001cW7>L01mcW080 01EcW003001cW7>L02icW08000aoo`8000icW0Uoo`001goo47>L0P002Woo0P00L00<007>LLi`0 =W>L00<007>LLi`07G>L0P005g>L00<007>LLi`0;g>L0P002Goo0`003g>L2Goo0007Ool@Li`40006 Ool4000aLi`00`00LiacW00fLi`00`00LiacW00KLi`2000ILi`00`00LiacW00_Li`40006Ool4000? Li`9Ool000Mooa5cW0`0039cW003001cW7>L03IcW003001cW7>L03IcW003001cW7>L031cW0H00003 Ool000000080015cW0Uoo`001goo4g>L2000=7>L00<007>LLi`0=W>L00<007>LLi`0=W>L00<007>L Li`0L20004W>L2Goo0007OolGLi`2000fLi`00`00LiacW00fLi`00`00LiacW00fLi`00`00Liac W00eLi`3000DLi`9Ool000MoodmcW003001cW7>L03IcW003001cW7>L03IcW003001cW7>L04acW0Uo o`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001c W7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000Mo ohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`00`00LiacW025 Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8Li`0 0`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo 0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>L Li`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001goo P7>L00<007>LLi`01G>L00<007>LLi`01G>L00<007>LLi`0OG>L2Goo0007Oon1Li`00`00LiacW004 Li`00`00LiacW004Li`00`00LiacW01nLi`9Ool000Mooh5cW003001cW7>L00AcW003001cW7>L00Ac W003001cW7>L07icW0Uoo`001gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Og>L 2Goo0007Oon2Li`00`00LiacW003Li`00`00LiacW003Li`00`00LiacW01oLi`9Ool000Mooh=cW003 001cW7>L009cW003001cW7>L009cW003001cW7>L081cW0Uoo`001gooPg>L00<007>LLi`00W>L00<0 07>LLi`00W>L00<007>LLi`0P7>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L 2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon5Li`01000LiacW000 0W>L00<007>LLi`0PW>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007Oon6 Li`01@00Li`007>L0000QG>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo0007Oon7Li`30026 Li`9Ool000MoohMcW0<008IcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L47>L00<007ooOol01goo0007OoooLi`@Li`00`00Oomo o`07Ool00?moob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.01;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.03;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s 0 1 .4 r .5 Mabswid .10357 .21312 m .13573 .21312 L .17081 .21312 L .20376 .21312 L .23544 .21312 L .26916 .21312 L .30162 .21312 L .33613 .21312 L .36937 .21312 L .40135 .21312 L .43537 .21312 L .46813 .21312 L .49963 .21312 L .53317 .21312 L .56544 .21312 L .59976 .21312 L .63282 .21312 L .66462 .21312 L .69845 .21312 L .73103 .21312 L .76565 .21312 L .799 .21312 L .8311 .21312 L .86523 .21312 L .89643 .21312 L s .10357 .21312 m .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L s .89643 .21312 m .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001goo5g>L00<3k7>LLi`0gg>L00<3k7>LLi`057>L2Goo0007 OolFLi`00`000n`3k03Q0n`FLi`9Ool000MooaIcW>@001IcW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52531 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.215479 0.792858 [ [ 0 0 0 0 ] [ 1 .52531 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01251 m .02381 .41845 L .97619 .41845 L .97619 .01251 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21548 m .89643 .21548 L s 0 .4 1 r .5 Mabswid .10357 .5128 m .13573 .48064 L .17081 .44556 L .20376 .41262 L .23544 .38093 L .26916 .34721 L .30162 .31475 L .33613 .28025 L .36937 .247 L .40135 .21502 L .43537 .181 L .46813 .14824 L .48458 .13179 L .49177 .1246 L .49557 .1208 L .49766 .11871 L .49868 .11769 L .49963 .11675 L .50071 .11637 L .50128 .11637 L .50188 .11637 L .50392 .11637 L .50791 .11637 L .51578 .11637 L .53317 .11637 L .56478 .11637 L .59843 .11637 L .63082 .11637 L .66526 .11637 L .69843 .11637 L .73034 .11637 L .76429 .11637 L .79698 .11637 L .8284 .11637 L .86187 .11637 L .89408 .11637 L .89643 .11637 L s .10357 .21548 m .10357 .22754 L .10357 .24069 L .10357 .25305 L .10357 .26493 L .10357 .27758 L .10357 .28975 L .10357 .30269 L .10357 .31515 L .10357 .32715 L .10357 .3399 L .10357 .35219 L .10357 .364 L .10357 .37658 L .10357 .38868 L .10357 .40155 L .10357 .41395 L .10357 .42587 L .10357 .43856 L .10357 .45078 L .10357 .46376 L .10357 .47627 L .10357 .4883 L .10357 .5011 L .10357 .5128 L s .89643 .21548 m .89643 .21146 L .89643 .20707 L .89643 .20296 L .89643 .199 L .89643 .19478 L .89643 .19072 L .89643 .18641 L .89643 .18225 L .89643 .17826 L .89643 .174 L .89643 .16991 L .89643 .16597 L .89643 .16178 L .89643 .15774 L .89643 .15345 L .89643 .14932 L .89643 .14535 L .89643 .14112 L .89643 .13705 L .89643 .13272 L .89643 .12855 L .89643 .12454 L .89643 .12027 L .89643 .11637 L s .86471 .15007 m .86471 .15135 L .86471 .15276 L .86471 .15408 L .86471 .15534 L .86471 .15669 L .86471 .15799 L .86471 .15937 L .86471 .1607 L .86471 .16198 L .86471 .16334 L .86471 .16465 L .86471 .16591 L .86471 .16725 L .86471 .16854 L .86471 .16992 L .86471 .17124 L .86471 .17251 L .86471 .17386 L .86471 .17517 L .86471 .17655 L .86471 .17789 L .86471 .17917 L .86471 .18053 L .86471 .18178 L s .11943 .36414 m .12071 .36414 L .12212 .36414 L .12344 .36414 L .1247 .36414 L .12605 .36414 L .12735 .36414 L .12873 .36414 L .13006 .36414 L .13134 .36414 L .1327 .36414 L .13401 .36414 L .13527 .36414 L .13661 .36414 L .1379 .36414 L .13928 .36414 L .1406 .36414 L .14187 .36414 L .14322 .36414 L .14453 .36414 L .14591 .36414 L .14725 .36414 L .14853 .36414 L .14989 .36414 L .15114 .36414 L s .84886 .16593 m .85014 .16593 L .85155 .16593 L .85286 .16593 L .85413 .16593 L .85548 .16593 L .85678 .16593 L .85816 .16593 L .85949 .16593 L .86077 .16593 L .86213 .16593 L .86344 .16593 L .8647 .16593 L .86604 .16593 L .86733 .16593 L .86871 .16593 L .87003 .16593 L .8713 .16593 L .87265 .16593 L .87396 .16593 L .87534 .16593 L .87667 .16593 L .87796 .16593 L .87932 .16593 L .88057 .16593 L s 0 0 m 1 0 L 1 .52531 L 0 .52531 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 151.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007Oon7Liac0IlFLi`9Ool000MoohMcW0030ImcW7>L06mcW0030ImcW7>L01Ac W0Uoo`001gooQW>L00<1Wg>LLi`0L7>L00<1Wg>LLi`057>L2Goo0007Oon5Li`00`6OLiacW01aLi`0 0`6OLiacW00DLi`9Ool000MoohAcW0030ImcW7>L079cW0030ImcW7>L01AcW0Uoo`001gooPg>L00<1 Wg>LLi`0Lg>L00<1Wg>LLi`057>L2Goo0007Oon2Li`00`6OLiacW01dLi`00`6OLiacW00DLi`9Ool0 00Mooh5cW0030ImcW7>L07EcW0030ImcW7>L01AcW0Uoo`001gooP7>L00<1Wg>LLi`0MW>L00<1Wg>L Li`057>L2Goo0007OomoLi`00`6OLiacW01^Li`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000Mo ogicW0030ImcW7>L06mcW0030ImcW7>L00IcW0030ImcW7>L01AcW0Uoo`001gooOG>L00<1Wg>LLi`0 L7>L00<1Wg>LLi`01W>L00<1Wg>LLi`057>L2Goo0007OomlLi`00`6OLiacW01aLi`00`6OLiacW006 Li`00`6OLiacW00DLi`9Ool000Moog]cW0030ImcW7>L079cW0030ImcW7>L00IcW0030ImcW7>L01Ac W0Uoo`001gooNW>L00<1Wg>LLi`0Kg>L2P6O0g>L00<1Wg>LLi`057>L2Goo0007OomiLi`00`6OLiac W01dLi`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000MoogQcW0030ImcW7>L07EcW0030ImcW7>L 00IcW0030ImcW7>L01AcW0Uoo`001gooMg>L00<1Wg>LLi`0MW>L00<1Wg>LLi`01W>L00<1Wg>LLi`0 57>L2Goo0007OomfLi`00`6OLiacW01gLi`00`6OLiacW006Li`00`6OLiacW00DLi`9Ool000MoogEc W0030ImcW7>L085cW0030ImcW7>L01AcW0Uoo`001gooM7>L00<1Wg>LLi`0PW>L00<1Wg>LLi`057>L 2Goo0007OomcLi`00`6OLiacW023Li`00`6OLiacW00DLi`9Ool000Moog9cW0030ImcW7>L08AcW003 0ImcW7>L01AcW0Uoo`001gooLG>L00<1Wg>LLi`0QG>L00<1Wg>LLi`057>L2Goo0007Oom`Li`00`6O LiacW026Li`00`6OLiacW00DLi`9Ool000MoofmcW0030ImcW7>L08McW0030ImcW7>L01AcW0Uoo`00 1gooKW>L00<1Wg>LLi`0R7>L00<1Wg>LLi`057>L2Goo0007Oom]Li`00`6OLiacW029Li`00`6OLiac