(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 290823, 9483]*) (*NotebookOutlinePosition[ 291484, 9506]*) (* CellTagsIndexPosition[ 291440, 9502]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-14\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 2;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[{ \(\(\[Alpha][1] = 0;\)\), "\n", \(\(\[Alpha][2] = \[Pi]\/6;\)\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[{ \(\(L[1] = \[ScriptCapitalL];\)\), "\[IndentingNewLine]", \(\(L[2] = \[ScriptCapitalL];\)\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YA[2] := \[ScriptCapitalY]\[ScriptCapitalA]\), "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\), "\[IndentingNewLine]", \(YJ[2] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .27975 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.484419 0.0308817 0.484419 [ [ 0 0 0 0 ] [ 1 .27975 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .27975 L 0 .27975 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .03088 m .50823 .03088 L s .55667 .03088 m .97619 .27309 L s .5 Mabswid .14491 .00666 m .14491 .0551 L s .26602 .00666 m .26602 .0551 L s .38712 .00666 m .38712 .0551 L s .67366 .07046 m .64944 .11241 L s .77854 .13101 m .75432 .17296 L s .88342 .19156 m .8592 .23352 L s 0 0 0 r 2 Mabswid .26602 .03088 m .3629 .03088 L s .33061 .04703 m .3629 .03088 L s .33061 .01473 m .3629 .03088 L s .26602 .03088 m .26602 .12777 L s .24987 .09547 m .26602 .12777 L s .28217 .09547 m .26602 .12777 L s .76643 .15199 m .85033 .20043 L s .81429 .19827 m .85033 .20043 L s .83044 .1703 m .85033 .20043 L s .76643 .15199 m .71799 .23589 L s .72015 .19985 m .71799 .23589 L s .74812 .216 m .71799 .23589 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 80.5625}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg"], ImageRangeCache->{{{0, 287}, {79.5625, 0}} -> {-0.0585762, -0.0637529, \ 0.00725847, 0.00725847}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(b[1]\)[\[Zeta]_] := \(-\[ScriptB]\)\ e\_2\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1], sN[2], sQ[2], sM[2]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ \[ScriptCapitalC][2] + \[ScriptCapitalC][3]], sN[2] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][4]], sQ[2] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][5]], sM[2] \[Rule] Function[{\[Zeta]}, \(-\[Zeta]\)\ \[ScriptCapitalC][ 5] + \[ScriptCapitalC][6]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3], \[ScriptCapitalC][4], \[ScriptCapitalC][5], \[ScriptCapitalC][ 6]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1], sNo[2], sQo[2], sMo[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1], \[ScriptCapitalC][4] == sNo[2], \[ScriptCapitalC][5] == sQo[2], \[ScriptCapitalC][6] == sMo[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1], \[ScriptCapitalC][4] \[Rule] sNo[2], \[ScriptCapitalC][5] \[Rule] sQo[2], \[ScriptCapitalC][6] \[Rule] sMo[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ sQo[1] + sMo[1]], sN[2] \[Rule] Function[{\[Zeta]}, sNo[2]], sQ[2] \[Rule] Function[{\[Zeta]}, sQo[2]], sM[2] \[Rule] Function[{\[Zeta]}, \(-\[Zeta]\)\ sQo[2] + sMo[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "\[ScriptB]"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sN[2]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[2]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{\(\(sQ[2]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[2]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 1]][ \[Zeta]], \[ScriptB]], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0], Equal[ Derivative[ 1][ sN[ 2]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 2]][ \[Zeta]], 0], Equal[ Plus[ sQ[ 2][ \[Zeta]], Derivative[ 1][ sM[ 2]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][ 2]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ \[ScriptCapitalC][ 2] + \(sM[1]\)[\[Zeta]] == \[ScriptCapitalC][3]\)}, {\(\(sN[2]\)[\[Zeta]] == \[ScriptCapitalC][4]\)}, {\(\(sQ[2]\)[\[Zeta]] == \[ScriptCapitalC][5]\)}, {\(\[Zeta]\ \[ScriptCapitalC][5] + \(sM[ 2]\)[\[Zeta]] == \[ScriptCapitalC][6]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], \[ScriptCapitalC][ 2]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], \[ScriptCapitalC][ 2]], sM[ 1][ \[Zeta]]], \[ScriptCapitalC][ 3]], Equal[ sN[ 2][ \[Zeta]], \[ScriptCapitalC][ 4]], Equal[ sQ[ 2][ \[Zeta]], \[ScriptCapitalC][ 5]], Equal[ Plus[ Times[ \[Zeta], \[ScriptCapitalC][ 5]], sM[ 2][ \[Zeta]]], \[ScriptCapitalC][ 6]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + sQo[1]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[1] + \(sM[ 1]\)[\[Zeta]] == sMo[1]\)}, {\(\(sN[2]\)[\[Zeta]] == sNo[2]\)}, {\(\(sQ[2]\)[\[Zeta]] == sQo[2]\)}, {\(\[Zeta]\ sQo[2] + \(sM[2]\)[\[Zeta]] == sMo[2]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], sQo[ 1]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], sQo[ 1]], sM[ 1][ \[Zeta]]], sMo[ 1]], Equal[ sN[ 2][ \[Zeta]], sNo[ 2]], Equal[ sQ[ 2][ \[Zeta]], sQo[ 2]], Equal[ Plus[ Times[ \[Zeta], sQo[ 2]], sM[ 2][ \[Zeta]]], sMo[ 2]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"], \(ub\_d[2]\)["+"], \(ub\_n[2]\)["+"], \(\[Theta]b[2]\)[ "+"], \(ub\_d[2]\)["-"], \(ub\_n[2]\)["-"], \(\[Theta]b[2]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"], \(wb\_d[2]\)["+"], \(wb\_n[2]\)["+"], \(\[Omega]b[2]\)[ "+"], \(wb\_d[2]\)["-"], \(wb\_n[2]\)["-"], \(\[Omega]b[2]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"], \(sb\_d[2]\)[ "+"], \(sb\_n[2]\)["+"], \(mb[2]\)["+"], \(sb\_d[2]\)[ "-"], \(sb\_n[2]\)["-"], \(mb[2]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[{ \(\(\(d[2]\)[pi\[UGrave]] = \(-e\_1\);\)\), "\[IndentingNewLine]", \(\(\(n[2]\)[pi\[UGrave]] = \(-e\_2\);\)\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(incastro[1]\)[meno], \(perno[1, 2]\)[pi\[UGrave], meno], \(cerniera[2]\)[pi\[UGrave]]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(vincoli := \(Block[{carrello = carrelloV, cerniera = cernieraV, perno = pernoV, incastro = incastroV, saldatura = saldaturaV}, vincoliDef] // Flatten\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, 1\/2\ \((\@3\ \((\(-\(ub\_d[1]\)["+"]\) + \(ub\_d[2]\)[ "-"])\) - \(ub\_n[1]\)["+"] + \(ub\_n[2]\)["-"])\) == 0, 1\/2\ \((\(ub\_d[1]\)["+"] - \(ub\_d[2]\)[ "-"] + \@3\ \((\(-\(ub\_n[1]\)["+"]\) + \(ub\_n[2]\)[ "-"])\))\) == 0, \(-\(1\/2\)\)\ \@3\ \(ub\_d[2]\)["+"] - 1\/2\ \(ub\_n[2]\)["+"] == 0, 1\/2\ \((\(ub\_d[2]\)["+"] - \@3\ \(ub\_n[2]\)["+"])\) == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Theta]b[1]\)["-"] \[Rule] 0, \(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_d[1]\)["+"] \[Rule] \(ub\_d[2]\)["-"], \(ub\_d[2]\)[ "+"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["+"] \[Rule] \(ub\_n[2]\)["-"], \(ub\_n[2]\)[ "+"] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(perno[1, 2]\)["+", "-"], \(cerniera[2]\)[ "+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({\(coll[1, 2]\)["+", "-"]}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{carrello = \((\((Null\ &)\)\ &)\), incastro = \((\((Null\ &)\)\ &)\), cerniera = \((\((Null\ &)\)\ &)\), perno = coll, saldatura = coll}, Complement[vincoliDef, {Null}]]\)], "Input"], Cell[BoxData[ \({{{1, 0}}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)}, {" "}, {\(org[2] = {1, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(perno[1, 2]\)["+", "-"], \(cerniera[2]\)[ "+"]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(vincoliFig := Block[{carrello = carrelloFig, cerniera = cernieraFig, perno = pernoFig, saldatura = saldaturaFig, incastro = incastroFig}, vincoliDef];\)\)], "Input"], Cell[BoxData[ \(vincolibFig := Block[{carrello = crosshairFig, cerniera = crosshairFig, perno = crosshairFig, saldatura = crosshairFig, incastro = crosshairFig}, vincoliDef]\)], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36897 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0628538 0.468532 0.0673515 0.468532 [ [ 0 0 0 0 ] [ 1 .36897 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .36897 L 0 .36897 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .06285 .06735 m .53139 .06735 L s .53139 .06735 m .93715 .30162 L s 0 0 0 r .29712 .06735 m .39083 .06735 L s .35959 .08297 m .39083 .06735 L s .35959 .05173 m .39083 .06735 L s .29712 .06735 m .29712 .16106 L s .2815 .12982 m .29712 .16106 L s .31274 .12982 m .29712 .16106 L s .73427 .18448 m .81542 .23134 L s .78056 .22925 m .81542 .23134 L s .79618 .20219 m .81542 .23134 L s .73427 .18448 m .68741 .26564 L s .68951 .23078 m .68741 .26564 L s .71656 .24639 m .68741 .26564 L s 0 g 1 Mabswid .02381 .06735 m .1019 .06735 L s .06285 .00878 m .06285 .12592 L s newpath .06285 .06735 .01874 0 365.73 arc s .49234 .06735 m .57043 .06735 L s .53139 .00878 m .53139 .12592 L s newpath .53139 .06735 .01874 0 365.73 arc s .97619 .30162 m .8981 .30162 L s .93715 .36018 m .93715 .24305 L s newpath .93715 .30162 .01874 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 106.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol01@00Oomoogoo00000goo 00<007ooOol0CWoo1@009goo00<007ooOol00Woo00<007ooOol00P00Pgoo000=Ool00`00Oomoo`02 Ool01@00Oomoogoo0000DWoo1P0097oo00<007ooOol00Woo00D007ooOomoo`0008=oo`003Goo00<0 07ooOol00Woo00<007ooOol00Woo00<007ooOol0DGoo1P008Woo00<007ooOol00Woo00<007ooOol0 0Woo00<007ooOol0P7oo0007OonM001lOol000eoo`04001oogooOon;00000goo001oo`21Ool000eo o`03001oogoo009oo`03001oogoo009oo`03001oogoo03Yoo`8001Eoo`@002Aoo`03001oogoo009o o`03001oo`0000<0089oo`003Goo00<007ooOol00Woo00<007ooOol00Woo00<007ooOol0>Woo0P00 4goo10009Woo00<007ooOol00Woo00<007ooOol01@00P7oo000>Ool01@00Oomoogoo00000goo00<0 07ooOol0>goo0P004Goo1@00:7oo00D007ooOomoo`0000=oo`H007ioo`003goo0P0000=oo`00Ool0 0P00?Woo0P0047oo1000:goo0P0000=oo`00Ool00P000goo1000OGoo000AOol30010Ool2000AOol0 0`00Oomoo`0]Ool30007Ool4001kOol0019oo`03001oogoo03moo`80049oo`03001oogoo00Moo`D0 07Uoo`004Woo00<007ooOol0?goo0P00@Woo00<007ooOol02Goo1@00Mgoo000BOol00`00Oomoo`0o Ool20012Ool00`00Oomoo`0;Ool4001fOol0019oo`03001oogoo03moo`80049oo`03001oogoo00eo o`@007Aoo`004Woo00<007ooOol0?goo0P00@Woo00<007ooOol03Woo1@00LWoo000BOol00`00Oomo o`0oOol20012Ool00`00Oomoo`0@Ool5001`Ool0019oo`03001oogoo03moo`80049oo`03001oogoo 019oo`@006moo`004Woo00<007ooOol0?goo0P00@Woo00<007ooOol057oo1000KGoo000BOol00`00 Oomoo`0oOol20012Ool00`00Oomoo`0EOol5001[Ool0019oo`03001oogoo03moo`80049oo`03001o ogoo01Moo`@006Yoo`004Woo00<007ooOol0?7oo00<007ooOol00P0017oo00<007ooOol0>goo00<0 07ooOol06Goo1000J7oo001AOol00`00Oomoo`020004Ool00`00Oomoo`1HOol5001VOol0055oo`80 0003Ool0000000=oo`8005aoo`D006Aoo`00DWoo00@007oo000000=oo`03001oogoo05eoo`@006=o o`00DWoo10000Woo0P00HGoo1000HGoo001COol300000goo0000001SOol5001OOol005=oo`<00003 Ool007oo06Eoo`D005eoo`00Dgoo1@00J7oo1000G7oo001DOol3001[Ool4001JOol005Aoo`<006ao o`D005Qoo`00E7oo0P00Kgoo1000Egoo001DOol2001aOol4001EOol00Woo003>Ool2000;Ool50003Ool2 000kOol00Goo003< Ool2000BOol500000goo001oo`0hOol00"], ImageRangeCache->{{{0, 287}, {105.25, 0}} -> {-0.140695, -0.143754, \ 0.00748228, 0.00748228}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .35605 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.484419 0.0569193 0.484419 [ [ 0 0 0 0 ] [ 1 .35605 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .35605 L 0 .35605 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05692 m .50823 .05692 L s .50823 .05692 m .92775 .29913 L s 0 0 0 r .26602 .05692 m .3629 .05692 L s .33061 .07307 m .3629 .05692 L s .33061 .04077 m .3629 .05692 L s .26602 .05692 m .26602 .1538 L s .24987 .12151 m .26602 .1538 L s .28217 .12151 m .26602 .1538 L s .71799 .17802 m .80189 .22647 L s .76585 .2243 m .80189 .22647 L s .782 .19633 m .80189 .22647 L s .71799 .17802 m .66955 .26193 L s .67171 .22589 m .66955 .26193 L s .69968 .24203 m .66955 .26193 L s 0 g .02381 .00848 m .02381 .10536 L s 1 g .50823 .05692 m .50823 .05692 .01938 0 365.73 arc F 0 g newpath .50823 .05692 .01938 0 365.73 arc s .92775 .29913 m .97619 .34757 L .87931 .34757 L .92775 .29913 L s 1 g .92775 .29913 m .92775 .29913 .01938 0 365.73 arc F 0 g newpath .92775 .29913 .01938 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 102.