W00DLi`9Ool000MooaIcW0030001W`0005<000030Il0000008X000030ImcW7>L01AcW0Uoo`001goo 5W>L00<0006O0000DP0000<1W`000000S0005W>L2Goo0007OolGLi`00`6OLiacW01@Li`00`6OLiac W02SLi`9Ool000MooaMcW0030ImcW7>L04mcW0030ImcW7>L0:AcW0Uoo`001goo5g>L00<1Wg>LLi`0 CW>L00<1Wg>LLi`0YG>L2Goo0007OolGLi`00`6OLiacW01=Li`00`6OLiacW02VLi`9Ool000MooaMc W0030ImcW7>L04acW0030ImcW7>L0:McW0Uoo`001goo5g>L00<1Wg>LLi`0Bg>L00<1Wg>LLi`0Z7>L 2Goo0007OolGLi`00`6OLiacW01:Li`00`6OLiacW02YLi`9Ool000MooaMcW0030ImcW7>L04UcW003 0ImcW7>L0:YcW0Uoo`001goo5g>L00<1Wg>LLi`0B7>L00<1Wg>LLi`0Zg>L2Goo0007OolGLi`00`6O LiacW017Li`00`6OLiacW02/Li`9Ool000MooaMcW0030ImcW7>L04IcW0030ImcW7>L0:ecW0Uoo`00 1goo5g>L00<1Wg>LLi`0AG>L00<1Wg>LLi`0[W>L2Goo0007OolGLi`00`6OLiacW013Li`20InaLi`9 Ool000MooaMcW0030ImcW7>L049cW0030ImcW7>L0;5cW0Uoo`001goo5g>L00<1Wg>LLi`0@G>L00<1 Wg>LLi`0/W>L2Goo0007OolGLi`00`6OLiacW010Li`00`6OLiacW02cLi`9Ool000MooaMcW0030Imc W7>L03mcW0030ImcW7>L0;AcW0Uoo`001goo5g>L00<1Wg>LLi`0?W>L00<1Wg>LLi`0]G>L2Goo0007 OolGLi`00`6OLiacW00mLi`00`6OLiacW02fLi`9Ool000MooaMcW0030ImcW7>L03acW0030ImcW7>L 0;McW0Uoo`001goo5g>L00<1Wg>LLi`0>g>L00<1Wg>LLi`0^7>L2Goo0007OolGLi`00`6OLiacW00j Li`00`6OLiacW02iLi`9Ool000MooaMcW0030ImcW7>L03UcW0030ImcW7>L0;YcW0Uoo`001goo5g>L 00<1Wg>LLi`0>7>L00<1Wg>LLi`0^g>L2Goo0007OolGLi`00`6OLiacW00gLi`00`6OLiacW02lLi`9 Ool000MooaMcW0030ImcW7>L03IcW0030ImcW7>L0;ecW0Uoo`001goo5g>L00<1Wg>LLi`0=G>L00<1 Wg>LLi`0_W>L2Goo0007OolGLi`00`6OLiacW00dLi`00`6OLiacW02oLi`9Ool000MooaMcW0030Imc W7>L03=cW0030ImcW7>L0<1cW0Uoo`001goo5g>L00<1Wg>LLi`0L00<1Wg>LLi`0`G>L2Goo0007 OolGLi`00`6OLiacW00aLi`00`6OLiacW032Li`9Ool000MooaMcW0030ImcW7>L031cW0030ImcW7>L 0<=cW0Uoo`001goo5g>L00<1Wg>LLi`0<7>L00<1Wg>LLi`0`g>L2Goo0007OolGLi`00`6OLiacW00_ Li`00`6OLiacW034Li`9Ool000MooaMcW0030ImcW7>L02icW0030ImcW7>L0L 00<1Wg>LLi`0;G>L00<1Wg>LLi`0aW>L2Goo0007OolGLi`00`6OLiacW00/Li`00`6OLiacW037Li`9 Ool000MooaMcW0030ImcW7>L02]cW0030ImcW7>L0L00<1Wg>LLi`0:W>L00<1 Wg>LLi`0bG>L2Goo0007OolGLi`00`6OLiacW00YLi`00`6OLiacW03:Li`9Ool000MooaMcW0040Imc W7>LLi`:0IlMLi`00`6OLiacW03;Li`9Ool000MooaMcW0030ImcW7>L02IcW081WlicW0Uoo`001goo 5g>L00<1Wg>LLi`09G>L00<1Wg>LLi`0cW>L2Goo0007OolGLi`00`6OLiacW00TLi`00`6OLiacW03? Li`9Ool000MooaMcW0030ImcW7>L02=cW0030ImcW7>L0=1cW0Uoo`001goo5g>L00<1Wg>LLi`08W>L 00<1Wg>LLi`0dG>L2Goo0007OolGLi`00`6OLiacW00QLi`00`6OLiacW03BLi`9Ool000MooaMcW003 0ImcW7>L021cW0030ImcW7>L0==cW0Uoo`001goo5g>L00<1Wg>LLi`07g>L00<1Wg>LLi`0e7>L2Goo 0007OolGLi`00`6OLiacW00NLi`00`6OLiacW03ELi`9Ool000MooaMcW0030ImcW7>L01ecW0030Imc W7>L0=IcW0Uoo`001goo5g>L00<1Wg>LLi`077>L00<1Wg>LLi`0eg>L2Goo0007OolGLi`00`6OLiac W00KLi`00`6OLiacW03HLi`9Ool000MooaMcW0030ImcW7>L01YcW0030ImcW7>L0=UcW0Uoo`001goo 5g>L00<1Wg>LLi`06G>L00<1Wg>LLi`0fW>L2Goo0007OolGLi`00`6OLiacW00HLi`00`6OLiacW03K Li`9Ool000MooaMcW0030ImcW7>L01McW0030ImcW7>L0=acW0Uoo`007Woo00<1WgooOol05Woo00<1 WgooOol0iWoo000NOol00`6OOomoo`0EOol00`6OOomoo`3WOol001ioo`030Imoogoo01Aoo`030Imo ogoo0>Qoo`007Woo00<1WgooOol057oo00<1WgooOol0j7oo000NOol00`6OOomoo`0COol00`6OOomo o`3YOol001ioo`030Imoogoo019oo`030Imoogoo0>Yoo`007Woo00<1WgooOol04Goo00<1WgooOol0 jgoo000NOol00`6OOomoo`0@Ool00`6OOomoo`3/Ool001ioo`030Imoogoo00moo`030Imoogoo0>eo o`007Woo00<1WgooOol03Woo00<1WgooOol0kWoo000NOol00`6OOomoo`0=Ool00`6OOomoo`3_Ool0 01ioo`030Imoogoo00aoo`030Imoogoo0?1oo`007Woo00<1WgooOol02goo00<1WgooOol0lGoo000N Ool00`6OOomoo`0:Ool00`6OOomoo`3bOol001ioo`030Imoogoo00Uoo`030Imoogoo0?=oo`007Woo 00<1WgooOol027oo00<1WgooOol0m7oo000NOol00`6OOomoo`07Ool00`6OOomoo`3eOol001ioo`03 0Imoogoo00Ioo`030Imoogoo0?Ioo`007Woo00<1WgooOol01Goo00<1WgooOol0mgoo000NOol00`6O Oomoo`04Ool00`6OOomoo`3hOol001ioo`030Imoogoo00=oo`030Imoogoo0?Uoo`007Woo00<1Wgoo Ool00Woo00<1WgooOol0nWoo000NOol01@6OOomoogoo0Il0oGoo000NOol0106OOomoo`6OoWoo000N Ool00`6OOol1W`3oOol001ioo`81Womoo`5oo`007Woo00<1WgooOol0ogoo003oOolQOol00?moob5o o`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {150.25, 0}} -> {-0.132794, -0.271778, \ 0.00440971, 0.00440971}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .42624 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103571 0.792858 0.21312 0.792858 [ [ 0 0 0 0 ] [ 1 .42624 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01015 m .02381 .41609 L .97619 .41609 L .97619 .01015 L F 0 g 2 Mabswid [ ] 0 setdash .10357 .21312 m .89643 .21312 L s .8 0 1 r .5 Mabswid .10357 .21312 m .13573 .17889 L .17081 .14603 L .20376 .1194 L .23544 .09767 L .26916 .07871 L .30162 .06452 L .31817 .05882 L .33613 .05381 L .34452 .05189 L .35341 .05014 L .36174 .04878 L .36937 .04776 L .3772 .04694 L .38123 .04661 L .38563 .04632 L .38968 .04611 L .39165 .04604 L .39344 .04598 L .39529 .04594 L .39703 .0459 L .39799 .04589 L .39888 .04588 L .39984 .04588 L .40087 .04588 L .40188 .04588 L .40245 .04588 L .40299 .04589 L .40396 .04589 L .40499 .04591 L .40678 .04594 L .40876 .04599 L .41086 .04606 L .41312 .04616 L .41721 .04638 L .42109 .04665 L .42518 .04699 L .43248 .04776 L .44042 .04883 L .44891 .05024 L .4642 .05346 L .48197 .05831 L .49875 .06399 L .53077 .076 L .56484 .08877 L .59764 .10107 L .62918 .1129 L .66276 .1255 L .69509 .13762 L .72945 .1505 L Mistroke .76255 .16292 L .79439 .17486 L .82827 .18756 L .86089 .19979 L .89555 .21279 L .89643 .21312 L Mfstroke .10357 .21312 m .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L .10357 .21312 L s .89643 .21312 m .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L .89643 .21312 L s 0 0 m 1 0 L 1 .42624 L 0 .42624 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 122.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OomSLi`CI1nJLi`9Ool000MooeicW0ET7a=cW0IT7iAc W0Uoo`001gooF7>L1V@O7W>L1F@OSg>L2Goo0007OomFLi`2I1lYLi`4I1n;Li`9Ool000Mooe9cW0AT 7bmcW09T7hUcW0Uoo`001gooCW>L16@O=G>L0f@OQW>L2Goo0007OomL0V@OAW>L0f@OOG>L2Goo0007Oom6Li`2I1m;Li`2 I1mkLi`9Ool000MoodAcW09T7dmcW0=T7gQcW0Uoo`001goo@W>L0V@OE7>L0V@OMW>L2Goo0007Oom1 Li`00f@OLiacW01FLi`3I1mcLi`9Ool000MoocmcW09T7eacW09T7g5cW0Uoo`001goo?G>L0V@OH7>L 0V@OKg>L2Goo0007OollLi`00f@OLiacW01RLi`2I1m]Li`9Ool000MoocYcW09T7fMcW0=T7fYcW0Uo o`001goo>G>L00=T7g>LLi`0JW>L0f@OIg>L2Goo0007OolgLi`2I1m`Li`3I1mTLi`9Ool000MoocIc W003I1mcW7>L07=cW0=T7f5cW0Uoo`001goo=7>L0V@ONG>L0V@OGg>L2Goo0007OolcLi`00f@OLiac W01kLi`2I1mMLi`9Ool000Mooc9cW003I1mcW7>L07icW09T7e]cW0Uoo`001goo<7>L0V@OPg>L0f@O F7>L2Goo0007Ool_Li`00f@OLiacW026Li`3I1mELi`9Ool000MoobicW003I1mcW7>L08YcW0AT7e5c W0Uoo`001goo;7>L0V@OTG>L0f@OCW>L2Goo0007Ool[Li`00f@OLiacW02DLi`2I1mL09McW0=T7dUcW0Uoo`001goo:G>L00=T7g>LLi`0Vg>L0V@OAg>L2Goo0007OolX Li`00f@OLiacW02NLi`3I1m4Li`9Ool000MoobMcW003I1mcW7>L0:9cW0=T7d5cW0Uoo`001goo9W>L 00=T7g>LLi`0YW>L0f@O?W>L2Goo0007OolULi`00f@OLiacW02ZLi`3I1lkLi`9Ool000MoobAcW003 I1mcW7>L0:icW09T7cUcW0Uoo`001goo8g>L00=T7g>LLi`0/G>L0V@O=g>L2Goo0007OolRLi`00f@O LiacW02dLi`2I1leLi`9Ool000Moob5cW003I1mcW7>L0;McW0=T7c9cW0Uoo`001goo87>L00=T7g>L Li`0^g>L0f@O;g>L2Goo0007OolOLi`00f@OLiacW02oLi`4I1l[Li`9Ool000MooaicW003I1mcW7>L 0L00=T7g>LLi`0b7>L0V@O9W>L2Goo0007OolLLi`00f@OLiacW03; Li`2I1lTLi`9Ool000Mooa]cW003I1mcW7>L0L00=T7g>LLi`0d7>L 0f@O7g>L2Goo0007OolJLi`00f@OLiacW03DLi`2I1lMLi`9Ool000MooaUcW003I1mcW7>L0=McW0=T 7aYcW0Uoo`001goo5g>L0V@OgG>L0V@O00=cW6@OLi`05G>L2Goo0007OolFLi`00`00I1l0003O0002 I1lFLi`9Ool000MooaIcW>@001IcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo8Goo003oOolQOol0 0001\ \>"], ImageRangeCache->{{{0, 287}, {121.75, 0}} -> {-0.133645, -0.268802, \ 0.00441565, 