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgGoo002oOol20004Ool0 0`00Oomoo`0DOol=000gOol00;moo`8000=oo`8001moo`H003Eoo`00_goo0P000Woo0P008goo1000 =7oo002oOol20002Ool00`00Oomoo`02Ool00`00Oomoo`0OOol4000bOol00;moo`800003Ool00000 009oo`@0025oo`D0031oo`00_goo0P0000Aoo`00Oomoo`@002Aoo`D002ioo`00_goo2000:7oo1000 ;Goo002oOol7000[Ool4000[Ool00;moo`D002ioo`D002Uoo`00_goo1000000BOol00?moo`=oo`@000Ioo`80019oo`00ogoo1Goo 00<007ooOol01Woo0P004Goo003oOol4Ool20009Ool00`00Oomoo`0?Ool00?moo`Aoo`03001oogoo 00Moo`80015oo`00ogoo17oo0P0027oo0P004Goo003oOol5Ool00`00Oomoo`06Ool2000AOol00?mo o`Eoo`8000Moo`80015oo`00ogoo1Goo10000goo10004Goo003oOol4Ool=000@Ool00?moo`=oo`<0 009oo`D0009oo`<000moo`00ogoo0Woo0`001Goo00<007ooOol00goo0`003Woo003oOol1Ool3000= Ool3000=Ool00?moo`<000moo`<000aoo`00oWoo0`004Goo0`002goo003mOol3000COol3000:Ool0 0?aoo`<001Eoo`<000Uoo`00ngoo0`005goo0`0027oo003jOolO0007Ool00?Uoob4000Ioo`00ogoo 8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {101.5, 0}} -> {-0.0561406, -0.117504, \ 0.00724149, 0.00724149}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {"0"} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {\(\(ub\_d[2]\)["-"]\)}, {\(\(ub\_n[2]\)["-"]\)}, {\(\(\[Theta]b[1]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]}, {GridBox[{ {\(\(ub\_d[2]\)["-"]\)}, {\(\(ub\_n[2]\)["-"]\)}, {\(\(\[Theta]b[2]\)["-"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {"0"}, {"0"}, {\(\(\[Theta]b[2]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, 0}, { Subscript[ ub, d][ 2][ "-"], Subscript[ ub, n][ 2][ "-"], \[Theta]b[ 1][ "+"]}}, {{ Subscript[ ub, d][ 2][ "-"], Subscript[ ub, n][ 2][ "-"], \[Theta]b[ 2][ "-"]}, {0, 0, \[Theta]b[ 2][ "+"]}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(\[Theta]b[1]\)["-"] == 0\)}, {\(1\/2\ \((\@3\ \((\(-\(ub\_d[1]\)["+"]\) + \(ub\_d[2]\)[ "-"])\) - \(ub\_n[1]\)["+"] + \(ub\_n[2]\)[ "-"])\) == 0\)}, {\(1\/2\ \((\(ub\_d[1]\)["+"] - \(ub\_d[2]\)[ "-"] + \@3\ \((\(-\(ub\_n[1]\)["+"]\) + \(ub\_n[2]\)[ "-"])\))\) == 0\)}, {\(\(-\(1\/2\)\)\ \@3\ \(ub\_d[2]\)["+"] - 1\/2\ \(ub\_n[2]\)["+"] == 0\)}, {\(1\/2\ \((\(ub\_d[2]\)["+"] - \@3\ \(ub\_n[2]\)["+"])\) == 0\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ \[Theta]b[ 1][ "-"], 0], Equal[ Times[ Rational[ 1, 2], Plus[ Times[ Power[ 3, Rational[ 1, 2]], Plus[ Times[ -1, Subscript[ ub, d][ 1][ "+"]], Subscript[ ub, d][ 2][ "-"]]], Times[ -1, Subscript[ ub, n][ 1][ "+"]], Subscript[ ub, n][ 2][ "-"]]], 0], Equal[ Times[ Rational[ 1, 2], Plus[ Subscript[ ub, d][ 1][ "+"], Times[ -1, Subscript[ ub, d][ 2][ "-"]], Times[ Power[ 3, Rational[ 1, 2]], Plus[ Times[ -1, Subscript[ ub, n][ 1][ "+"]], Subscript[ ub, n][ 2][ "-"]]]]], 0], Equal[ Plus[ Times[ Rational[ -1, 2], Power[ 3, Rational[ 1, 2]], Subscript[ ub, d][ 2][ "+"]], Times[ Rational[ -1, 2], Subscript[ ub, n][ 2][ "+"]]], 0], Equal[ Times[ Rational[ 1, 2], Plus[ Subscript[ ub, d][ 2][ "+"], Times[ -1, Power[ 3, Rational[ 1, 2]], Subscript[ ub, n][ 2][ "+"]]]], 0]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(mb[2]\)["-"]\ \(\[Omega]b[2]\)[ "-"] + \(mb[2]\)["+"]\ \(\[Omega]b[2]\)["+"] + \(sb\_d[1]\)[ "-"]\ \(wb\_d[1]\)["-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)[ "+"] + \(sb\_d[2]\)["-"]\ \(wb\_d[2]\)["-"] + \(sb\_d[2]\)[ "+"]\ \(wb\_d[2]\)["+"] + \(sb\_n[1]\)["-"]\ \(wb\_n[1]\)[ "-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)["+"] + \(sb\_n[2]\)[ "-"]\ \(wb\_n[2]\)["-"] + \(sb\_n[2]\)["+"]\ \(wb\_n[2]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(mb[2]\)["-"] + \(sM[2]\)[0])\)\ \(\[Omega]b[2]\)[ "-"] + \((\(mb[2]\)[ "+"] - \(sM[2]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[2]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)["+"] + 1\/2\ \((\@3\ \(sN[2]\)[0] - \(sQ[2]\)[0] + 2\ \(sb\_d[2]\)["-"])\)\ \(wb\_d[2]\)["-"] + 1\/2\ \((\@3\ \(sN[2]\)[\[ScriptCapitalL]] - \(sQ[ 2]\)[\[ScriptCapitalL]] + 2\ \(sb\_d[2]\)["+"])\)\ \(wb\_d[ 2]\)["+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"] + 1\/2\ \((\(sN[2]\)[0] + \@3\ \(sQ[2]\)[0] + 2\ \(sb\_n[2]\)["-"])\)\ \(wb\_n[2]\)["-"] + 1\/2\ \((\(sN[ 2]\)[\[ScriptCapitalL]] + \@3\ \(sQ[2]\)[\[ScriptCapitalL]] + 2\ \(sb\_n[2]\)["+"])\)\ \(wb\_n[2]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, \(-\(1\/2\)\)\ \@3\ \(ub\_d[1]\)["+"] + 1\/2\ \@3\ \(ub\_d[2]\)["-"] - 1\/2\ \(ub\_n[1]\)["+"] + 1\/2\ \(ub\_n[2]\)["-"] == 0, 1\/2\ \(ub\_d[1]\)["+"] - 1\/2\ \(ub\_d[2]\)["-"] - 1\/2\ \@3\ \(ub\_n[1]\)["+"] + 1\/2\ \@3\ \(ub\_n[2]\)["-"] == 0, \(-\(1\/2\)\)\ \@3\ \(ub\_d[2]\)["+"] - 1\/2\ \(ub\_n[2]\)["+"] == 0, 1\/2\ \(ub\_d[2]\)["+"] - 1\/2\ \@3\ \(ub\_n[2]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(\[Omega]b[1]\)["-"] == 0, 1\/2\ \((\@3\ \((\(-\(wb\_d[1]\)["+"]\) + \(wb\_d[2]\)[ "-"])\) - \(wb\_n[1]\)["+"] + \(wb\_n[2]\)["-"])\) == 0, 1\/2\ \((\(wb\_d[1]\)["+"] - \(wb\_d[2]\)[ "-"] + \@3\ \((\(-\(wb\_n[1]\)["+"]\) + \(wb\_n[2]\)[ "-"])\))\) == 0, \(-\(1\/2\)\)\ \@3\ \(wb\_d[2]\)["+"] - 1\/2\ \(wb\_n[2]\)["+"] == 0, 1\/2\ \((\(wb\_d[2]\)["+"] - \@3\ \(wb\_n[2]\)["+"])\) == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"] \[Rule] 0, \(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_d[1]\)["+"] \[Rule] \(wb\_d[2]\)["-"], \(wb\_d[2]\)[ "+"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["+"] \[Rule] \(wb\_n[2]\)["-"], \(wb\_n[2]\)[ "+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["+"], \(\[Omega]b[2]\)["-"], \(\[Omega]b[2]\)[ "+"], \(wb\_d[2]\)["-"], \(wb\_n[2]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(mb[2]\)["-"] + \(sM[2]\)[0])\)\ \(\[Omega]b[2]\)[ "-"] + \((\(mb[2]\)[ "+"] - \(sM[2]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[2]\)[ "+"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + 1\/2\ \((\@3\ \(sN[2]\)[0] - \(sQ[2]\)[0])\) + \(sb\_d[1]\)[ "+"] + \(sb\_d[2]\)["-"])\)\ \(wb\_d[2]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + 1\/2\ \((\(sN[2]\)[0] + \@3\ \(sQ[2]\)[0])\) + \(sb\_n[1]\)[ "+"] + \(sb\_n[2]\)["-"])\)\ \(wb\_n[2]\)["-"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]] == 0, \(mb[2]\)["-"] + \(sM[2]\)[0] == 0, \(mb[2]\)["+"] - \(sM[2]\)[\[ScriptCapitalL]] == 0, \(-\(sN[1]\)[\[ScriptCapitalL]]\) + 1\/2\ \((\@3\ \(sN[2]\)[0] - \(sQ[2]\)[0])\) + \(sb\_d[1]\)[ "+"] + \(sb\_d[2]\)["-"] == 0, \(-\(sQ[1]\)[\[ScriptCapitalL]]\) + 1\/2\ \((\(sN[2]\)[0] + \@3\ \(sQ[2]\)[0])\) + \(sb\_n[1]\)[ "+"] + \(sb\_n[2]\)["-"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2 + \[ScriptCapitalL]\ sQo[ 1] + \(mb[1]\)["+"] == sMo[1], sMo[2] + \(mb[2]\)["-"] == 0, \[ScriptCapitalL]\ sQo[2] + \(mb[2]\)["+"] == sMo[2], \(-sNo[1]\) + 1\/2\ \@3\ sNo[2] - sQo[2]\/2 + \(sb\_d[1]\)["+"] + \(sb\_d[2]\)["-"] == 0, 1\/2\ \((sNo[2] + \@3\ sQo[2])\) + \(sb\_n[1]\)["+"] + \(sb\_n[2]\)[ "-"] == \[ScriptB]\ \[ScriptCapitalL] + sQo[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1], sNo[2], sQo[2], sMo[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({sMo[1], sMo[2], sNo[1], sNo[2], sQo[1], sQo[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{{\(-1\), 0, 0, 0, \[ScriptCapitalL], 0}, {0, 1, 0, 0, 0, 0}, {0, \(-1\), 0, 0, 0, \[ScriptCapitalL]}, {0, 0, \(-1\), \@3\/2, 0, \(-\(1\/2\)\)}, {0, 0, 0, 1\/2, \(-1\), \@3\/2}}, {\(-\(\(\[ScriptB]\ \ \[ScriptCapitalL]\^2\)\/2\)\) - \(mb[1]\)["+"], \(-\(mb[2]\)[ "-"]\), \(-\(mb[2]\)[ "+"]\), \(-\(sb\_d[1]\)["+"]\) - \(sb\_d[2]\)[ "-"], \[ScriptB]\ \[ScriptCapitalL] - \(sb\_n[1]\)[ "+"] - \(sb\_n[2]\)["-"]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-1\), "0", "0", "0", "\[ScriptCapitalL]", "0"}, {"0", "1", "0", "0", "0", "0"}, {"0", \(-1\), "0", "0", "0", "\[ScriptCapitalL]"}, {"0", "0", \(-1\), \(\@3\/2\), "0", \(-\(1\/2\)\)}, {"0", "0", "0", \(1\/2\), \(-1\), \(\@3\/2\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2\)\) - \(mb[1]\)[ "+"]\)}, {\(-\(mb[2]\)["-"]\)}, {\(-\(mb[2]\)["+"]\)}, {\(\(-\(sb\_d[1]\)["+"]\) - \(sb\_d[2]\)["-"]\)}, {\(\[ScriptB]\ \[ScriptCapitalL] - \(sb\_n[1]\)["+"] - \(sb\_n[2]\)[ "-"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Plus[ Times[ Rational[ -1, 2], \[ScriptB], Power[ \[ScriptCapitalL], 2]], Times[ -1, mb[ 1][ "+"]]], Times[ -1, mb[ 2][ "-"]], Times[ -1, mb[ 2][ "+"]], Plus[ Times[ -1, Subscript[ sb, d][ 1][ "+"]], Times[ -1, Subscript[ sb, d][ 2][ "-"]]], Plus[ Times[ \[ScriptB], \[ScriptCapitalL]], Times[ -1, Subscript[ sb, n][ 1][ "+"]], Times[ -1, Subscript[ sb, n][ 2][ "-"]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(7\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, True, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 6\n nc \[Rule] 6\n nv \[Rule] 7\n nf \[Rule] 5\n rango \ \[Rule] 5"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli eccedenti (le forze attive al bordo possono essere qualsiasi)"\ \)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["+"]\ \(\[Omega]b[1]\)["+"] + \(mb[2]\)[ "-"]\ \(\[Omega]b[2]\)["-"] + \(mb[2]\)["+"]\ \(\[Omega]b[2]\)[ "+"] + \((\(sb\_d[1]\)["+"] + \(sb\_d[2]\)["-"])\)\ \(wb\_d[2]\)[ "-"] + \((\(sb\_n[1]\)["+"] + \(sb\_n[2]\)["-"])\)\ \(wb\_n[2]\)[ "-"]\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(mb[1]\)["+"]\)}, {\(\(mb[2]\)["-"]\)}, {\(\(mb[2]\)["+"]\)}, {\(\(sb\_d[1]\)["+"] + \(sb\_d[2]\)["-"]\)}, {\(\(sb\_n[1]\)["+"] + \(sb\_n[2]\)["-"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { mb[ 1][ "+"], mb[ 2][ "-"], mb[ 2][ "+"], Plus[ Subscript[ sb, d][ 1][ "+"], Subscript[ sb, d][ 2][ "-"]], Plus[ Subscript[ sb, n][ 1][ "+"], Subscript[ sb, n][ 2][ "-"]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {\ };\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"], \(mb[2]\)["-"], \(mb[2]\)[ "+"], \(sb\_d[1]\)["+"] + \(sb\_d[2]\)["-"], \(sb\_n[1]\)[ "+"] + \(sb\_n[2]\)["-"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] \[Rule] 0, \(mb[2]\)["-"] \[Rule] 0, \(mb[2]\)["+"] \[Rule] 0, \(sb\_d[1]\)["+"] \[Rule] \(-\(sb\_d[2]\)["-"]\), \(sb\_n[1]\)[ "+"] \[Rule] \(-\(sb\_n[2]\)["-"]\)}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({0, 0, 0, 0, 0}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{0, 0, 0, 0, 0}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({1\/2\ \[ScriptCapitalL]\ \((\[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1])\) == sMo[1], sMo[2] == 0, \[ScriptCapitalL]\ sQo[2] == sMo[2], 1\/2\ \((\(-2\)\ sNo[1] + \@3\ sNo[2] - sQo[2])\) == 0, 1\/2\ \((\(-2\)\ \[ScriptB]\ \[ScriptCapitalL] + sNo[2] - 2\ sQo[1] + \@3\ sQo[2])\) == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({sNo[1] \[Rule] \@3\ \[ScriptB]\ \[ScriptCapitalL] + \@3\ sQo[1], sMo[1] \[Rule] \(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2 + \ \[ScriptCapitalL]\ sQo[1], sNo[2] \[Rule] 2\ \[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1], sQo[2] \[Rule] 0, sMo[2] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], \[ScriptB]\ \[Zeta] + sQo[1], \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) + sMo[1] - \[Zeta]\ sQo[1]}, {sNo[2], sQo[2], sMo[2] - \[Zeta]\ sQo[2]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({sNo[1] \[Rule] \@3\ \[ScriptB]\ \[ScriptCapitalL] + \@3\ sQo[1], sMo[1] \[Rule] \(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/2 + \ \[ScriptCapitalL]\ sQo[1], sNo[2] \[Rule] 2\ \[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1], sQo[2] \[Rule] 0, sMo[2] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[1] == \(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[ 1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 1]\)[\[Zeta]], sNo[2] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][2]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[2] == \[Zeta]\ sQo[ 2] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 2]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\), "+", \(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], ",", RowBox[{\(sNo[2]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[2]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[2]\), "==", RowBox[{\(\[Zeta]\ sQo[2]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][2] + \[Zeta]\ \[ScriptCapitalD][3]], u\_1[2] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[2]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][4]], u\_2[2] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[Zeta]\^2\ sMo[2] + 1\/6\ \[Zeta]\^3\ sQo[ 2]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + \ \[ScriptCapitalD][5] + \[Zeta]\ \[ScriptCapitalD][6]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\@3\ \((\[ScriptB]\ \[ScriptCapitalL] + sQo[1])\)\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(1\/2\ \((\[ScriptCapitalL] - \[Zeta])\)\ \((\[ScriptB]\ \((\ \[ScriptCapitalL] + \[Zeta])\) + 2\ sQo[1])\)\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], ",", RowBox[{\(2\ \((\[ScriptB]\ \[ScriptCapitalL] + sQo[1])\)\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[2]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[Zeta]\ \((\(-\@3\)\ \[ScriptB]\ \ \[ScriptCapitalL]\^3\ \[Kappa] - \@3\ \[ScriptCapitalL]\^2\ \[Kappa]\ sQo[ 1])\)\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + \ \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(\[ScriptB]\ \[Zeta]\^4\)\/12 + 1\/3\ \[Zeta]\^3\ sQo[1] - 1\/2\ \[ScriptCapitalL]\ \[Zeta]\^2\ \((\[ScriptB]\ \ \[ScriptCapitalL] + 2\ sQo[ 1])\)\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]], u\_1[2] \[Rule] Function[{\[Zeta]}, \(-\(\(\[Zeta]\ \((\(-2\)\ \[ScriptB]\ \ \[ScriptCapitalL]\^3\ \[Kappa] - 2\ \[ScriptCapitalL]\^2\ \[Kappa]\ sQo[ 1])\)\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + \ \[ScriptCapitalD][4]], u\_2[2] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalD][ 5] + \[Zeta]\ \[ScriptCapitalD][6]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]], \(u\_1[2]\)[\[Zeta]], \(u\_2[ 2]\)[\[Zeta]], \(\[Theta][2]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\[ScriptB]\ \[Zeta]\^2 - 12\ sMo[1] + 4\ \[Zeta]\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[ScriptB]\ \[Zeta]\^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][ 3]\)\/\(6\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\), \(\ \[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[2]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 4], \(-\(\(\[Zeta]\^2\ \((\(-3\)\ sMo[2] + \[Zeta]\ sQo[ 2])\)\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \[ScriptCapitalD][ 5] + \[Zeta]\ \[ScriptCapitalD][ 6], \(\[Zeta]\ sMo[2] - 1\/2\ \[Zeta]\^2\ sQo[2]\)\/\ \[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][6]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\(\@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Zeta]\ \[Kappa] + \@3\ \ \[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sQo[1] + \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \ \[ScriptCapitalD][1]\)\/\[ScriptCapitalY]\[ScriptCapitalJ], \(-\(\(\[Zeta]\^2\ \ \((\[ScriptB]\ \((\(-6\)\ \[ScriptCapitalL]\^2 + \[Zeta]\^2)\) + 4\ \((\(-3\)\ \[ScriptCapitalL] + \[Zeta])\)\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[Zeta]\ \((\[ScriptB]\ \((\(-3\)\ \ \[ScriptCapitalL]\^2 + \[Zeta]\^2)\) + 3\ \((\(-2\)\ \[ScriptCapitalL] + \[Zeta])\)\ sQo[ 1])\)\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \[ScriptCapitalD][ 3], \(2\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Zeta]\ \[Kappa] + 2\ \ \[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sQo[1] + \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \ \[ScriptCapitalD][4]\)\/\[ScriptCapitalY]\[ScriptCapitalJ], \[ScriptCapitalD][ 5] + \[Zeta]\ \[ScriptCapitalD][6], \[ScriptCapitalD][ 6]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3], \[ScriptCapitalD][4], \[ScriptCapitalD][5], \[ScriptCapitalD][ 6]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({sQo[1], \[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3], \[ScriptCapitalD][4], \[ScriptCapitalD][5], \[ScriptCapitalD][ 6]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1], \[ScriptCapitalD][4] == uo\_1[2], \[ScriptCapitalD][5] == uo\_2[2], \[ScriptCapitalD][6] == \[Theta]o[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[ 1], \[ScriptCapitalD][4] \[Rule] uo\_1[2], \[ScriptCapitalD][5] \[Rule] uo\_2[2], \[ScriptCapitalD][6] \[Rule] \[Theta]o[2]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1], uo\_1[2], uo\_2[2], \[Theta]o[2]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]], u\_1[2] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[2]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[2]], u\_2[2] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[Zeta]\^2\ sMo[2] + 1\/6\ \[Zeta]\^3\ sQo[ 2]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + uo\_2[2] + \[Zeta]\ \[Theta]o[2]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[Zeta]\ \((\(-\@3\)\ \[ScriptB]\ \ \[ScriptCapitalL]\^3\ \[Kappa] - \@3\ \[ScriptCapitalL]\^2\ \[Kappa]\ sQo[ 1])\)\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(\[ScriptB]\ \[Zeta]\^4\)\/12 + 1\/3\ \[Zeta]\^3\ sQo[1] - 1\/2\ \[ScriptCapitalL]\ \[Zeta]\^2\ \((\[ScriptB]\ \ \[ScriptCapitalL] + 2\ sQo[ 1])\)\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]], u\_1[2] \[Rule] Function[{\[Zeta]}, \(-\(\(\[Zeta]\ \((\(-2\)\ \[ScriptB]\ \ \[ScriptCapitalL]\^3\ \[Kappa] - 2\ \[ScriptCapitalL]\^2\ \[Kappa]\ sQo[ 1])\)\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + uo\_1[2]], u\_2[2] \[Rule] Function[{\[Zeta]}, uo\_2[2] + \[Zeta]\ \[Theta]o[2]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(\[Theta][1]\)[0] == 0, \(u\_1[2]\)[0] == 1\/2\ \((\@3\ \(u\_1[1]\)[\[ScriptCapitalL]] + \(u\_2[ 1]\)[\[ScriptCapitalL]])\), 1\/2\ \(u\_1[1]\)[\[ScriptCapitalL]] - 1\/2\ \@3\ \(u\_2[1]\)[\[ScriptCapitalL]] + \(u\_2[2]\)[0] == 0, \(u\_1[2]\)[\[ScriptCapitalL]] == 0, \(u\_2[2]\)[\[ScriptCapitalL]] == 0}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \[Theta]o[1] == 0, uo\_1[2] == \(\(1\/\(48\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\((\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \((5 + 72\ \[Kappa])\) + 8\ \((\[ScriptCapitalL]\^3\ \((1 + 9\ \[Kappa])\)\ sQo[1] + 3\ \[ScriptCapitalL]\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \[Theta]o[1] + 3\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((\@3\ uo\_1[1] + uo\_2[1])\))\))\)\), \(\(1\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\((\@3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \((\(-5\) + 24\ \[Kappa])\) + 8\ \((\@3\ \[ScriptCapitalL]\^3\ \((\(-1\) + 3\ \[Kappa])\)\ sQo[ 1] - 3\ \@3\ \[ScriptCapitalL]\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \[Theta]o[1] + 3\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((uo\_1[ 1] - \@3\ uo\_2[1] + 2\ uo\_2[2])\))\))\)\) == 0, \(2\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa] + 2\ \ \[ScriptCapitalL]\^3\ \[Kappa]\ sQo[1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \ uo\_1[2]\)\/\[ScriptCapitalY]\[ScriptCapitalJ] == 0, \[ScriptCapitalL]\ \[Theta]o[2] + uo\_2[2] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "1", "0", "0", "0", "0", "0"}, {"0", "0", "1", "0", "0", "0", "0"}, {"0", "0", "0", "1", "0", "0", "0"}, {\(-\(\(\[ScriptCapitalL]\^3\ \((1 + 9\ \[Kappa])\)\)\/\(6\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\), \(-\(\@3\/2\)\), \(-\(1\/2\)\), \(-\(\ \[ScriptCapitalL]\/2\)\), "1", "0", "0"}, {\(\(\[ScriptCapitalL]\^3\ \((\(-1\) + 3\ \[Kappa])\)\)\/\(2\ \@3\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\), \(1\/2\), \(-\(\@3\/2\)\), \(-\(\(\@3\ \ \[ScriptCapitalL]\)\/2\)\), "0", "1", "0"}, {\(\(2\ \[ScriptCapitalL]\^3\ \[Kappa]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ]\), "0", "0", "0", "1", "0", "0"}, {"0", "0", "0", "0", "0", "1", "\[ScriptCapitalL]"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {"0"}, {\(\(\[ScriptB]\ \[ScriptCapitalL]\^4\ \((5 + 72\ \[Kappa])\)\)\/\(48\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)}, {\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^4\ \((\(-5\) + 24\ \[Kappa])\)\)\/\(16\ \@3\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)}, {\(-\(\(2\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)}, {"0"} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, 0, Times[ Rational[ 1, 48], \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ 5, Times[ 72, \[Kappa]]]], Times[ Rational[ -1, 16], Power[ 3, Rational[ -1, 2]], \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ -5, Times[ 24, \[Kappa]]]], Times[ -2, \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Kappa]], 0}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(7\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1], uo\_1[2], uo\_2[2], \[Theta]o[2]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({\(-\(\(\[ScriptCapitalL]\ \((5\ \[ScriptB] + 168\ \[ScriptB]\ \[Kappa])\)\)\/\(8\ \((1 + 21\ \[Kappa])\)\)\)\), 0, 0, 0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(4\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), \(-\(\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \((1 + 21\ \[Kappa])\)\)\)\), \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \ \[Kappa])\)\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({\(-\(\(\[ScriptCapitalL]\ \((5\ \[ScriptB] + 168\ \[ScriptB]\ \[Kappa])\)\)\/\(8\ \((1 + 21\ \[Kappa])\)\)\)\), 0, 0, 0, \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(4\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), \(-\(\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \((1 + 21\ \[Kappa])\)\)\)\), \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \ \[Kappa])\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({sQo[ 1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\ \((5 + 168\ \[Kappa])\)\)\/\(8 + 168\ \[Kappa]\)\)\), uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0, uo\_1[2] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\ \/\(4\ \((\[ScriptCapitalY]\[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \[Kappa])\)\)\)\), uo\_2[2] \[Rule] \(-\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \ \[Kappa]\)\/\(2\ \((\[ScriptCapitalY]\[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \[Kappa])\)\)\)\), \[Theta]o[ 2] \[Rule] \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Kappa]\)\/\ \(2\ \[ScriptCapitalY]\[ScriptCapitalJ] + 42\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \[Kappa]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Zeta]\ \ \[Kappa]\)\/\(8\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)}, {\(-\(\(\[ScriptB]\ \[Zeta]\^2\ \((3\ \[ScriptCapitalL]\^2 - 5\ \[ScriptCapitalL]\ \[Zeta] + 2\ \[Zeta]\^2 + 252\ \[ScriptCapitalL]\^2\ \[Kappa] - 168\ \[ScriptCapitalL]\ \[Zeta]\ \[Kappa] + 42\ \[Zeta]\^2\ \[Kappa])\)\)\/\(48\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\)}, {\(-\(\(\[ScriptB]\ \[Zeta]\ \((6\ \[ScriptCapitalL]\^2 - 15\ \[ScriptCapitalL]\ \[Zeta] + 8\ \[Zeta]\^2 + 504\ \[ScriptCapitalL]\^2\ \[Kappa] - 504\ \[ScriptCapitalL]\ \[Zeta]\ \[Kappa] + 168\ \[Zeta]\^2\ \[Kappa])\)\)\/\(48\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\)}, {\(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \((\[ScriptCapitalL] - \ \[Zeta])\)\ \[Kappa]\)\/\(4\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\)}, {\(-\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \((\ \[ScriptCapitalL] - \[Zeta])\)\ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\)}, {\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Kappa]\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Times[ Rational[ 3, 8], Power[ 3, Rational[ 1, 2]], \[ScriptB], Power[ \[ScriptCapitalL], 3], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Zeta], \[Kappa], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1]], Times[ Rational[ -1, 48], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Power[ \[Zeta], 2], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1], Plus[ Times[ 3, Power[ \[ScriptCapitalL], 2]], Times[ -5, \[ScriptCapitalL], \[Zeta]], Times[ 2, Power[ \[Zeta], 2]], Times[ 252, Power[ \[ScriptCapitalL], 2], \[Kappa]], Times[ -168, \[ScriptCapitalL], \[Zeta], \[Kappa]], Times[ 42, Power[ \[Zeta], 2], \[Kappa]]]], Times[ Rational[ -1, 48], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Zeta], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1], Plus[ Times[ 6, Power[ \[ScriptCapitalL], 2]], Times[ -15, \[ScriptCapitalL], \[Zeta]], Times[ 8, Power[ \[Zeta], 2]], Times[ 504, Power[ \[ScriptCapitalL], 2], \[Kappa]], Times[ -504, \[ScriptCapitalL], \[Zeta], \[Kappa]], Times[ 168, Power[ \[Zeta], 2], \[Kappa]]]], Times[ Rational[ -3, 4], \[ScriptB], Power[ \[ScriptCapitalL], 3], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ \[ScriptCapitalL], Times[ -1, \[Zeta]]], \[Kappa], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1]], Times[ Rational[ -3, 2], Power[ 3, Rational[ 1, 2]], \[ScriptB], Power[ \[ScriptCapitalL], 3], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Plus[ \[ScriptCapitalL], Times[ -1, \[Zeta]]], \[Kappa], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1]], Times[ Rational[ 3, 2], Power[ 3, Rational[ 1, 2]], \[ScriptB], Power[ \[ScriptCapitalL], 3], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Kappa], Power[ Plus[ 1, Times[ 21, \[Kappa]]], -1]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(#1 &\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sNo[1] \[Rule] \@3\ \((\[ScriptB]\ \[ScriptCapitalL] + sQo[1])\), sMo[1] \[Rule] 1\/2\ \[ScriptCapitalL]\ \((\[ScriptB]\ \[ScriptCapitalL] + 2\ sQo[1])\), sNo[2] \[Rule] 2\ \((\[ScriptB]\ \[ScriptCapitalL] + sQo[1])\), sQo[2] \[Rule] 0, sMo[2] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sQo[ 1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\ \((5 + 168\ \[Kappa])\)\)\/\(8\ \((1 + 21\ \[Kappa])\)\)\)\), uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0, uo\_1[2] \[Rule] \(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\ \/\(4\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), uo\_2[2] \[Rule] \(-\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), \[Theta]o[ 2] \[Rule] \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Kappa]\)\/\ \(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)}\)], \ "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\)\)}, {"\<\"trave 2\"\>", \(\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(4 + 84\ \[Kappa]\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\[ScriptB]\ \((\[Zeta] - \(\[ScriptCapitalL]\ \ \((5 + 168\ \[Kappa])\)\)\/\(8 + 168\ \[Kappa]\))\)\)}, {"\<\"trave 2\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \((\[ScriptCapitalL] - \ \[Zeta])\)\ \((\[ScriptCapitalL] + 84\ \[ScriptCapitalL]\ \[Kappa] - 4\ \((\[Zeta] + 21\ \[Zeta]\ \[Kappa])\))\)\)\/\(8 + 168\ \[Kappa]\)\)\)}, {"\<\"trave 2\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \[Zeta]\ \[Kappa]\)\/\(8\ \((\[ScriptCapitalY]\[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \[Kappa])\)\)\)}, {"\<\"trave 2\"\>", \(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \((\(-\ \[ScriptCapitalL]\) + \[Zeta])\)\ \[Kappa]\)\/\(4\ \((\[ScriptCapitalY]\ \[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Kappa])\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\^2\ \((2\ \[Zeta]\^2\ \ \((1 + 21\ \[Kappa])\) + 3\ \[ScriptCapitalL]\^2\ \((1 + 84\ \[Kappa])\) - \[ScriptCapitalL]\ \[Zeta]\ \ \((5 + 168\ \[Kappa])\))\)\)\/\(48\ \((\[ScriptCapitalY]\[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Kappa])\)\)\ \)\)}, {"\<\"trave 2\"\>", \(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \((\(-\[ScriptCapitalL]\) + \[Zeta])\)\ \[Kappa]\)\/\(2\ \((\[ScriptCapitalY]\ \[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Kappa])\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\ \((8\ \[Zeta]\^2\ \ \((1 + 21\ \[Kappa])\) + 6\ \[ScriptCapitalL]\^2\ \((1 + 84\ \[Kappa])\) - 3\ \[ScriptCapitalL]\ \[Zeta]\ \((5 + 168\ \[Kappa])\))\)\)\/\(48\ \((\ \[ScriptCapitalY]\[ScriptCapitalJ] + 21\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Kappa])\)\)\ \)\)}, {"\<\"trave 2\"\>", \(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ] + 42\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Kappa]\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({\(-\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\ \)\/\(8 + 168\ \[Kappa]\)\)\), \(\[ScriptB]\ \[ScriptCapitalL]\ \ \((5 + 168\ \[Kappa])\)\)\/\(8 + 168\ \[Kappa]\)}\), \({\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\), \(3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\)}\)}, {"\<\"trave 2\"\>", \({\(-\(\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\ \)\/\(8 + 168\ \[Kappa]\)\)\), \(-\(\(3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\)\)\)}\), \({\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\), \(3\ \[ScriptB]\ \ \[ScriptCapitalL]\)\/\(8 + 168\ \[Kappa]\)}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(\[ScriptB]\ \[ScriptCapitalL]\^2\ \((1 + 84\ \[Kappa])\)\)\/\(8 + 168\ \[Kappa]\)\), "0"}, {"\<\"trave 2\"\>", "0", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)}, {"\<\"trave 2\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"}, {"\<\"trave 2\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptB] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalA] \[Rule] 100, \[Kappa] \[Rule] 0.1, \[ScriptCapitalM] \[Rule] 10};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptB] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[ScriptCapitalL]\^2\ \ \[Kappa]\) \[Rule] 100, \[Kappa] \[Rule] 0.1`, \[ScriptCapitalM] \[Rule] 10}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(8\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\), \(-\(\(21\ \ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(8\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\ \^3\ \((\(-1\) + 168\ \[Kappa])\)\)\/\(48\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(-\(\(3\ \[ScriptB]\ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(4\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)\)\), \(-\(\(3\ \@3\ \[ScriptB]\ \ \[ScriptCapitalL]\^4\ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \ \((1 + 21\ \[Kappa])\)\)\)\), \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \ \[Kappa]\)\/\(2\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \ \[Kappa])\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, 0, \(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\^3\ \[Kappa]\)\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \((1 + 21\ \[Kappa])\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(8\ \((1 + 21\ \[Kappa])\)\ \), \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\ \((5 + 168\ \[Kappa])\)\)\/\(8\ \((1 + 21\ \[Kappa])\)\)\)\), \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\ \^2\ \((1 + 84\ \[Kappa])\)\)\/\(8\ \((1 + 21\ \[Kappa])\)\)\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(3\ \@3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(8\ \((1 + 21\ \[Kappa])\)\ \), \(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(8\ \((1 + 21\ \[Kappa])\)\), 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(4\ \((1 + 21\ \[Kappa])\)\), 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(3\ \[ScriptB]\ \[ScriptCapitalL]\)\/\(4\ \((1 + 21\ \[Kappa])\)\), 0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[CellGroupData[{ Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.280927 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 0 1 1 r .004 w .