0.00441565}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-05\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({120, 51}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-05\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cerniera\"\>", \ "\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>"}, {"\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>", \ "\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>"}, {"\<\"cRnull\"\>", "\<\"crosshairFig\"\>", "\<\"cRsol\"\>", \ "\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>"}, {"\<\"d\"\>", "\<\"datinum\"\>", "\<\"datiO\"\>", "\<\"datip\"\>", \ "\<\"diaM\"\>", "\<\"diaMb\"\>"}, {"\<\"diaN\"\>", "\<\"diaNb\"\>", "\<\"diaNs\"\>", "\<\"diaQ\"\>", \ "\<\"diaQb\"\>", "\<\"diaQs\"\>"}, {"\<\"dsh\"\>", "\<\"e\"\>", "\<\"eqbil\"\>", "\<\"eqbilbd\"\>", \ "\<\"eqbilt\"\>", "\<\"eqnsp\"\>"}, {"\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>", \ "\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>"}, {"\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>", "\<\"fabdp1\"\>", \ "\<\"fbd\"\>", "\<\"figM\"\>"}, {"\<\"figMb\"\>", "\<\"figN\"\>", "\<\"figNb\"\>", "\<\"figNs\"\>", \ "\<\"figQ\"\>", "\<\"figQb\"\>"}, {"\<\"figQs\"\>", "\<\"forze\"\>", "\<\"frame\"\>", \ "\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>"}, {"\<\"g\"\>", "\<\"grad\"\>", "\<\"grNQM\"\>", \ "\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"g$1474\"\>"}, {"\<\"g$1583\"\>", "\<\"g$2834\"\>", "\<\"g$2943\"\>", \ "\<\"g$3083\"\>", "\<\"g$3113\"\>", "\<\"g$3407\"\>"}, {"\<\"g$350\"\>", "\<\"g$3866\"\>", "\<\"g$4153\"\>", "\<\"g$4587\"\ \>", "\<\"g$459\"\>", "\<\"g$4826\"\>"}, {"\<\"g$5308\"\>", "\<\"g$605\"\>", "\<\"g$840\"\>", "\<\"i\"\>", "\ \<\"imageH\"\>", "\<\"imageW\"\>"}, {"\<\"incastro\"\>", "\<\"incastroFig\"\>", "\<\"incastroV\"\>", \ "\<\"it\"\>", "\<\"ix\"\>", "\<\"j\"\>"}, {"\<\"jx\"\>", "\<\"ker\"\>", "\<\"ker0\"\>", "\<\"L\"\>", \ "\<\"Li\"\>", "\<\"Lo\"\>"}, {"\<\"m\"\>", "\<\"M\"\>", "\<\"matbilbd\"\>", "\<\"matvin\"\>", \ "\<\"maxL\"\>", "\<\"mb\"\>"}, {"\<\"meno\"\>", "\<\"mU\"\>", "\<\"myTeXForm\"\>", "\<\"n\"\>", \ "\<\"nc\"\>", "\<\"ndiv\"\>"}, {"\<\"newsym\"\>", "\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", "\<\ \"newsymlist2\"\>", "\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>"}, {"\<\"newsymlist5\"\>", "\<\"newsymlist6\"\>", "\<\"nf\"\>", \ "\<\"no\"\>", "\<\"nv\"\>", "\<\"org\"\>"}, {"\<\"outputDir\"\>", "\<\"p\"\>", "\<\"perno\"\>", "\<\"pernoFig\"\ \>", "\<\"pernoV\"\>", "\<\"phframe\"\>"}, {"\<\"pi\[UGrave]\"\>", "\<\"pltD\"\>", "\<\"pltDbv\"\>", \ "\<\"pltDs\"\>", "\<\"pltDv\"\>", "\<\"pltM\"\>"}, {"\<\"pltN\"\>", "\<\"pltO\"\>", "\<\"pltOa\"\>", "\<\"pltOax\"\>", \ "\<\"pltObv\"\>", "\<\"pltOs\"\>"}, {"\<\"pltOv\"\>", "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>", \ "\<\"potbdv\"\>", "\<\"pote\"\>"}, {"\<\"pt1\"\>", "\<\"pt2\"\>", "\<\"rango\"\>", "\<\"risp\"\>", "\<\ \"s\"\>", "\<\"saldatura\"\>"}, {"\<\"saldaturaFig\"\>", "\<\"saldaturaV\"\>", "\<\"sb\"\>", \ "\<\"sc\"\>", "\<\"scM\"\>", "\<\"scN\"\>"}, {"\<\"scQ\"\>", "\<\"secD\"\>", "\<\"secO\"\>", \ "\<\"simplifyDirac\"\>", "\<\"sM\"\>", "\<\"sMf\"\>"}, {"\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\"\>", "\<\"sNo\"\>", \ "\<\"sNQM\"\>", "\<\"spbd\"\>"}, {"\<\"splist\"\>", "\<\"splistV\"\>", "\<\"spro\"\>", \ "\<\"spsol\"\>", "\<\"spsolD\"\>", "\<\"spsolDO\"\>"}, {"\<\"spsolO\"\>", "\<\"spuv\[Theta]\"\>", "\<\"sQ\"\>", "\<\"sQo\"\ \>", "\<\"stFile\"\>", "\<\"svar\"\>"}, {"\<\"texBil1\"\>", "\<\"texBil2\"\>", "\<\"texBil3\"\>", \ "\<\"texCDval\"\>", "\<\"texCname\"\>", "\<\"texCval\"\>"}, {"\<\"texDname\"\>", "\<\"texDval\"\>", "\<\"texeqbd\"\>", \ "\<\"texeqbdO\"\>", "\<\"texm\"\>", "\<\"texM\"\>"}, {"\<\"texMin\"\>", "\<\"texMn\"\>", "\<\"texN\"\>", \ "\<\"texNin\"\>", "\<\"texNn\"\>", "\<\"texQ\"\>"}, {"\<\"texQin\"\>", "\<\"texQn\"\>", "\<\"texs\"\>", \ "\<\"texsm\"\>", "\<\"texsn\"\>", "\<\"texu1\"\>"}, {"\<\"texu1in\"\>", "\<\"texu1inO\"\>", "\<\"texu1n\"\>", \ "\<\"texu2\"\>", "\<\"texu2in\"\>", "\<\"texu2inO\"\>"}, {"\<\"texu2n\"\>", "\<\"texvinc\"\>", "\<\"texvincO\"\>", "\<\"tex\ \[Theta]\"\>", "\<\"tex\[Theta]in\"\>", "\<\"tex\[Theta]inO\"\>"}, {"\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", "\<\"thetao\"\>", \ "\<\"ticksOption\"\>", "\<\"travi\"\>", "\<\"trv\"\>"}, {"\<\"trv1\"\>", "\<\"trv2\"\>", "\<\"u\"\>", "\<\"u1\"\>", \ "\<\"u1o\"\>", "\<\"u2\"\>"}, {"\<\"u2o\"\>", "\<\"ub\"\>", "\<\"uo\"\>", "\<\"vam\"\>", "\<\"var\ \"\>", "\<\"vecOa1\"\>"}, {"\<\"vecOa2\"\>", "\<\"vinBer\"\>", "\<\"vincoli\"\>", \ "\<\"vincolibFig\"\>", "\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>"}, {"\<\"vsp\"\>", "\<\"wb\"\>", "\<\"xC\"\>", "\<\"xCshift\"\>", \ "\<\"xDiag\"\>", "\<\"xLowerL\"\>"}, {"\<\"xMax\"\>", "\<\"xMin\"\>", "\<\"xUpperR\"\>", "\<\"y1\"\>", "\ \<\"y2\"\>", "\<\"YA\"\>"}, {"\<\"YJ\"\>", "\<\"\[ScriptA]\"\>", "\<\"\[ScriptB]\"\>", "\<\"\ \[ScriptC]\"\>", "\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\"\>"}, {"\<\"\[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\ \[ScriptCapitalL]\"\>", "\<\"\[ScriptCapitalM]\"\>", "\<\"\[ScriptCapitalY]\ \[ScriptCapitalA]\"\>", "\<\"\[ScriptCapitalY]\[ScriptCapitalJ]\"\>"}, {"\<\"\[Alpha]\"\>", "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>", \ "\<\"\[Zeta]\"\>", "\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>"}, {"\<\"\[Theta]b\"\>", "\<\"\[Theta]o\"\>", "\<\"\[Kappa]\"\>", \ "\<\"\[Xi]\"\>", "\<\"\[Chi]\"\>", "\<\"\[Omega]b\"\>"}, {"\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", \ "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cerniera", "cernieraFig", "cernieraV", "cNQM"}, {"cNQMb", "cNQMsol", "cNQMval", "col", "coll", "cRlist"}, {"cRnull", "crosshairFig", "cRsol", "cRsol0", "cRsol1", "cRval"}, {"d", "datinum", "datiO", "datip", "diaM", "diaMb"}, { "diaN", "diaNb", "diaNs", "diaQ", "diaQb", "diaQs"}, {"dsh", "e", "eqbil", "eqbilbd", "eqbilt", "eqnsp"}, {"eqnspO", "eqvin", "eqvinO", "exp", "expr1", "extraSimplify"}, {"f", "fabd", "fabdp", "fabdp1", "fbd", "figM"}, {"figMb", "figN", "figNb", "figNs", "figQ", "figQb"}, {"figQs", "forze", "frame", "frameb", "fromCtoNQM", "fromDtoU"}, {"g", "grad", "grNQM", "gruv\[Theta]", "g$", "g$1474"}, { "g$1583", "g$2834", "g$2943", "g$3083", "g$3113", "g$3407"}, {"g$350", "g$3866", "g$4153", "g$4587", "g$459", "g$4826"}, {"g$5308", "g$605", "g$840", "i", "imageH", "imageW"}, {"incastro", "incastroFig", "incastroV", "it", "ix", "j"}, {"jx", "ker", "ker0", "L", "Li", "Lo"}, {"m", "M", "matbilbd", "matvin", "maxL", "mb"}, {"meno", "mU", "myTeXForm", "n", "nc", "ndiv"}, {"newsym", "newsymlist", "newsymlist1", "newsymlist2", "newsymlist3", "newsymlist4"}, { "newsymlist5", "newsymlist6", "nf", "no", "nv", "org"}, {"outputDir", "p", "perno", "pernoFig", "pernoV", "phframe"}, {"pi\[UGrave]", "pltD", "pltDbv", "pltDs", "pltDv", "pltM"}, {"pltN", "pltO", "pltOa", "pltOax", "pltObv", "pltOs"}, {"pltOv", "pltOx", "pltQ", "potbd", "potbdv", "pote"}, {"pt1", "pt2", "rango", "risp", "s", "saldatura"}, {"saldaturaFig", "saldaturaV", "sb", "sc", "scM", "scN"}, {"scQ", "secD", "secO", "simplifyDirac", "sM", "sMf"}, {"sMo", "sN", "sNf", "sNo", "sNQM", "spbd"}, {"splist", "splistV", "spro", "spsol", "spsolD", "spsolDO"}, {"spsolO", "spuv\[Theta]", "sQ", "sQo", "stFile", "svar"}, {"texBil1", "texBil2", "texBil3", "texCDval", "texCname", "texCval"}, {"texDname", "texDval", "texeqbd", "texeqbdO", "texm", "texM"}, {"texMin", "texMn", "texN", "texNin", "texNn", "texQ"}, {"texQin", "texQn", "texs", "texsm", "texsn", "texu1"}, { "texu1in", "texu1inO", "texu1n", "texu2", "texu2in", "texu2inO"}, { "texu2n", "texvinc", "texvincO", "tex\[Theta]", "tex\[Theta]in", "tex\[Theta]inO"}, {"tex\[Theta]n", "theta", "thetao", "ticksOption", "travi", "trv"}, {"trv1", "trv2", "u", "u1", "u1o", "u2"}, {"u2o", "ub", "uo", "vam", "var", "vecOa1"}, {"vecOa2", "vinBer", "vincoli", "vincolibFig", "vincoliDef", "vincoliFig"}, {"vsp", "wb", "xC", "xCshift", "xDiag", "xLowerL"}, {"xMax", "xMin", "xUpperR", "y1", "y2", "YA"}, {"YJ", "\[ScriptA]", "\[ScriptB]", "\[ScriptC]", "\[ScriptCapitalC]", "\[ScriptD]"}, {"\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]", "\[ScriptCapitalM]", "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]"}, {"\[Alpha]", "\[Gamma]", "\[Epsilon]", "\[Zeta]", "\[Zeta]$", "\[Theta]"}, {"\[Theta]b", "\[Theta]o", "\[Kappa]", "\[Xi]", "\[Chi]", "\[Omega]b"}, {}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{636, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 225, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2522, 81, 51, 1, 59, "Section", Evaluatable->False], Cell[2576, 84, 1127, 30, 252, "SmallText"], Cell[3706, 116, 1520, 27, 236, "SmallText"], Cell[5229, 145, 498, 12, 60, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[5764, 162, 57, 1, 39, "Section", Evaluatable->False], Cell[5824, 165, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[5955, 171, 56, 1, 30, "Input"], Cell[6014, 174, 91, 1, 70, "Output"] }, Open ]], Cell[6120, 178, 97, 2, 28, "SmallText"], Cell[6220, 182, 130, 2, 50, "Input"], Cell[6353, 186, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6885, 199, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7071, 209, 84, 2, 47, "Subsection"], Cell[7158, 213, 109, 2, 28, "SmallText"], Cell[7270, 217, 128, 4, 50, "Input"], Cell[7401, 223, 131, 4, 28, "SmallText"], Cell[7535, 229, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7817, 240, 103, 5, 31, "Subsection"], Cell[7923, 247, 46, 0, 28, "SmallText"], Cell[7972, 249, 101, 3, 46, "Input"], Cell[8076, 254, 364, 10, 60, "SmallText"], Cell[8443, 266, 107, 3, 46, "Input"], Cell[8553, 271, 319, 9, 60, "SmallText"], Cell[8875, 282, 116, 3, 46, "Input"], Cell[8994, 287, 215, 5, 66, "Input"], Cell[9212, 294, 130, 3, 28, "SmallText"], Cell[9345, 299, 129, 3, 46, "Input"], Cell[9477, 304, 121, 3, 28, "SmallText"], Cell[9601, 309, 199, 5, 58, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[9837, 319, 56, 0, 31, "Subsection"], Cell[9896, 321, 45, 0, 28, "SmallText"], Cell[9944, 323, 124, 3, 30, "Input"], Cell[10071, 328, 42, 0, 28, "SmallText"], Cell[10116, 330, 118, 2, 30, "Input"], Cell[10237, 334, 43, 1, 30, "Input"], Cell[10283, 337, 227, 4, 28, "SmallText"], Cell[10513, 343, 53, 1, 30, "Input"], Cell[10569, 346, 271, 5, 42, "Input"], Cell[10843, 353, 46, 0, 28, "SmallText"], Cell[10892, 355, 195, 4, 42, "Input"], Cell[11090, 361, 52, 0, 28, "SmallText"], Cell[11145, 363, 504, 9, 131, "Input"], Cell[11652, 374, 613, 11, 131, "Input"], Cell[12268, 387, 73, 0, 28, "SmallText"], Cell[12344, 389, 46, 1, 30, "Input"], Cell[12393, 392, 134, 3, 28, "SmallText"], Cell[12530, 397, 182, 4, 30, "Input"], Cell[12715, 403, 146, 3, 30, "Input"], Cell[12864, 408, 42, 0, 28, "SmallText"], Cell[12909, 410, 203, 4, 42, "Input"], Cell[13115, 416, 48, 0, 28, "SmallText"], Cell[13166, 418, 226, 5, 85, "Input"], Cell[13395, 425, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13637, 435, 111, 3, 31, "Subsection"], Cell[CellGroupData[{ Cell[13773, 442, 144, 2, 50, "Input"], Cell[13920, 446, 3821, 112, 80, 951, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17802, 565, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[17977, 575, 103, 5, 47, "Subsection"], Cell[18083, 582, 62, 1, 30, "Input"], Cell[18148, 585, 57, 1, 30, "Input"], Cell[18208, 588, 417, 11, 60, "SmallText"], Cell[18628, 601, 192, 5, 58, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[18857, 611, 210, 7, 47, "Subsection"], Cell[CellGroupData[{ Cell[19092, 622, 52, 1, 30, "Input"], Cell[19147, 625, 46, 1, 29, "Output"] }, Open ]], Cell[19208, 629, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[19543, 638, 50, 1, 30, "Input"], Cell[19596, 641, 46, 1, 29, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[19703, 649, 116, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[19844, 656, 132, 3, 66, "Subsection"], Cell[19979, 661, 137, 3, 30, "Input"], Cell[20119, 666, 74, 1, 30, "Input"], Cell[20196, 669, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[21323, 701, 92, 1, 30, "Input"], Cell[21418, 704, 55, 1, 70, "Output"] }, Open ]], Cell[21488, 708, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[21618, 714, 174, 3, 30, "Input"], Cell[21795, 719, 758, 13, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[22602, 738, 64, 0, 31, "Subsection"], Cell[22669, 740, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[22974, 750, 87, 1, 30, "Input"], Cell[23064, 753, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23210, 760, 104, 2, 30, "Input"], Cell[23317, 764, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23412, 770, 190, 3, 50, "Input"], Cell[23605, 775, 139, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23781, 782, 264, 4, 71, "Input"], Cell[24048, 788, 154, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24239, 795, 65, 1, 30, "Input"], Cell[24307, 798, 687, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[25043, 816, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[25134, 820, 116, 2, 30, "Input"], Cell[25253, 824, 1495, 45, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26785, 874, 290, 5, 50, "Input"], Cell[27078, 881, 1894, 50, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[29009, 936, 289, 5, 50, "Input"], Cell[29301, 943, 1826, 51, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[31188, 1001, 62, 0, 39, "Section"], Cell[31253, 1003, 71, 1, 30, "Input"], Cell[31327, 1006, 146, 3, 28, "SmallText"], Cell[31476, 1011, 408, 9, 70, "Input"], Cell[31887, 1022, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[31982, 1026, 198, 4, 50, "Input"], Cell[32183, 1032, 174, 3, 29, "Output"] }, Open ]], Cell[32372, 1038, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[32467, 1042, 198, 4, 50, "Input"], Cell[32668, 1048, 174, 3, 29, "Output"] }, Open ]], Cell[32857, 1054, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[32946, 1058, 190, 4, 50, "Input"], Cell[33139, 1064, 151, 2, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[33339, 1072, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[33492, 1081, 53, 0, 47, "Subsection"], Cell[33548, 1083, 110, 2, 30, "Input"], Cell[33661, 1087, 152, 3, 30, "Input"], Cell[33816, 1092, 249, 5, 50, "Input"], Cell[34068, 1099, 330, 6, 70, "Input"], Cell[34401, 1107, 193, 4, 30, "Input"], Cell[34597, 1113, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[34767, 1121, 103, 5, 31, "Subsection"], Cell[34873, 1128, 160, 4, 60, "SmallText"], Cell[35036, 1134, 49, 1, 