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.532117 0.0588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .53212 m 1 .53212 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .53212 m .06244 .53212 L .10458 .53212 L .14415 .53212 L .18221 .53212 L .22272 .53212 L .26171 .53212 L .30316 .53212 L .34309 .53212 L .3815 .53212 L .42237 .53212 L .46172 .53212 L .49955 .53212 L .53984 .53212 L .57861 .53212 L .61984 .53212 L .65954 .53212 L .69774 .53212 L .73838 .53212 L .77751 .53212 L .81909 .53212 L .85916 .53212 L .89771 .53212 L .93871 .53212 L .97619 .53212 L s 0 .4 1 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.592172 0.15235 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .59217 m 1 .59217 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .59217 m .06244 .59217 L .10458 .59217 L .14415 .59217 L .18221 .59217 L .22272 .59217 L .26171 .59217 L .30316 .59217 L .34309 .59217 L .3815 .59217 L .42237 .59217 L .46172 .59217 L .49955 .59217 L .53984 .59217 L .57861 .59217 L .61984 .59217 L .65954 .59217 L .69774 .59217 L .73838 .59217 L .77751 .59217 L .81909 .59217 L .85916 .59217 L .89771 .59217 L .93871 .59217 L .97619 .59217 L s 1 0 .9 r .004 w .02381 .01472 m .06244 .06779 L .10458 .12281 L .14415 .17177 L .18221 .21638 L .22272 .26119 L .26171 .30171 L .30316 .34199 L .34309 .37806 L .3815 .41024 L .42237 .44175 L .46172 .46944 L .49955 .49361 L .53984 .5167 L .57861 .53636 L .61984 .55448 L .65954 .56924 L .69774 .58094 L .73838 .5907 L .77751 .59747 L .79892 .60008 L .80873 .60103 L .81909 .60185 L .82867 .60244 L .83374 .6027 L .83917 .60292 L .84417 .60308 L .84873 .60319 L .85092 .60323 L .85331 .60327 L .8544 .60328 L .85556 .60329 L .85664 .6033 L .85765 .60331 L .85878 .60331 L .86003 .60332 L .86124 .60332 L .86253 .60332 L .86374 .60331 L .86488 .60331 L .86591 .6033 L .86702 .60329 L .86957 .60326 L .87227 .60321 L .87712 .6031 L .88161 .60296 L .88582 .6028 L .8954 .60232 L .9058 .60163 L .91568 .60081 L Mistroke .93422 .59881 L .95406 .59604 L .97246 .59288 L .97619 .59217 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`000Imoo`2>Ool00`00O1aoo`1`Ool0 00moo`03001oogoo08ioo`04001oo`6O0In=Ool00`00O1aoo`1`Ool000moo`03001oogoo08ioo`05 001oogooOol1W`2Ool00`00Oomoo`0:Ool00`6OOomoo`21Ool00`00Oomoo`03Ool00g`L Oomoo`1ZOol000moo`03001oogoo08ioo`03001oogoo00]oo`81Wh5oo`03001oogoo00Aoo`03O1ao ogoo06Uoo`003goo00<007ooOol0SWoo00<007ooOol03Goo00<1WgooOol0OWoo00<007ooOol017oo 00=l77ooOol0JGoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0>Ool20ImnOol00`00Oomoo`05Ool0 0g`LOomoo`1XOol000moo`03001oogoo08ioo`03001oogoo011oo`81Wgaoo`03001oogoo00Ioo`03 O1aoogoo06Moo`003goo00<007ooOol0SWoo00<007ooOol04Woo00<1WgooOol0NGoo00<007ooOol0 1goo00=l77ooOol0IWoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0COol20ImiOol00`00Oomoo`07 Ool00g`LOomoo`1VOol000moo`03001oogoo08ioo`03001oogoo01Eoo`81WgMoo`03001oogoo00Qo o`03O1aoogoo06Eoo`003goo00<007ooOol0SWoo00<007ooOol05goo0P6OMGoo00<007ooOol02Goo 00=l77ooOol0I7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0IOol20ImcOol00`00Oomoo`0:Ool0 0g`LOomoo`1SOol000moo`03001oogoo08ioo`03001oogoo01]oo`030Imoogoo071oo`03001oogoo 00]oo`03O1aoogoo069oo`003goo00<007ooOol0SWoo00<007ooOol077oo0P6OL7oo00<007ooOol0 37oo00=l77ooOol0HGoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0NOol00`6OOomoo`1]Ool00`00 Oomoo`0=Ool00g`LOomoo`1POol000moo`03001oogoo08ioo`03001oogoo01moo`81Wfeoo`03001o ogoo00ioo`03O1aoogoo05moo`003goo00<007ooOol0SWoo00<007ooOol08Goo0P6OJgoo00<007oo Ool03goo00=l77ooOol0GWoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0SOol00`6OOomoo`1XOol0 0`00Oomoo`0?Ool00g`LOomoo`1NOol000moo`03001oogoo08ioo`03001oogoo02Aoo`81WfQoo`03 001oogoo011oo`03O1aoogoo05eoo`003goo00<007ooOol0SWoo00<007ooOol09Woo00<1WgooOol0 IGoo00<007ooOol04Goo00=l77ooOol0G7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0WOol20ImU Ool00`00Oomoo`0BOol00g`LOomoo`1KOol000moo`03001oogoo08ioo`03001oogoo02Uoo`81Wf=o o`03001oogoo01=oo`03O1aoogoo05Yoo`003goo00<007ooOol0SWoo00<007ooOol0:goo00<1Wgoo Ool0H7oo00<007ooOol057oo00=l77ooOol0FGoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0/Ool2 0ImPOol00`00Oomoo`0EOol00g`LOomoo`1HOol000moo`03001oogoo08ioo`03001oogoo02ioo`03 0Imoogoo05eoo`03001oogoo01Ioo`03O1aoogoo05Moo`003goo00<007ooOol0SWoo00<007ooOol0 ;goo0P6OGGoo00<007ooOol05goo0W`LEgoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0aOol20ImK Ool00`00Oomoo`0IOol00g`LOomoo`1DOol000moo`03001oogoo08ioo`03001oogoo03=oo`030Imo ogoo05Qoo`03001oogoo01Yoo`03O1aoogoo05=oo`003goo00<007ooOol0SWoo00<007ooOol0=7oo 0P6OF7oo00<007ooOol06goo00=l77ooOol0DWoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0fOol0 0`6OOomoo`1EOol00`00Oomoo`0LOol00g`LOomoo`1AOol000moo`03001oogoo08ioo`03001oogoo 03Moo`030Imoogoo05Aoo`03001oogoo01eoo`03O1aoogoo051oo`003goo00<007ooOol0SWoo00<0 07ooOol0>7oo0P6OE7oo00<007ooOol07Woo00=l77ooOol0Cgoo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`0jOol20ImBOol00`00Oomoo`0OOol00g`LOomoo`1>Ool000moo`03001oogoo08ioo`03001o ogoo03aoo`81We1oo`03001oogoo021oo`9l74ioo`003goo00<007ooOol0SWoo00<007ooOol0?Woo 0P6OCWoo00<007ooOol08Woo00=l77ooOol0Bgoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`10Ool0 0`6OOomoo`1;Ool00`00Oomoo`0SOol00g`LOomoo`1:Ool000moo`03001oogoo08ioo`03001oogoo 045oo`030Imoogoo04Yoo`03001oogoo02Aoo`03O1aoogoo04Uoo`003goo00<007ooOol0SWoo00<0 07ooOol0@Woo0P6OBWoo00<007ooOol09Goo00=l77ooOol0B7oo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`14Ool20Im8Ool00`00Oomoo`0VOol00g`LOomoo`17Ool000moo`03001oogoo08ioo`03001o ogoo04Ioo`81WdIoo`03001oogoo02Moo`03O1aoogoo04Ioo`003goo00<007ooOol0SWoo00<007oo Ool0B7oo00<1WgooOol0@goo00<007ooOol0:7oo0W`LAWoo000?Ool00`00Oomoo`2>Ool00`00Oomo o`19Ool20Im3Ool00`00Oomoo`0ZOol00g`LOomoo`13Ool000moo`03001oogoo08ioo`03001oogoo 04]oo`030Imoogoo041oo`03001oogoo02]oo`9l74=oo`003goo00<007ooOol0SWoo00<007ooOol0 C7oo0P6O@7oo00<007ooOol0;Goo0W`L@Goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1>Ool20Iln Ool00`00Oomoo`0_Ool2O1`oOol000moo`03001oogoo08ioo`03001oogoo051oo`030Imoogoo03]o o`03001oogoo035oo`9l73eoo`003goo00<007ooOol0SWoo00<007ooOol0DGoo0P6O>goo00<007oo Ool0goo000?Ool00`00Oomoo`2;OomI00000`6O0000000=000[Ool00`00Oomoo`0eOol2 O1`iOol000moo`03001oogoo08ioo`03001oogoo05Aoo`81WcQoo`03001oogoo03Moo`9l73Moo`00 3goo00<007ooOol0SWoo00<007ooOol0EWoo0P6O=Woo00<007ooOol0>Goo0g`L=7oo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`1HOol00`6OOomoo`0cOol00`00Oomoo`0lOol2O1`bOol000moo`03001o ogoo08ioo`03001oogoo05Uoo`81Wc=oo`03001oogoo03ioo`=l72moo`003goo00<007ooOol0SWoo 00<007ooOol0Fgoo00<1WgooOol0<7oo00<007ooOol0@Goo17`L:goo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`1LOol20Il]Oom;0004O1`F000017`L000000003Goo000?OomS0ol^Ool00`00Oomoo`1N Ool20Il^Ool00`00Oomoo`19OolFO1`AOol000moo`03001oogoo08ioo`03001oogoo08ioo`03001o ogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo003oOonUOol00001 \ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -0.108542, 0.0101328, 0.0343516}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -9.30672, 0.0101298, 0.163903}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -3.99048, 0.0101328, 0.0633428}}], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.24329 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 0 1 1 r .004 w .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 .4 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 0 .9 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`00Oomoo`2>Ool00`00Oomoo`1`Ool0 00moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<0 07ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1` Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo 00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomo o`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0 SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00 Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007oo Ool0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool0 0`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<0 07ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2> Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo 00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomo o`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`00 3goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071o o`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo 071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2> Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001o ogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00Oomo o`2;Ool3001S0Il3000XOol3001SO1`3000=Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03 001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08io o`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000?Ool0 0`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo 08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo000? Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001o ogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0L7oo 000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03 001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0 L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08io o`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007oo Ool0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo 08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<0 07ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03001o ogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo 00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03 001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0 SWoo00<007ooOol0L7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000mo o`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007oo Ool0SWoo00<007ooOol0L7oo000?OomS0ol^Ool00`00Oomoo`2>Ool00`00Oomoo`1`Ool000moo`03 001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo00<007ooOol0 SWoo00<007ooOol0L7oo003oOonUOol00001\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -0.125333, 0.0101328, 0.0396657}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -1.10328, 0.0101298, 0.0327806}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -1.10361, 0.0101328, 0.0327904}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[CellGroupData[{ Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 28.0927 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 1 .9 0 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 6.95113 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .60332 m .02499 .60332 L .02605 .60331 L .02729 .6033 L .02846 .60329 L .03053 .60325 L .03279 .6032 L .03527 .60313 L .0379 .60303 L .04262 .60281 L .05205 .60219 L .06244 .60122 L .07293 .59995 L .0842 .59828 L .10458 .59445 L .1458 .58377 L .18551 .57009 L .22371 .55414 L .26435 .53451 L .30348 .51335 L .34506 .48876 L .38513 .46332 L .42368 .43746 L .46468 .40874 L .50417 .38011 L .54214 .35187 L .58257 .32121 L .62148 .29128 L .66284 .25916 L .70268 .22803 L .74101 .19801 L .78179 .16606 L .82106 .13534 L .85881 .10588 L .89901 .07459 L .9377 .04455 L .97619 .01472 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 5.48238 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s .68 1 0 r .004 w .02381 .60332 m .06244 .52293 L .10458 .44386 L .14415 .37737 L .18221 .32016 L .22272 .2661 L .26171 .22036 L .30316 .17806 L .34309 .14307 L .3815 .11436 L .42237 .08873 L .46172 .06846 L .49955 .05267 L .53984 .03946 L .57861 .02987 L .59832 .02606 L .61984 .02263 L .64066 .01998 L .65954 .01811 L .67922 .01665 L .69002 .01604 L .70019 .01558 L .70995 .01523 L .71529 .01508 L .72027 .01497 L .72487 .01488 L .72907 .01482 L .73374 .01477 L .73631 .01475 L .73748 .01474 L .73874 .01473 L .73997 .01473 L .74111 .01472 L .74219 .01472 L .74333 .01472 L .74458 .01472 L .74575 .01472 L .74703 .01472 L .74774 .01472 L .74839 .01472 L .74971 .01472 L .75093 .01472 L .75226 .01473 L .75367 .01474 L .75607 .01475 L .75865 .01477 L .76318 .01482 L .76742 .01488 L .77707 .01504 L .7872 .01527 L Mistroke .79824 .01557 L .81835 .01624 L .85904 .01787 L .89823 .01946 L .91824 .02016 L .92876 .02048 L .93986 .02075 L .94889 .02093 L .95367 .02101 L .95879 .02108 L .96351 .02113 L .9678 .02116 L .96986 .02117 L .97095 .02117 L .97211 .02118 L .97312 .02118 L .97423 .02118 L .97524 .02118 L .97619 .02118 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg7oo0UOP?7oo000?Ool00`00Oomoo`02Ool00gn0Oomo o`26Ool00`00Oomoo`1QOol00giPOomoo`0WOol00`00Oomoo`0dOol4En0nOol000moo`03001oogoo 00=oo`9oP8Ioo`03001oogoo061oo`03OV1oogoo02Qoo`03001oogoo035oo`=Gh49oo`003goo00<0 07ooOol01Goo00=oP7ooOol0Pgoo00<007ooOol0GWoo0WiP:goo00<007ooOol0;goo0UOPAGoo000? Ool00`00Oomoo`06Ool2Oh23Ool00`00Oomoo`1MOol00giPOomoo`0[Ool00`00Oomoo`0]Ool2En17 Ool000moo`03001oogoo00Qoo`9oP85oo`03001oogoo05aoo`03OV1oogoo02aoo`03001oogoo02]o o`9Gh4Uoo`003goo00<007ooOol02Woo00=oP7ooOol0OWoo00<007ooOol0FWoo0WiP;goo00<007oo Ool0:Goo0UOPBgoo000?Ool00`00Oomoo`0;Ool00gn0Oomoo`1mOol00`00Oomoo`1IOol00giPOomo o`0_Ool00`00Oomoo`0WOol2En1=Ool000moo`03001oogoo00aoo`9oP7eoo`03001oogoo05Qoo`03 OV1oogoo031oo`03001oogoo02Eoo`9Gh4moo`003goo00<007ooOol03Woo00=oP7ooOol0NWoo00<0 07ooOol0Egoo00=nH7ooOol0Goo00<007ooOol07Goo00=Gh7ooOol0EWoo000?Ool00`00Oomoo`0I Ool2Oh1`Ool00`00Oomoo`1=Ool2OV0lOol00`00Oomoo`0LOol00eOPOomoo`1GOol000moo`03001o ogoo01]oo`03Oh1oogoo06eoo`03001oogoo04aoo`03OV1oogoo03aoo`03001oogoo01]oo`03En1o ogoo05Qoo`003goo00<007ooOol077oo0Wn0KGoo00<007ooOol0Bgoo00=nH7ooOol0?Goo00<007oo Ool06Goo0UOPFgoo000?Ool00`00Oomoo`0NOol2Oh1[Ool00`00Oomoo`1:Ool00giPOomoo`0nOol0 0`00Oomoo`0HOol00eOPOomoo`1KOol000moo`03001oogoo021oo`9oP6Uoo`03001oogoo04Qoo`9n H45oo`03001oogoo01Moo`03En1oogoo05aoo`003goo00<007ooOol08Woo0Wn0Igoo00<007ooOol0 Agoo00=nH7ooOol0@Goo00<007ooOol05Woo00=Gh7ooOol0GGoo000?Ool00`00Oomoo`0TOol00gn0 Oomoo`1TOol00`00Oomoo`16Ool00giPOomoo`12Ool00`00Oomoo`0EOol00eOPOomoo`1NOol000mo o`03001oogoo02Eoo`03Oh1oogoo06=oo`03001oogoo04Eoo`03OV1oogoo04=oo`03001oogoo01Eo o`03En1oogoo05ioo`003goo00<007ooOol09Woo0Wn0Hgoo00<007ooOol0A7oo00=nH7ooOol0A7oo 00<007ooOol057oo00=Gh7ooOol0Ggoo000?Ool00`00Oomoo`0XOol00gn0Oomoo`1POol00`00Oomo o`13Ool00giPOomoo`15Ool00`00Oomoo`0COol00eOPOomoo`1POol000moo`03001oogoo02Uoo`9o P61oo`03001oogoo045oo`9nH4Qoo`03001oogoo019oo`03En1oogoo065oo`003goo00<007ooOol0 :goo0Wn0GWoo00<007ooOol0?goo0WiPBWoo00<007ooOol04Woo00=Gh7ooOol0HGoo000?Ool00`00 Oomoo`0]Ool2Oh1LOol00`00Oomoo`0nOol00giPOomoo`1:Ool00`00Oomoo`0AOol00eOPOomoo`1R Ool000moo`03001oogoo02moo`9oP5Yoo`03001oogoo03eoo`03OV1oogoo04]oo`03001oogoo011o o`03En1oogoo06=oo`003goo00<007ooOol0goo0WiPCWoo 00<007ooOol047oo00=Gh7ooOol0Hgoo000?Ool00`00Oomoo`0bOol00gn0Oomoo`1FOol00`00Oomo o`0jOol00giPOomoo`1>Ool00`00Oomoo`0?Ool00eOPOomoo`1TOol000moo`03001oogoo03=oo`9o P5Ioo`03001oogoo03Uoo`03OV1oogoo04moo`03001oogoo00ioo`03En1oogoo06Eoo`003goo00<0 07ooOol0=Goo00=oP7ooOol0Dgoo00<007ooOol0>7oo00=nH7ooOol0D7oo00<007ooOol03Goo00=G h7ooOol0IWoo000?Ool00`00Oomoo`0fOol2Oh1COol00`00Oomoo`0gOol00giPOomoo`1AOol00`00 Oomoo`0Woo0Wn0Cgoo00<007oo Ool0=7oo0WiPEGoo00<007ooOol02goo00=Gh7ooOol0J7oo000?Ool00`00Oomoo`0lOol2Oh1=Ool0 0`00Oomoo`0bOol2OV1GOol00`00Oomoo`0:Ool00eOPOomoo`1YOol000moo`03001oogoo03ioo`03 Oh1oogoo04Yoo`03001oogoo035oo`03OV1oogoo05Moo`03001oogoo00Uoo`03En1oogoo06Yoo`00 3goo00<007ooOol0?goo00=oP7ooOol0BGoo00<007ooOol0<7oo00=nH7ooOol0F7oo00<007ooOol0 2Goo00=Gh7ooOol0JWoo000?Ool00`00Oomoo`10Ool2Oh19Ool00`00Oomoo`0^Ool2OV1KOol00`00 Oomoo`08Ool00eOPOomoo`1[Ool000moo`03001oogoo049oo`03Oh1oogoo04Ioo`03001oogoo02eo o`03OV1oogoo05]oo`03001oogoo00Qoo`03En1oogoo06]oo`003goo00<007ooOol0@goo0Wn0AWoo 00<007ooOol0;7oo00=nH7ooOol0G7oo00<007ooOol01goo00=Gh7ooOol0K7oo000?Ool00`00Oomo o`15Ool2Oh14Ool00`00Oomoo`0ZOol2OV1OOol00`00Oomoo`07Ool00eOPOomoo`1/Ool000moo`03 001oogoo04Moo`9oP49oo`03001oogoo02Uoo`03OV1oogoo05moo`03001oogoo00Ioo`03En1oogoo 06eoo`003goo00<007ooOol0BGoo0Wn0@7oo00<007ooOol09goo0WiPHWoo00<007ooOol01Woo00=G h7ooOol0KGoo000?Ool00`00Oomoo`1;Ool00gn0Oomoo`0mOol00`00Oomoo`0UOol2OV1TOol00`00 Oomoo`05Ool00eOPOomoo`1^Ool000moo`03001oogoo04aoo`03Oh1oogoo03aoo`03001oogoo02Ao o`03OV1oogoo06Aoo`03001oogoo00Eoo`03En1oogoo06ioo`003goo00<007ooOol0CGoo0Wn0?7oo 00<007ooOol08goo00=nH7ooOol0IGoo00<007ooOol017oo00=Gh7ooOol0Kgoo000?Ool00`00Oomo o`1?Ool00gn0Oomoo`0iOol00`00Oomoo`0QOol2OV1XOol00`00Oomoo`03Ool00eOPOomoo`1`Ool0 00moo`03001oogoo051oo`9oP3Uoo`03001oogoo01moo`9nH6Yoo`03001oogoo00=oo`03En1oogoo 071oo`003goo00<007ooOol0DWoo0Wn0=goo00<007ooOol07Goo0WiPK7oo00<007ooOol00Woo00=G h7ooOol0LGoo000?Ool00`00Oomoo`1DOol00gn0Oomoo`0dOol00`00Oomoo`0KOol2OV1^Ool00`00 Oomoo`02Ool00eOPOomoo`1aOol000moo`03001oogoo05Eoo`9oP3Aoo`03001oogoo01Yoo`03OV1o ogoo06ioo`05001oogooOomGh01dOol000moo`03001oogoo05Moo`9oP39oo`03001oogoo01Qoo`9n H75oo`05001oogooOomGh01dOol000moo`03001oogoo05Uoo`03Oh1oogoo02moo`03001oogoo01Mo o`03OV1oogoo075oo`04001oogooEn1eOol000moo`03001oogoo05Yoo`9oP2moo`03001oogoo01Eo o`9nH7Aoo`04001oogooEn1eOol000moo`03001oogoo05aoo`03Oh1oogoo02aoo`03001oogoo01=o o`9nH7Ioo`03001ooeOP07Ioo`003goo00<007ooOol0GGoo0Wn0;7oo00<007ooOol04Goo0WiPN7oo 00<007ooEn00MWoo000?Ool00`00Oomoo`1OOol2Oh0ZOol00`00Oomoo`0=Ool4OV1jOol00`00En1o o`1fOol000moo`03001oogoo065oo`03Oh1oogoo02Moo`03001oogoo00Uoo`AnH7ioo`03001Gh7oo 07Ioo`003goo00<007ooOol0HWoo0Wn09goo00<007ooOol01Woo0giPPWoo00=Gh7ooOol0MWoo000? Ool00`00Oomoo`1TOol2Oh0ROol30009OV1S000POol200000eOP0000001Y000=Ool000moo`03001o ogoo08]oo`03001oogoo08]oo`03001oogoo07Ioo`003goo00<007ooOol0Rgoo00<007ooOol0Rgoo 00<007ooOol0MWoo003oOonUOol00001\ \>"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -0.00109323, 0.00959613, 0.000325322}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.0890957, 0.00959613, 0.00131477}, {{297.063, 406.563}, \ {69.3125, 1.6875}} -> {-2.87604, -0.112965, 0.00959613, 0.00166701}}], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 24.329 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .9 0 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 7.02317 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 7.02316 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s .68 1 0 r .004 w .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgWoo0Wn0Cgoo00<007ooOol0>goo00=nH7ooOol0CGoo00<007ooOol0 MWoo000?Ool00`00Oomoo`0lOol2Oh1=Ool00`00Oomoo`0lOol2OV1=Ool00`00Oomoo`1fOol000mo o`03001oogoo03ioo`03Oh1oogoo04Yoo`03001oogoo03ioo`03OV1oogoo04Yoo`03001oogoo07Io o`003goo00<007ooOol0?goo00=oP7ooOol0BGoo00<007ooOol0?goo00=nH7ooOol0BGoo00<007oo Ool0MWoo000?Ool00`00Oomoo`10Ool2Oh19Ool00`00Oomoo`10Ool2OV19Ool00`00Oomoo`1fOol0 00moo`03001oogoo049oo`03Oh1oogoo04Ioo`03001oogoo049oo`9nH4Moo`03001oogoo07Ioo`00 3goo00<007ooOol0@goo0Wn0AWoo00<007ooOol0A7oo0WiPAGoo00<007ooOol0MWoo000?Ool00`00 Oomoo`15Ool2Oh14Ool00`00Oomoo`16Ool2OV13Ool00`00Oomoo`1fOol000moo`03001oogoo04Mo o`9oP49oo`03001oogoo04Qoo`03OV1oogoo041oo`03001oogoo07Ioo`003goo00<007ooOol0BGoo 0Wn0@7oo00<007ooOol0BGoo0WiP@7oo00<007ooOol0MWoo000?Ool00`00Oomoo`1;Ool00gn0Oomo o`0mOol00`00Oomoo`1;Ool00giPOomoo`0mOol00`00Oomoo`1fOol000moo`03001oogoo04aoo`03 Oh1oogoo03aoo`03001oogoo04aoo`03OV1oogoo03aoo`03001oogoo07Ioo`003goo00<007ooOol0 CGoo0Wn0?7oo00<007ooOol0CGoo0WiP?7oo00<007ooOol0MWoo000?Ool00`00Oomoo`1?Ool00gn0 Oomoo`0iOol00`00Oomoo`1?Ool00giPOomoo`0iOol00`00Oomoo`1fOol000moo`03001oogoo051o o`9oP3Uoo`03001oogoo051oo`9nH3Uoo`03001oogoo07Ioo`003goo00<007ooOol0DWoo0Wn0=goo 00<007ooOol0DWoo0WiP=goo00<007ooOol0MWoo000?Ool00`00Oomoo`1DOol00gn0Oomoo`0dOol0 0`00Oomoo`1DOol00giPOomoo`0dOol00`00Oomoo`1fOol000moo`03001oogoo05Eoo`9oP3Aoo`03 001oogoo05Eoo`9nH3Aoo`03001oogoo07Ioo`003goo00<007ooOol0Egoo0Wn0"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -0.0254559, 0.00959613, 0.000375649}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.0881818, 0.00959613, 0.00130129}, {{297.063, 406.563}, \ {69.3125, 1.6875}} -> {-2.87604, -0.00437292, 0.00959613, 0.00130129}}] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.8660254037844386`, 0.5`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, \(-0.08467741935483875`\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = 0.02 \(\@\( xDiag . xDiag\)\) \((e\_2)\)\)], "Input"], Cell[BoxData[ \({0, 0.0391346490870614`}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.4", "0"}, {"0", "2"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{2.613835565298214`, 1.1713548387096775`}, {0.9330127018922193`, 0.24679593940964203`}}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44814 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160046 0.364361 0.134145 0.364361 [ [ 0 0 0 0 ] [ 1 .44814 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01067 m .02381 .43747 L .97619 .43747 L .97619 .01067 L F 0 g .008 w .02381 .01067 Mdot .97619 .43747 Mdot 2 Mabswid [ ] 0 setdash .16005 .13415 m .52441 .13415 L s .52441 .13415 m .83995 .31633 L s .5 Mabswid .25114 .11593 m .25114 .15236 L s .34223 .11593 m .34223 .15236 L s .43332 .11593 m .43332 .15236 L s .6124 .16391 m .59419 .19547 L s .69129 .20946 m .67307 .24101 L s .77018 .255 m .75196 .28656 L s 0 0 0 r .34223 .13415 m .4151 .13415 L s .39081 .14629 m .4151 .13415 L s .39081 .122 m .4151 .13415 L s .34223 .13415 m .34223 .20702 L s .33008 .18273 m .34223 .20702 L s .35437 .18273 m .34223 .20702 L s .68218 .22524 m .74529 .26167 L s .71818 .26004 m .74529 .26167 L s .73033 .23901 m .74529 .26167 L s .68218 .22524 m .64574 .28834 L s .64737 .26124 m .64574 .28834 L s .66841 .27338 m .64574 .28834 L s 0 g 1 Mabswid .12968 .13415 m .19041 .13415 L s .16005 .0886 m .16005 .17969 L s newpath .16005 .13415 .01457 0 365.73 arc s .49404 .13415 m .55477 .13415 L s .52441 .0886 m .52441 .17969 L s newpath .52441 .13415 .01457 0 365.73 arc s .87032 .31633 m .80959 .31633 L s .83995 .36187 m .83995 .27078 L s newpath .83995 .31633 .01457 0 365.73 arc s 1 0 0 r .5 Mabswid .16005 .13415 m .16051 .13415 L .16092 .13414 L .16141 .13414 L .16186 .13414 L .16267 .13414 L .16355 .13414 L .16452 .13414 L .16555 .13413 L .16739 .13412 L .17108 .13409 L .17514 .13404 L .17923 .13397 L .18363 .13388 L .19159 .13368 L .2077 .13312 L .22321 .1324 L .23812 .13157 L .254 .13054 L .26928 .12943 L .28553 .12814 L .30118 .12681 L .31623 .12545 L .33225 .12395 L .34767 .12245 L .3625 .12096 L .37829 .11936 L .39349 .11779 L .40965 .11611 L .42521 .11447 L .44018 .1129 L .45611 .11123 L .47145 .10962 L .48619 .10807 L .5019 .10643 L .51701 .10486 L .53204 .10329 L s .53204 .10329 m .54453 .11193 L .55816 .12136 L .57095 .13021 L .58325 .13872 L .59635 .14778 L .60896 .15651 L .62236 .16578 L .63527 .17471 L .64769 .1833 L .6609 .19244 L .67362 .20125 L .68585 .20971 L .69888 .21872 L .71141 .22739 L .72474 .23661 L .73758 .2455 L .74993 .25404 L .76307 .26313 L .77572 .27188 L .78916 .28119 L .80212 .29015 L .81458 .29877 L .82784 .30794 L .83995 .31633 L s .25177 .11239 m .25432 .14882 L s .34421 .10439 m .34787 .14082 L s .43709 .0948 m .441 .13124 L s .61945 .14154 m .59859 .17156 L s .69643 .1948 m .67557 .22482 L s .77341 .24805 m .75254 .27808 L s 0 g 1 Mabswid .12968 .13415 m .19041 .13415 L s .16005 .0886 m .16005 .17969 L s newpath .16005 .13415 .01457 0 365.73 arc s .50168 .10329 m .56241 .10329 L s .53204 .05775 m .53204 .14884 L s newpath .53204 .10329 .01457 0 365.73 arc s .87032 .31633 m .80959 .31633 L s .83995 .36187 m .83995 .27078 L s newpath .83995 .31633 .01457 0 365.73 arc s 0 0 m 1 0 L 1 .44814 L 0 .44814 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 129.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooi5cW003001cW7>L07ac W0Uoo`001gooTG>L00<007>LLi`0O7>L2Goo0007OonALi`00`00LiacW01lLi`9Ool000Mooi5cW003 001cW7>L07acW0Uoo`001gooTG>L00<007>LLi`0O7>L2Goo0007OonALi`00`00LiacW01lLi`9Ool0 00Mooi5cW003001cW7>L07acW0Uoo`001gooTG>L00<007>LLi`0O7>L2Goo0007OonALi`00`00Liac W01lLi`9Ool000MoobMcW003001cW7>L06EcW0@007ecW0Uoo`001goo9g>L00<007>LLi`0I7>L0P00 00=cW000Li`00P00Ng>L2Goo0007OolWLi`00`00LiacW01L001c W7>L0000Ng>L2Goo0007OolWLi`00`00LiacW01L00000g>L 00<007>LLi`0N7>L2Goo0007OolWLi`00`00LiacW00aLi`00g`0LiacW00HLi`00g`0LiacW00?Li`C 001eLi`9Ool000MoobMcW003001cW7>L035cW003O01cW7>L01QcW003O01cW7>L00YcW0Ul0006Li`0 07>L001cW0000W`000=cW000Li`0NG>L2Goo0007OolWLi`00`00LiacW00aLi`00g`0LiacW00HLi`0 17`0LiacW7>L2G`02W>L00D007>L001cW000009cW003001l07>L07UcW0Uoo`001goo9g>L00<007>L Li`05g>L00=l07>LLi`067>L00=l07>LLi`04W>L2G`057>L0P0000=cW000Li`00P0000=cW7`0Li`0 N7>L2Goo0007OolWLi`00`00LiacW00GLi`00g`0LiacW00GLi`00`00O01cW00:Li`9O004Li`00`00 Lial000GLi`40004Li`2O01gLi`9Ool000MoobIcW0<001QcW003O01cW7>L01McW0el0003Li`007>L 00YcW003001cW7`001IcW0@000McW003O01cW7>L07AcW0Uoo`001goo97>L0P0000=cW000Li`00P00 5W>L00=l07>LLi`03W>L2G`000<007`0Li`037>L0P002G>L00<007>LO00057>L0P0000=cW000Li`0 0P001g>L00=l07>LLi`0Lg>L2Goo0007OolTLi`01000LiacW0000W>L00<007>LLi`057>L00Al07>L LiacW0el00UcW003001l07>L00icW08000McW003001cW7`001AcW005001cW7>L001cW0020008Li`0 0g`0LiacW01bLi`9Ool000Moob=cW005001cW7>LLi`00003Li`00`00LiacW005Li`BO00FLi`00`00 O01cW00@Li`20005Li`00`00Lial000CLi`02@00LiacW7>L001cW000Li`00008Li`00g`0LiacW01a Li`9Ool000MooaicW1<0009l00l00003O000000001P00003O000000003T000AcW09l075cW0Uoo`00 1goo8g>L00<007>LLi`0700000=l00000000600000=l00000000=0002g>L0W`0Kg>L2Goo0007OolS Li`01@00LiacW7>L00000W>L00<007>LLi`057>L00<007`0Li`05g>L00<007>LO0003G>L0P0027>L 00<007>LLi`04g>L00H007>LLiacW000Li`4000L008001IcW003001l07>L01McW003001cW7>L00]cW08000YcW003001c W7>L01AcW0800003Li`007>L00H000]cW09l00EcW003O01cW7>L06AcW0Uoo`001goo9W>L0`0067>L 00<007`0Li`05g>L00<007>LLi`05g>L00<007>LLi`05W>L10000W>L1@002g>L00El07>LLiacW7`0 06McW0Uoo`001goo9g>L00<007>LLi`05g>L00<007>LLi`05g>L00<007>LLi`05g>L00<007>LLi`0 5g>L00<007>LLi`017>L10002g>L0W`000=cW7`0Li`0IW>L2Goo0007OolWLi`00`00LiacW00aLi`0 0`00LiacW00aLi`00`00LiacW006Li`4000;Li`00g`0LiacW01VLi`9Ool000MoobMcW003001cW7>L 035cW003001cW7>L035cW003001cW7>L00McW0D000QcW003O01cW7`006McW0Uoo`001goo9g>L00<0 07>LLi`0L00<007>LLi`0L00<007>LLi`02G>L1@001G>L00Al07>LLi`0009l06EcW0Uoo`00 1goo9g>L00<007>LLi`0L00<007>LLi`0L00<007>LLi`02g>L100017>L00=l07>L00000g>L 00=l07>LLi`0HW>L2Goo0007OolWLi`00`00LiacW00aLi`00`00LiacW00aLi`00`00LiacW00=Li`4 00001G>LO01cW7>L000017>L0W`0HW>L2Goo0007OolWLi`00`00LiacW00aLi`00`00LiacW00aLi`0 0`00LiacW00>Li`500000g>L001cW006Li`2O01PLi`9Ool000MoobMcW003001cW7>L035cW003001c W7>L035cW003001cW7>L011cW0D000UcW003O01cW7>L05ecW0Uoo`001goo9g>L00<007>LLi`0L 00<007>LLi`0L00<007>LLi`04W>L10002G>L00=l07>LLi`0G7>L2Goo0007OomGLi`01@00Liac W7>L00000W>L00<007>LLi`0A7>L1@0027>L00=l07>LLi`0Fg>L2Goo0007OomHLi`01000LiacW000 0W>L00<007>LLi`0@g>L00<007>LLi`01@001g>L0W`0Fg>L2Goo0007OomHLi`01P00LiacW000Li`0 04IcW003001cW7>L009cW0@000QcW09l05UcW0Uoo`001gooFG>L00D007>L001cW00004EcW003001c W7>L00EcW0@000QcW003O01cW7>L00IcW003O01cW7>L04ecW0Uoo`001gooFG>L00@007>L000004mc W0D000McW09l00EcW003O01cW7>L04icW0Uoo`001gooFW>L0`00DG>L1@001g>L00=l07>LLi`00W>L 00=l07>LLi`0CW>L2Goo0007OomJLi`2001DLi`40007Li`2O0000g>LO01cW01@Li`9Ool000Mooe]c W003001cW7>L05AcW0@000McW003O01cW000051cW0Uoo`001goo/g>L1@001G>L0W`0DG>L2Goo0007 OoneLi`50002Li`00g`0Li`00002O01?Li`9Ool000MookMcW0@00003O01cW00000=cW003O01cW7>L 04acW0Uoo`001goo^G>L0P0000=l0000Li`017>L0W`0C7>L2Goo0007OonjLi`00g`0000000020005 Li`00g`0LiacW019Li`9Ool000Mook]cW0D000EcW003O01cW7>L04QcW0Uoo`001goo^W>L0P000W>L 100017>L0W`0B7>L2Goo0007OonjLi`00`00LiacW002Li`50004Li`00g`0LiacW015Li`9Ool000Mo okUcW08000IcW0D000=cW003O00007>L04AcW0Uoo`001goo^G>L00<007>LLi`01g>L10000g>L0W`0 A7>L2Goo0007OoniLi`00`00LiacW009Li`40002Li`00`00O01cW008Li`00g`0LiacW00gLi`9Ool0 00MookQcW003001cW7>L00]cW0D00004Li`007`0O006Li`00g`0LiacW00hLi`9Ool000MookQcW003 001cW7>L00ecW0H00003Lial07>L00AcW003O01cW7>L03QcW0Uoo`001goo]g>L00<007>LLi`047>L 10000W>L00El07>LLiacW7`003]cW0Uoo`001goo/W>L00D007>LLiacW00000mcW0X00005Lial07`0 O000000kLi`9Ool000Mook9cW005001cW7>LLi`0000FLi`500000g>LO01cW00kLi`9Ool000Mook9c W004001cW7>L000ILi`3000017`0001l07`0>W>L2Goo0007OonbLi`01000LiacW0006g>L00El0000 000007>L009l015cW003001cW7>L02AcW0Uoo`001goo/W>L00<007>L00000g>L00<007>LLi`05W>L 00=l000000000`0000=cW7`0Li`03g>L00<007>LLi`097>L2Goo0007OonbLi`01000Li`007>L0P00 67>L00Al0000LiacW0D0009l00icW003001cW7>L02AcW0Uoo`001goo/W>L0P0000=cW000Li`06W>L 00<007>LLi`00W>L100000=cW7`0Li`037>L00<007>LLi`097>L2Goo0007OonbLi`3000KLi`00`00 LiacW005Li`40002O00;Li`00`00LiacW00TLi`9Ool000Mook9cW003001cW7>L02AcW0D00003O01c W7>L00QcW003001cW7>L02AcW0Uoo`001goofg>L100000=l07>LLi`01g>L00<007>LLi`097>L2Goo 0007OooMLi`30002O007Li`00`00LiacW00TLi`9Ool000MoommcW0<00003O01cW7>L00AcW003001c W7>L02AcW0Uoo`001gooh7>L0`000W`00g>L0`009G>L2Goo0007OooRLi`300001W`0000007>L001c W08002=cW0Uoo`001gooi7>L0`0000=l07>L00000W>L00<007>LLi`08G>L2Goo0007OooULi`30000 0g`0001cW002Li`00`00LiacW00PLi`9Ool000Moon1cW1<001ecW0Uoo`001gooiG>L00D007>LLiac W00000=cW003001cW7>L021cW0Uoo`001gooiG>L00D007>LLiacW000009cW003001cW7>L025cW0Uo o`001gooiW>L0P0000=cW000Li`00P008g>L2Goo0007OooXLi`3000ULi`9Ool000MoonUcW003001c W7>L02AcW0Uoo`001goojG>L00<007>LLi`097>L2Goo0007OooYLi`00`00LiacW00TLi`9Ool000Mo onUcW003001cW7>L02AcW0Uoo`001goojG>L00<007>LLi`097>L2Goo0007OooYLi`00`00LiacW00T Li`9Ool000MoonUcW003001cW7>L02AcW0Uoo`001goojG>L00<007>LLi`097>L2Goo0007OooYLi`0 0`00LiacW00TLi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`@Li`00`00Oomoo`07Ool00?mooaMoo`03001oogoo00Moo`00ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {128.063, 0}} -> {-0.445198, -0.368171, \ 0.00960427, 0.00960427}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44814 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160046 0.364361 0.134145 0.364361 [ [ 0 0 0 0 ] [ 1 .44814 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01067 m .02381 .43747 L .97619 .43747 L .97619 .01067 L F 0 g .008 w .02381 .01067 Mdot .97619 .43747 Mdot 2 Mabswid [ ] 0 setdash .16005 .13415 m .52441 .13415 L s .52441 .13415 m .83995 .31633 L s .5 Mabswid .25114 .11593 m .25114 .15236 L s .34223 .11593 m .34223 .15236 L s .43332 .11593 m .43332 .15236 L s .6124 .16391 m .59419 .19547 L s .69129 .20946 m .67307 .24101 L s .77018 .255 m .75196 .28656 L s 0 0 0 r .34223 .13415 m .4151 .13415 L s .39081 .14629 m .4151 .13415 L s .39081 .122 m .4151 .13415 L s .34223 .13415 m .34223 .20702 L s .33008 .18273 m .34223 .20702 L s .35437 .18273 m .34223 .20702 L s .68218 .22524 m .74529 .26167 L s .71818 .26004 m .74529 .26167 L s .73033 .23901 m .74529 .26167 L s .68218 .22524 m .64574 .28834 L s .64737 .26124 m .64574 .28834 L s .66841 .27338 m .64574 .28834 L s 0 g 2 Mabswid .16005 .09771 m .16005 .17058 L s 1 g .52441 .13415 m .52441 .13415 .01457 0 365.73 arc F 0 g newpath .52441 .13415 .01457 0 365.73 arc s .83995 .31633 m .87639 .35276 L .80352 .35276 L .83995 .31633 L s 1 g .83995 .31633 m .83995 .31633 .01457 0 365.73 arc F 0 g newpath .83995 .31633 .01457 0 365.73 arc s 1 0 0 r .5 Mabswid .16005 .13415 m .16051 .13415 L .16092 .13414 L .16141 .13414 L .16186 .13414 L .16267 .13414 L .16355 .13414 L .16452 .13414 L .16555 .13413 L .16739 .13412 L .17108 .13409 L .17514 .13404 L .17923 .13397 L .18363 .13388 L .19159 .13368 L .2077 .13312 L .22321 .1324 L .23812 .13157 L .254 .13054 L .26928 .12943 L .28553 .12814 L .30118 .12681 L .31623 .12545 L .33225 .12395 L .34767 .12245 L .3625 .12096 L .37829 .11936 L .39349 .11779 L .40965 .11611 L .42521 .11447 L .44018 .1129 L .45611 .11123 L .47145 .10962 L .48619 .10807 L .5019 .10643 L .51701 .10486 L .53204 .10329 L s .53204 .10329 m .54453 .11193 L .55816 .12136 L .57095 .13021 L .58325 .13872 L .59635 .14778 L .60896 .15651 L .62236 .16578 L .63527 .17471 L .64769 .1833 L .6609 .19244 L .67362 .20125 L .68585 .20971 L .69888 .21872 L .71141 .22739 L .72474 .23661 L .73758 .2455 L .74993 .25404 L .76307 .26313 L .77572 .27188 L .78916 .28119 L .80212 .29015 L .81458 .29877 L .82784 .30794 L .83995 .31633 L s .25177 .11239 m .25432 .14882 L s .34421 .10439 m .34787 .14082 L s .43709 .0948 m .441 .13124 L s .61945 .14154 m .59859 .17156 L s .69643 .1948 m .67557 .22482 L s .77341 .24805 m .75254 .27808 L s 0 g 2 Mabswid .16005 .09771 m .16005 .17058 L s 1 g .53204 .10329 m .53204 .10329 .01457 0 365.73 arc F 0 g newpath .53204 .10329 .01457 0 365.73 arc s .83995 .31633 m .87639 .35276 L .80352 .35276 L .83995 .31633 L s 1 g .83995 .31633 m .83995 .31633 .01457 0 365.73 arc F 0 g newpath .83995 .31633 .01457 0 365.73 arc s 0 0 m 1 0 L 1 .44814 L 0 .44814 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 129.