30, "Input"], Cell[35088, 1137, 106, 2, 50, "Input"], Cell[35197, 1141, 119, 3, 28, "SmallText"], Cell[35319, 1146, 80, 2, 46, "Input"], Cell[35402, 1150, 505, 8, 92, "SmallText"], Cell[35910, 1160, 165, 4, 46, "Input"], Cell[36078, 1166, 224, 3, 110, "Input"], Cell[CellGroupData[{ Cell[36327, 1173, 40, 1, 30, "Input"], Cell[36370, 1176, 115, 2, 70, "Output"] }, Open ]], Cell[36500, 1181, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[36595, 1185, 137, 3, 30, "Input"], Cell[36735, 1190, 130, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[36914, 1198, 56, 0, 31, "Subsection"], Cell[36973, 1200, 72, 0, 28, "SmallText"], Cell[37048, 1202, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[37117, 1207, 43, 1, 30, "Input"], Cell[37163, 1210, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[37278, 1216, 280, 5, 90, "Input"], Cell[37561, 1223, 36, 1, 70, "Output"] }, Open ]], Cell[37612, 1227, 150, 3, 44, "SmallText"], Cell[37765, 1232, 43, 1, 30, "Input"], Cell[37811, 1235, 53, 1, 30, "Input"], Cell[37867, 1238, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[39169, 1268, 240, 4, 70, "Input"], Cell[39412, 1274, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[39485, 1280, 48, 1, 30, "Input"], Cell[39536, 1283, 396, 12, 70, "Output"] }, Open ]], Cell[39947, 1298, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[40062, 1304, 43, 1, 30, "Input"], Cell[40108, 1307, 78, 1, 70, "Output"] }, Open ]], Cell[40201, 1311, 222, 4, 90, "Input"], Cell[40426, 1317, 219, 4, 90, "Input"], Cell[40648, 1323, 67, 0, 28, "SmallText"], Cell[40718, 1325, 72, 1, 30, "Input"], Cell[40793, 1328, 82, 1, 30, "Input"], Cell[40878, 1331, 393, 7, 208, "Input"], Cell[41274, 1340, 403, 7, 208, "Input"], Cell[41680, 1349, 214, 4, 118, "Input"], Cell[41897, 1355, 717, 13, 338, "Input"], Cell[42617, 1370, 452, 8, 202, "Input"], Cell[43072, 1380, 213, 4, 90, "Input"], Cell[43288, 1386, 155, 3, 70, "Input"], Cell[43446, 1391, 57, 1, 30, "Input"], Cell[43506, 1394, 59, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[43602, 1400, 75, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[43702, 1404, 145, 2, 70, "Input"], Cell[43850, 1408, 5567, 141, 70, 1089, 81, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[49454, 1554, 144, 2, 70, "Input"], Cell[49601, 1558, 3980, 130, 70, 1228, 91, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[53630, 1694, 78, 0, 31, "Subsection"], Cell[53711, 1696, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[53967, 1704, 213, 4, 50, "Input"], Cell[54183, 1710, 902, 27, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[55122, 1742, 70, 1, 30, "Input"], Cell[55195, 1745, 490, 15, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[55746, 1767, 89, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[55860, 1772, 68, 1, 47, "Subsection", Evaluatable->False], Cell[55931, 1775, 119, 3, 28, "SmallText"], Cell[56053, 1780, 156, 3, 28, "SmallText"], Cell[56212, 1785, 356, 5, 95, "Input"], Cell[56571, 1792, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[56939, 1802, 37, 1, 30, "Input"], Cell[56979, 1805, 311, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57327, 1815, 71, 1, 30, "Input"], Cell[57401, 1818, 551, 9, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[58001, 1833, 57, 0, 31, "Subsection"], Cell[58061, 1835, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[58180, 1841, 169, 3, 30, "Input"], Cell[58352, 1846, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58504, 1853, 93, 1, 30, "Input"], Cell[58600, 1856, 115, 2, 70, "Output"] }, Open ]], Cell[58730, 1861, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[58816, 1865, 344, 6, 90, "Input"], Cell[59163, 1873, 130, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59330, 1880, 69, 1, 30, "Input"], Cell[59402, 1883, 108, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[59559, 1891, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[59649, 1895, 70, 1, 30, "Input"], Cell[59722, 1898, 302, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[60073, 1909, 105, 2, 31, "Subsection"], Cell[CellGroupData[{ Cell[60203, 1915, 195, 4, 30, "Input"], Cell[60401, 1921, 209, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[60647, 1930, 63, 1, 30, "Input"], Cell[60713, 1933, 203, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[60965, 1942, 88, 1, 31, "Subsection", Evaluatable->False], Cell[61056, 1945, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[61261, 1953, 37, 1, 30, "Input"], Cell[61301, 1956, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61396, 1962, 138, 4, 30, "Input"], Cell[61537, 1968, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61632, 1974, 103, 2, 30, "Input"], Cell[61738, 1978, 238, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[62013, 1987, 134, 3, 30, "Input"], Cell[62150, 1992, 288, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[62475, 2005, 134, 3, 30, "Input"], Cell[62612, 2010, 640, 20, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[63301, 2036, 78, 0, 31, "Subsection"], Cell[63382, 2038, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[63490, 2043, 45, 1, 30, "Input"], Cell[63538, 2046, 35, 1, 70, "Output"] }, Open ]], Cell[63588, 2050, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[63831, 2058, 51, 1, 30, "Input"], Cell[63885, 2061, 35, 1, 70, "Output"] }, Open ]], Cell[63935, 2065, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[64083, 2072, 53, 1, 30, "Input"], Cell[64139, 2075, 35, 1, 70, "Output"] }, Open ]], Cell[64189, 2079, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[64346, 2086, 51, 1, 30, "Input"], Cell[64400, 2089, 35, 1, 70, "Output"] }, Open ]], Cell[64450, 2093, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[64505, 2097, 134, 2, 30, "Input"], Cell[64642, 2101, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[64731, 2107, 230, 5, 30, "Input"], Cell[64964, 2114, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[65048, 2121, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[65145, 2125, 461, 8, 19, "Input", CellOpen->False], Cell[65609, 2135, 195, 5, 121, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[65841, 2145, 1993, 32, 19, "Input", CellOpen->False], Cell[67837, 2179, 186, 5, 46, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[68084, 2191, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[68251, 2201, 56, 0, 47, "Subsection"], Cell[68310, 2203, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[68410, 2207, 92, 1, 50, "Input"], Cell[68505, 2210, 172, 3, 70, "Output"] }, Open ]], Cell[68692, 2216, 182, 3, 44, "SmallText"], Cell[68877, 2221, 248, 7, 50, "Input"], Cell[CellGroupData[{ Cell[69150, 2232, 71, 1, 30, "Input"], Cell[69224, 2235, 373, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[69646, 2253, 134, 5, 31, "Subsection"], Cell[69783, 2260, 420, 7, 76, "SmallText"], Cell[70206, 2269, 104, 3, 46, "Input"], Cell[70313, 2274, 313, 9, 44, "SmallText"], Cell[70629, 2285, 407, 8, 106, "Input"], Cell[71039, 2295, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[71154, 2301, 135, 3, 30, "Input"], Cell[71292, 2306, 36, 1, 70, "Output"] }, Open ]], Cell[71343, 2310, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[71495, 2317, 140, 3, 70, "Input"], Cell[71638, 2322, 85, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[71760, 2328, 182, 4, 50, "Input"], Cell[71945, 2334, 124, 2, 70, "Output"] }, Open ]], Cell[72084, 2339, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[72155, 2343, 46, 1, 30, "Input"], Cell[72204, 2346, 43, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[72296, 2353, 72, 0, 31, "Subsection"], Cell[72371, 2355, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[72537, 2362, 271, 7, 50, "Input"], Cell[72811, 2371, 45, 1, 70, "Output"] }, Open ]], Cell[72871, 2375, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[73081, 2383, 160, 4, 30, "Input"], Cell[73244, 2389, 36, 1, 70, "Output"] }, Open ]], Cell[73295, 2393, 524, 9, 110, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[73868, 2408, 88, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[73981, 2413, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[74058, 2417, 76, 1, 30, "Input"], Cell[74137, 2420, 153, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[74339, 2429, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[74455, 2434, 571, 10, 70, "Input"], Cell[75029, 2446, 144, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[75210, 2454, 149, 2, 30, "Input"], Cell[75362, 2458, 439, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[75838, 2471, 40, 1, 30, "Input"], Cell[75881, 2474, 144, 3, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[76086, 2484, 116, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[76227, 2491, 45, 0, 47, "Subsection"], Cell[76275, 2493, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[76441, 2500, 1094, 25, 50, "Input"], Cell[77538, 2527, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[78602, 2557, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[78692, 2561, 217, 4, 50, "Input"], Cell[78912, 2567, 186, 3, 70, "Output"] }, Open ]], Cell[79113, 2573, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[79217, 2577, 365, 9, 30, "Input"], Cell[79585, 2588, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[79954, 2602, 40, 0, 31, "Subsection"], Cell[79997, 2604, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[80164, 2611, 227, 3, 50, "Input"], Cell[80394, 2616, 450, 8, 70, "Output"] }, Open ]], Cell[80859, 2627, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[80992, 2634, 289, 4, 70, "Input"], Cell[81284, 2640, 868, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82189, 2663, 246, 4, 70, "Input"], Cell[82438, 2669, 1267, 19, 70, "Output"] }, Open ]], Cell[83720, 2691, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[83847, 2697, 330, 5, 70, "Input"], Cell[84180, 2704, 840, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[85057, 2727, 244, 4, 70, "Input"], Cell[85304, 2733, 1078, 20, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[86419, 2758, 169, 3, 30, "Input"], Cell[86591, 2763, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[86743, 2770, 76, 1, 30, "Input"], Cell[86822, 2773, 1628, 25, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88487, 2803, 75, 1, 30, "Input"], Cell[88565, 2806, 1350, 22, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[89964, 2834, 64, 0, 31, "Subsection"], Cell[90031, 2836, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[90281, 2845, 190, 4, 50, "Input"], Cell[90474, 2851, 109, 2, 70, "Output"] }, Open ]], Cell[90598, 2856, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[90735, 2863, 311, 7, 90, "Input"], Cell[91049, 2872, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[91195, 2879, 257, 4, 50, "Input"], Cell[91455, 2885, 149, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[91641, 2892, 127, 2, 31, "Input"], Cell[91771, 2896, 164, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[91972, 2903, 60, 1, 30, "Input"], Cell[92035, 2906, 68, 1, 70, "Output"] }, Open ]], Cell[92118, 2910, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[92251, 2917, 61, 1, 30, "Input"], Cell[92315, 2920, 1233, 19, 70, "Output"] }, Open ]], Cell[93563, 2942, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[93690, 2948, 59, 1, 30, "Input"], Cell[93752, 2951, 1031, 19, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[94844, 2977, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[94947, 2982, 64, 1, 47, "Subsection", Evaluatable->False], Cell[95014, 2985, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[95190, 2992, 422, 8, 90, "Input"], Cell[95615, 3002, 122, 2, 70, "Output"] }, Open ]], Cell[95752, 3007, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[95968, 3015, 82, 1, 30, "Input"], Cell[96053, 3018, 227, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[96329, 3029, 78, 1, 31, "Subsection", Evaluatable->False], Cell[96410, 3032, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[96543, 3038, 93, 1, 30, "Input"], Cell[96639, 3041, 282, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[96958, 3054, 93, 1, 30, "Input"], Cell[97054, 3057, 499, 14, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[97590, 3076, 107, 2, 30, "Input"], Cell[97700, 3080, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[97772, 3086, 108, 2, 30, "Input"], Cell[97883, 3090, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[97956, 3096, 39, 1, 30, "Input"], Cell[97998, 3099, 68, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[98115, 3106, 55, 0, 31, "Subsection"], Cell[98173, 3108, 246, 4, 70, "Input"], Cell[98422, 3114, 244, 4, 70, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[98703, 3123, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[98808, 3128, 169, 3, 30, "Input"], Cell[98980, 3133, 144, 3, 70, "Output"] }, Open ]], Cell[99139, 3139, 42, 1, 30, "Input"], Cell[99184, 3142, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[99295, 3147, 88, 1, 30, "Input"], Cell[99386, 3150, 144, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[99567, 3158, 221, 4, 30, "Input"], Cell[99791, 3164, 219, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[100047, 3174, 128, 2, 30, "Input"], Cell[100178, 3178, 5724, 140, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[105963, 3325, 123, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[106111, 3332, 140, 5, 47, "Subsection"], Cell[106254, 3339, 110, 2, 30, "Input"], Cell[106367, 3343, 78, 1, 30, "Input"], Cell[106448, 3346, 76, 1, 30, "Input"], Cell[106527, 3349, 59, 1, 30, "Input"], Cell[106589, 3352, 471, 8, 118, "Input"], Cell[107063, 3362, 65, 1, 30, "Input"], Cell[107131, 3365, 85, 1, 30, "Input"], Cell[107219, 3368, 150, 3, 30, "Input"], Cell[107372, 3373, 193, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[107590, 3381, 304, 5, 70, "Input"], Cell[107897, 3388, 89, 1, 29, "Output"] }, Open ]], Cell[108001, 3392, 85, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[108123, 3398, 64, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[108212, 3402, 91, 1, 30, "Input"], Cell[108306, 3405, 144, 3, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108487, 3413, 89, 1, 30, "Input"], Cell[108579, 3416, 219, 5, 47, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[108847, 3427, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[108908, 3431, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[108971, 3435, 297, 6, 90, "Input"], Cell[109271, 3443, 326, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[109646, 3459, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[109711, 3463, 292, 6, 90, "Input"], Cell[110006, 3471, 530, 14, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[110585, 3491, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[110642, 3495, 292, 6, 90, "Input"], Cell[110937, 3503, 496, 12, 47, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[111494, 3522, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[111552, 3526, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[111621, 3530, 289, 6, 90, "Input"], Cell[111913, 3538, 326, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[112288, 3554, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[112361, 3558, 289, 6, 90, "Input"], Cell[112653, 3566, 606, 14, 57, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[113308, 3586, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[113367, 3590, 295, 6, 90, "Input"], Cell[113665, 3598, 625, 14, 57, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[114351, 3619, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[114494, 3626, 58, 1, 30, "Input"], Cell[114555, 3629, 438, 12, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[115030, 3646, 62, 0, 43, "Subsubsection"], Cell[115095, 3648, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[115179, 3652, 302, 5, 110, "Input"], Cell[115484, 3659, 420, 11, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[115953, 3676, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[116042, 3680, 302, 5, 110, "Input"], Cell[116347, 3687, 331, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[116727, 3703, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[116804, 3707, 453, 8, 148, "Input"], Cell[117260, 3717, 337, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[117646, 3733, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[117725, 3737, 623, 11, 171, "Input"], Cell[118351, 3750, 330, 10, 43, "Output"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[118754, 3768, 131, 6, 59, "Section", Evaluatable->False], Cell[118888, 3776, 118, 3, 33, "Text"], Cell[119009, 3781, 220, 5, 46, "Input"], Cell[119232, 3788, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[119482, 3796, 132, 3, 30, "Input"], Cell[119617, 3801, 36, 1, 29, "Output"] }, Open ]], Cell[119668, 3805, 123, 3, 33, "Text"], Cell[119794, 3810, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[119921, 3817, 142, 3, 50, "Input"], Cell[120066, 3822, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[120139, 3828, 69, 1, 30, "Input"], Cell[120211, 3831, 176, 3, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[120436, 3840, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[120568, 3847, 33, 0, 47, "Subsection"], Cell[120604, 3849, 215, 4, 50, "Input"], Cell[120822, 3855, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[121073, 3864, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[121164, 3869, 67, 1, 30, "Input"], Cell[121234, 3872, 144, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[121415, 3880, 68, 1, 30, "Input"], Cell[121486, 3883, 197, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[121720, 3892, 81, 1, 30, "Input"], Cell[121804, 3895, 238, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[122079, 3905, 84, 1, 30, "Input"], Cell[122166, 3908, 249, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[122452, 3918, 73, 1, 30, "Input"], Cell[122528, 3921, 90, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[122655, 3927, 76, 1, 30, "Input"], Cell[122734, 3930, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[122849, 3936, 73, 1, 30, "Input"], Cell[122925, 3939, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[123038, 3945, 76, 1, 30, "Input"], Cell[123117, 3948, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[123251, 3955, 75, 1, 31, "Subsection", Evaluatable->False], Cell[123329, 3958, 384, 16, 28, "SmallText"], Cell[123716, 3976, 261, 12, 28, "SmallText"], Cell[123980, 3990, 1652, 33, 152, "Input"], Cell[125635, 4025, 1634, 32, 152, "Input"], Cell[127272, 4059, 393, 16, 50, "Text"], Cell[127668, 4077, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[127769, 4083, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[127886, 4088, 132, 3, 19, "Input", CellOpen->False], Cell[128021, 4093, 12137, 441, 77, 5369, 354, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[140207, 4540, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[140326, 4547, 155, 4, 19, "Input", CellOpen->False], Cell[140484, 4553, 12614, 457, 81, 5549, 367, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[153159, 5017, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[153349, 5027, 56, 0, 47, "Subsection"], Cell[153408, 5029, 136, 3, 28, "SmallText"], Cell[153547, 5034, 222, 5, 30, "Input"], Cell[153772, 5041, 446, 7, 84, "Input"], Cell[154221, 5050, 38, 0, 28, "SmallText"], Cell[154262, 5052, 328, 7, 50, "Input"], Cell[154593, 5061, 42, 0, 28, "SmallText"], Cell[154638, 5063, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[154892, 5072, 86, 1, 30, "Input"], Cell[154981, 5075, 308, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[155326, 5088, 88, 1, 30, "Input"], Cell[155417, 5091, 308, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[155774, 5105, 42, 0, 31, "Subsection"], Cell[155819, 5107, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[156076, 5115, 263, 5, 90, "Input"], Cell[156342, 5122, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[156423, 5128, 263, 5, 90, "Input"], Cell[156689, 5135, 44, 1, 70, "Output"] }, Open ]], Cell[156748, 5139, 86, 1, 30, "Input"], Cell[156837, 5142, 128, 2, 76, "Input"], Cell[156968, 5146, 112, 2, 30, "Input"], Cell[157083, 5150, 129, 3, 30, "Input"], Cell[157215, 5155, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[157319, 5161, 132, 5, 31, "Subsection"], Cell[157454, 5168, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[157660, 5177, 80, 1, 32, "Input"], Cell[157743, 5180, 40, 1, 70, "Output"] }, Open ]], Cell[157798, 5184, 182, 6, 41, "Input"], Cell[CellGroupData[{ Cell[158005, 5194, 62, 1, 30, "Input"], Cell[158070, 5197, 66, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[158185, 5204, 28, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[158238, 5208, 221, 3, 70, "Input"], Cell[158462, 5213, 10302, 286, 131, 2501, 185, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[168801, 5504, 219, 3, 70, "Input"], Cell[169023, 5509, 8994, 288, 131, 2805, 207, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[178078, 5804, 159, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[178262, 5814, 34, 0, 47, "Subsection"], Cell[178299, 5816, 136, 3, 28, "SmallText"], Cell[178438, 5821, 191, 4, 30, "Input"], Cell[178632, 5827, 36, 0, 28, "SmallText"], Cell[178671, 5829, 349, 8, 50, "Input"], Cell[179023, 5839, 46, 0, 28, "SmallText"], Cell[179072, 5841, 925, 20, 210, "Input"], Cell[180000, 5863, 122, 3, 30, "Input"], Cell[180125, 5868, 109, 2, 50, "Input"], Cell[180237, 5872, 109, 2, 50, "Input"], Cell[180349, 5876, 270, 5, 70, "Input"], Cell[180622, 5883, 191, 4, 30, "Input"], Cell[180816, 5889, 349, 8, 50, "Input"], Cell[181168, 5899, 925, 20, 210, "Input"], Cell[182096, 5921, 122, 3, 30, "Input"], Cell[182221, 5926, 109, 2, 50, "Input"], Cell[182333, 5930, 109, 2, 50, "Input"], Cell[182445, 5934, 270, 5, 70, "Input"], Cell[182718, 5941, 191, 4, 30, "Input"], Cell[182912, 5947, 349, 8, 50, "Input"], Cell[183264, 5957, 122, 3, 30, "Input"], Cell[183389, 5962, 109, 2, 50, "Input"], Cell[183501, 5966, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[183801, 5976, 128, 5, 31, "Subsection"], Cell[183932, 5983, 48, 1, 30, "Input"], Cell[183983, 5986, 48, 1, 30, "Input"], Cell[184034, 5989, 48, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[184119, 5995, 51, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[184195, 5999, 167, 2, 50, "Input"], Cell[184365, 6003, 4568, 165, 131, 1951, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[188982, 6174, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[189049, 6178, 167, 2, 50, "Input"], Cell[189219, 6182, 9501, 299, 160, 3328, 218, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[198769, 6487, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[198837, 6491, 167, 2, 50, "Input"], Cell[199007, 6495, 5864, 207, 131, 2457, 160, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[204932, 6709, 104, 1, 59, "Section"], Cell[CellGroupData[{ Cell[205061, 6714, 44, 1, 30, "Input"], Cell[205108, 6717, 91, 1, 70, "Output"] }, Open ]], Cell[205214, 6721, 137, 3, 30, "Input"], Cell[205354, 6726, 231, 4, 70, "Input"], Cell[205588, 6732, 237, 4, 70, "Input"], Cell[205828, 6738, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[205967, 6744, 328, 5, 72, "Input"], Cell[206298, 6751, 43, 1, 70, "Output"] }, Open ]], Cell[206356, 6755, 255, 4, 70, "Input"], Cell[206614, 6761, 257, 4, 70, "Input"], Cell[206874, 6767, 281, 5, 70, "Input"], Cell[207158, 6774, 254, 4, 70, "Input"], Cell[207415, 6780, 254, 4, 70, "Input"], Cell[207672, 6786, 254, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[207963, 6795, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[208289, 6809, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[208356, 6813, 44, 1, 30, "Input"], Cell[208403, 6816, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[208531, 6822, 69, 1, 30, "Input"], Cell[208603, 6825, 70, 1, 70, "Output"] }, Open ]], Cell[208688, 6829, 137, 3, 28, "SmallText"], Cell[208828, 6834, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[209368, 6848, 58, 1, 30, "Input"], Cell[209429, 6851, 438, 12, 70, "Output"] }, Open ]], Cell[209882, 6866, 226, 5, 44, "SmallText"], Cell[210111, 6873, 144, 3, 50, "Input"], Cell[210258, 6878, 191, 4, 28, "SmallText"], Cell[210452, 6884, 191, 5, 70, "Input"], Cell[210646, 6891, 347, 6, 70, "Input"], Cell[210996, 6899, 219, 4, 50, "Input"], Cell[211218, 6905, 548, 10, 110, "Input"], Cell[211769, 6917, 197, 3, 50, "Input"], Cell[211969, 6922, 381, 7, 70, "Input"], Cell[212353, 6931, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[212671, 6940, 259, 9, 31, "Subsection"], Cell[212933, 6951, 122, 3, 28, "SmallText"], Cell[213058, 6956, 193, 4, 31, "Input"], Cell[213254, 6962, 193, 4, 31, "Input"], Cell[213450, 6968, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[213668, 6976, 801, 15, 130, "Input"], Cell[214472, 6993, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[214567, 7000, 275, 9, 31, "Subsection"], Cell[214845, 7011, 175, 4, 30, "Input"], Cell[215023, 7017, 175, 4, 30, "Input"], Cell[215201, 7023, 175, 4, 30, "Input"], Cell[215379, 7029, 89, 1, 30, "Input"], Cell[215471, 7032, 89, 1, 30, "Input"], Cell[215563, 7035, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[215677, 7040, 759, 14, 130, "Input"], Cell[216439, 7056, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[216536, 7063, 260, 9, 31, "Subsection"], Cell[216799, 7074, 122, 3, 28, "SmallText"], Cell[216924, 7079, 214, 4, 31, "Input"], Cell[217141, 7085, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[217378, 7093, 446, 7, 110, "Input"], Cell[217827, 7102, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[217912, 7108, 450, 7, 110, "Input"], Cell[218365, 7117, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[218461, 7124, 268, 9, 31, "Subsection"], Cell[218732, 7135, 122, 3, 28, "SmallText"], Cell[218857, 7140, 224, 4, 31, "Input"], Cell[219084, 7146, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[219338, 7154, 449, 7, 110, "Input"], Cell[219790, 7163, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[219876, 7169, 446, 7, 110, "Input"], Cell[220325, 7178, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[220422, 7185, 262, 9, 31, "Subsection"], Cell[220687, 7196, 203, 4, 30, "Input"], Cell[220893, 7202, 216, 4, 30, "Input"], Cell[221112, 7208, 230, 4, 30, "Input"], Cell[221345, 7214, 201, 4, 30, "Input"], Cell[221549, 7220, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[221788, 7228, 469, 7, 110, "Input"], Cell[222260, 7237, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[222341, 7243, 465, 7, 90, "Input"], Cell[222809, 7252, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[222890, 7258, 471, 7, 110, "Input"], Cell[223364, 7267, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[223458, 7274, 272, 9, 31, "Subsection"], Cell[223733, 7285, 203, 4, 30, "Input"], Cell[223939, 7291, 203, 4, 30, "Input"], Cell[224145, 7297, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[224373, 7305, 751, 14, 130, "Input"], Cell[225127, 7321, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[225222, 7328, 293, 9, 31, "Subsection"], Cell[225518, 7339, 108, 3, 28, "SmallText"], Cell[225629, 7344, 206, 3, 50, "Input"], Cell[225838, 7349, 194, 4, 30, "Input"], Cell[226035, 7355, 204, 4, 30, "Input"], Cell[226242, 7361, 92, 1, 30, "Input"], Cell[226337, 7364, 92, 1, 30, "Input"], Cell[226432, 7367, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[226566, 7373, 780, 14, 130, "Input"], Cell[227349, 7389, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[227446, 7396, 274, 9, 31, "Subsection"], Cell[227723, 7407, 102, 2, 28, "SmallText"], Cell[227828, 7411, 202, 3, 50, "Input"], Cell[228033, 7416, 190, 4, 30, "Input"], Cell[228226, 7422, 202, 4, 30, "Input"], Cell[228431, 7428, 92, 1, 30, "Input"], Cell[228526, 7431, 92, 1, 30, "Input"], Cell[228621, 7434, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[228755, 7440, 776, 14, 130, "Input"], Cell[229534, 7456, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[229630, 7463, 266, 9, 31, "Subsection"], Cell[229899, 7474, 203, 4, 30, "Input"], Cell[230105, 7480, 203, 4, 30, "Input"], Cell[230311, 7486, 227, 4, 30, "Input"], Cell[230541, 7492, 92, 1, 30, "Input"], Cell[230636, 7495, 92, 1, 30, "Input"], Cell[230731, 7498, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[230865, 7504, 795, 15, 150, "Input"], Cell[231663, 7521, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[231757, 7528, 280, 9, 31, "Subsection"], Cell[232040, 7539, 51, 1, 30, "Input"], Cell[232094, 7542, 275, 5, 91, "Input"], Cell[232372, 7549, 280, 5, 91, "Input"], Cell[232655, 7556, 207, 4, 90, "Input"], Cell[232865, 7562, 212, 4, 90, "Input"], Cell[233080, 7568, 91, 1, 30, "Input"], Cell[233174, 7571, 84, 1, 30, "Input"], Cell[233261, 7574, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[234734, 7608, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[234824, 7613, 346, 8, 19, "Input", CellOpen->False], Cell[235173, 7623, 10002, 160, 70, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)