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OonALi`00`00LiacW01lLi`9Ool000Mo ohicW0L007]cW0Uoo`001gooSG>L2000Ng>L2Goo0007OolVLi`2001>Li`00g`0LiacW00DLi`20005 Ool2001jLi`9Ool000MoobIcW08004icW003O01cW7>L01AcW08000Ioo`03001cW7>L07QcW0Uoo`00 1goo9W>L0P00L00=l07>LLi`067>L00=l07>LLi`04g>L0`001Goo0`00NG>L2Goo0007OolVLi`2 000cLi`00g`0LiacW00HLi`00g`0LiacW00:Li`9O0000g>L001oo`05Ool2001jLi`9Ool000MoobIc W08003=cW003O01cW7>L01QcW004O01cW7>LLi`9O00:Li`20005Ool2001jLi`9Ool000MoobIcW080 01UcW003O01cW7>L01QcW003O01cW7>L019cW0Ul01AcW0P00003O01cW7>L07McW0Uoo`001goo9W>L 0P006G>L00=l07>LLi`05g>L00<007`0Li`02W>L2G`017>L00<007>LO0005W>L1`000W>L0W`0Mg>L 2Goo0007OolVLi`2000ILi`00g`0LiacW00GLi`=O0000g>L001cW00:Li`00`00Lial000DLi`70006 Li`00g`0LiacW01dLi`9Ool000MoobIcW08001UcW003O01cW7>L00icW0Ul0003001l07>L00acW080 00UcW003001cW7`001=cW0P000McW003O01cW7>L07=cW0Uoo`001goo9W>L0P006G>L00Al07>LLiac W0el00UcW003001l07>L00icW08000McW003001cW7`001=cW08000Eoo`8000McW003O01cW7>L079c W0Uoo`001goo9W>L0P002g>L4W`05W>L00<007`0Li`047>L0P001G>L00<007>LO0004g>L0P001Woo 00<007>LLi`01W>L00=l07>LLi`0LG>L2Goo0007OolVLi`2000;O00?00000g`00000000H00000g`0 0000000]0005Ool30008Li`2O01aLi`9Ool000MoobIcW1`00003O000000001P00003O000000002`0 00Ioo`8000]cW09l06mcW0Uoo`001goo9W>L0P006G>L00<007`0Li`05g>L00<007>LO0003G>L0P00 27>L00<007>LLi`04g>L0P001Goo0`0037>L00=l07>LLi`01W>L00=l07>LLi`0Hg>L2Goo0007OolV Li`2000ILi`00`00O01cW00GLi`00`00LiacW00;Li`2000:Li`00`00LiacW00DLi`;000;Li`2O005 Li`00g`0LiacW01TLi`9Ool000MoobIcW08001UcW003001l07>L01McW003001cW7>L01McW003001c W7>L01AcW0L00003Li`0000000<000]cW005O01cW7>LLial001WLi`9Ool000MoobIcW08001UcW003 001cW7>L01McW003001cW7>L01McW003001cW7>L01McW003001cW7>L00AcW0@000]cW09l0003Lial 07>L06IcW0Uoo`001goo9W>L0P00L00<007>LLi`0>W>L10002g>L00=l07>LLi`0IW>L2Goo0007 OolVLi`2000cLi`00`00LiacW00kLi`50008Li`00g`0Lial001WLi`9Ool000MoobIcW08003=cW003 001cW7>L03ecW0D000EcW004O01cW7>L0002O01ULi`9Ool000MoobIcW08003=cW003001cW7>L03mc W0@000AcW003O01cW00000=cW003O01cW7>L069cW0Uoo`001goo9W>L0P00L00<007>LLi`0@G>L 100000EcW7`0LiacW00000AcW09l069cW0Uoo`001goo9W>L0P00L00<007>LLi`0@W>L1@0000=c W000Li`01W>L0W`0H7>L2Goo0007OomKLi`00`00LiacW014Li`50009Li`00g`0LiacW01MLi`9Ool0 00Mooe]cW003001cW7>L04IcW0@000UcW003O01cW7>L05acW0Uoo`001gooEg>L00D007>LLiacW000 009cW003001cW7>L04AcW0D000QcW003O01cW7>L05]cW0Uoo`001gooF7>L00@007>LLi`0009cW003 001cW7>L04=cW003001cW7>L00D000McW09l05]cW0Uoo`001gooF7>L00H007>LLi`007>L0016Li`0 0`00LiacW002Li`40008Li`2O01ILi`9Ool000MooeUcW005001cW000Li`00015Li`00`00LiacW005 Li`40008Li`00g`0LiacW006Li`00g`0LiacW01=Li`9Ool000MooeUcW004001cW000001?Li`50007 Li`2O005Li`00g`0LiacW01>Li`9Ool000MooeYcW0<0055cW0D000McW003O01cW7>L009cW003O01c W7>L04icW0Uoo`001gooFW>L0P00E7>L10001g>L0W`000=cW7`0Li`0D7>L2Goo0007OomKLi`00`00 LiacW01DLi`40007Li`00g`0Li`0001@Li`9Ool000Mook=cW0D000EcW09l055cW0Uoo`001goo]G>L 1@000W>L00=l07>L00000W`0Cg>L2Goo0007OongLi`400000g`0Li`00003Li`00g`0LiacW01L00AcW09l04acW0Uoo`001goo^W>L00=l000000000P001G>L00=l 07>LLi`0BG>L2Goo0007OonkLi`50005Li`00g`0LiacW018Li`9Ool000MookYcW080009cW0@000Ac W09l04QcW0Uoo`001goo^W>L00<007>LLi`00W>L1@0017>L00=l07>LLi`0AG>L2Goo0007OoniLi`2 0006Li`50003Li`00g`0001cW014Li`9Ool000MookUcW003001cW7>L00McW0@000=cW09l04AcW0Uo o`001goo^G>L00<007>LLi`02G>L10000W>L00<007`0Li`027>L00=l07>LLi`0=g>L2Goo0007Oonh Li`00`00LiacW00;Li`5000017>L001l07`01W>L00=l07>LLi`0>7>L2Goo0007OonhLi`00`00Liac W00=Li`600000g>LO01cW004Li`00g`0LiacW00hLi`9Ool000MookMcW003001cW7>L011cW0@0009c W005O01cW7>LLial000kLi`9Ool000Mook9cW005001cW7>LLi`0000?Li`:00001G>LO01l07`00000 >g>L2Goo0007OonbLi`01@00LiacW7>L00005W>L1@0000=cW7`0Li`0>g>L2Goo0007OonbLi`01000 LiacW0006G>L0`0000Al0000O01l03YcW0Uoo`001goo/W>L00@007>LLi`001]cW005O0000000001c W002O00hLi`9Ool000Mook9cW003001cW00000=cW003001cW7>L01IcW003O000000000<00003Lial 07>L03IcW0Uoo`001goo/W>L00@007>L001cW08001QcW004O00007>LLi`50002O00eLi`9Ool000Mo ok9cW0800003Li`007>L01YcW003001cW7>L009cW0@00003Lial07>L03=cW0Uoo`001goo/W>L0`00 6g>L00<007>LLi`01G>L10000W`0L2Goo0007OonbLi`00`00LiacW00TLi`500000g`0LiacW00_ Li`9Ool000Moom]cW0@00003O01cW7>L02icW0Uoo`001googG>L0`000W`0;W>L2Goo0007OooOLi`3 00000g`0LiacW004Li`00`00LiacW00TLi`9Ool000Moon1cW0<0009l0003Li`0000000D002=cW0Uo o`001goohW>L2`008g>L2Goo0007OooTLi`30005Ool2000RLi`9Ool000MoonEcW08000Ioo`03001c W7>L021cW0Uoo`001gooi7>L0`001Goo0`008G>L2Goo0007OooULi`00`00Oomoo`04Ool2000RLi`9 Ool000MoonEcW08000Eoo`80029cW0Uoo`001gooiG>L2@008W>L2Goo0007OooTLi`<000PLi`9Ool0 00Moon=cW0<000=cW004001cW7>LLi`4000OLi`9Ool000Moon9cW0<000YcW0<001icW0Uoo`001goo hG>L0`0037>L0`007G>L2Goo0007OooPLi`3000>Li`3000LLi`9Ool000MoommcW0<0011cW0<001]c W0Uoo`001googW>L60006W>L2Goo0007OooMLi`J000ILi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L47>L00<0 07ooOol01goo003oOolGOol00`00Oomoo`07Ool00?moob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {128.063, 0}} -> {-0.445198, -0.368171, \ 0.00960427, 0.00960427}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.09;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.15;\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44814 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160046 0.364361 0.134145 0.364361 [ [ 0 0 0 0 ] [ 1 .44814 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01067 m .02381 .43747 L .97619 .43747 L .97619 .01067 L F 0 g 2 Mabswid [ ] 0 setdash .16005 .13415 m .52441 .13415 L s .52441 .13415 m .83995 .31633 L s 0 1 .4 r .5 Mabswid .16005 .20285 m .17483 .20285 L .19095 .20285 L .20609 .20285 L .22065 .20285 L .23614 .20285 L .25106 .20285 L .26692 .20285 L .28219 .20285 L .29689 .20285 L .31253 .20285 L .32758 .20285 L .34206 .20285 L .35747 .20285 L .3723 .20285 L .38807 .20285 L .40327 .20285 L .41788 .20285 L .43343 .20285 L .4484 .20285 L .46431 .20285 L .47963 .20285 L .49438 .20285 L .51007 .20285 L .52441 .20285 L s .48474 .20285 m .49754 .21024 L .5115 .2183 L .52461 .22587 L .53722 .23315 L .55064 .2409 L .56356 .24836 L .57729 .25629 L .59052 .26393 L .60325 .27128 L .61679 .27909 L .62983 .28662 L .64236 .29386 L .65571 .30156 L .66856 .30898 L .68222 .31687 L .69537 .32446 L .70803 .33177 L .72149 .33954 L .73446 .34703 L .74824 .35498 L .76151 .36265 L .77428 .37002 L .78787 .37786 L .80029 .38503 L s .16005 .13415 m .16005 .13693 L .16005 .13997 L .16005 .14283 L .16005 .14557 L .16005 .1485 L .16005 .15131 L .16005 .1543 L .16005 .15718 L .16005 .15995 L .16005 .1629 L .16005 .16574 L .16005 .16847 L .16005 .17137 L .16005 .17417 L .16005 .17714 L .16005 .18001 L .16005 .18276 L .16005 .1857 L .16005 .18852 L .16005 .19152 L .16005 .19441 L .16005 .19719 L .16005 .20015 L .16005 .20285 L s .52441 .13415 m .52441 .13693 L .52441 .13997 L .52441 .14283 L .52441 .14557 L .52441 .1485 L .52441 .15131 L .52441 .1543 L .52441 .15718 L .52441 .15995 L .52441 .1629 L .52441 .16574 L .52441 .16847 L .52441 .17137 L .52441 .17417 L .52441 .17714 L .52441 .18001 L .52441 .18276 L .52441 .1857 L .52441 .18852 L .52441 .19152 L .52441 .19441 L .52441 .19719 L .52441 .20015 L .52441 .20285 L s .52441 .13415 m .5228 .13693 L .52104 .13997 L .5194 .14283 L .51781 .14557 L .51612 .1485 L .5145 .15131 L .51277 .1543 L .51111 .15718 L .50951 .15995 L .50781 .1629 L .50617 .16574 L .50459 .16847 L .50291 .17137 L .5013 .17417 L .49958 .17714 L .49793 .18001 L .49634 .18276 L .49464 .1857 L .49301 .18852 L .49128 .19152 L .48961 .19441 L .48801 .19719 L .4863 .20015 L .48474 .20285 L s .83995 .31633 m .83834 .31911 L .83659 .32215 L .83494 .32501 L .83336 .32775 L .83167 .33068 L .83004 .33349 L .82832 .33648 L .82666 .33936 L .82506 .34213 L .82335 .34508 L .82171 .34792 L .82014 .35065 L .81846 .35355 L .81685 .35635 L .81513 .35933 L .81347 .36219 L .81188 .36495 L .81019 .36788 L .80856 .3707 L .80683 .3737 L .80516 .37659 L .80355 .37937 L .80185 .38233 L .80029 .38503 L s .17462 .16121 m .17462 .1618 L .17462 .16245 L .17462 .16305 L .17462 .16364 L .17462 .16426 L .17462 .16485 L .17462 .16549 L .17462 .1661 L .17462 .16669 L .17462 .16731 L .17462 .16791 L .17462 .16849 L .17462 .16911 L .17462 .1697 L .17462 .17033 L .17462 .17094 L .17462 .17153 L .17462 .17215 L .17462 .17275 L .17462 .17338 L .17462 .174 L .17462 .17459 L .17462 .17521 L .17462 .17579 L s .50983 .16121 m .50983 .1618 L .50983 .16245 L .50983 .16305 L .50983 .16364 L .50983 .16426 L .50983 .16485 L .50983 .16549 L .50983 .1661 L .50983 .16669 L .50983 .16731 L .50983 .16791 L .50983 .16849 L .50983 .16911 L .50983 .1697 L .50983 .17033 L .50983 .17094 L .50983 .17153 L .50983 .17215 L .50983 .17275 L .50983 .17338 L .50983 .174 L .50983 .17459 L .50983 .17521 L .50983 .17579 L s .16733 .1685 m .16792 .1685 L .16857 .1685 L .16917 .1685 L .16976 .1685 L .17038 .1685 L .17097 .1685 L .17161 .1685 L .17222 .1685 L .17281 .1685 L .17343 .1685 L .17403 .1685 L .17461 .1685 L .17523 .1685 L .17582 .1685 L .17645 .1685 L .17706 .1685 L .17765 .1685 L .17827 .1685 L .17887 .1685 L .1795 .1685 L .18012 .1685 L .18071 .1685 L .18133 .1685 L .18191 .1685 L s .50255 .1685 m .50314 .1685 L .50378 .1685 L .50439 .1685 L .50497 .1685 L .50559 .1685 L .50619 .1685 L .50682 .1685 L .50743 .1685 L .50802 .1685 L .50865 .1685 L .50925 .1685 L .50983 .1685 L .51044 .1685 L .51104 .1685 L .51167 .1685 L .51227 .1685 L .51286 .1685 L .51348 .1685 L .51408 .1685 L .51472 .1685 L .51533 .1685 L .51592 .1685 L .51655 .1685 L .51712 .1685 L s .52084 .16948 m .52054 .16999 L .52022 .17055 L .51992 .17107 L .51963 .17157 L .51932 .17211 L .51902 .17263 L .5187 .17318 L .5184 .17371 L .5181 .17422 L .51779 .17476 L .51749 .17528 L .5172 .17578 L .51689 .17631 L .51659 .17683 L .51628 .17737 L .51597 .1779 L .51568 .17841 L .51537 .17895 L .51507 .17946 L .51475 .18002 L .51445 .18055 L .51415 .18106 L .51384 .1816 L .51355 .1821 L s .81114 .33708 m .81085 .33759 L .81052 .33815 L .81022 .33868 L .80993 .33918 L .80962 .33972 L .80932 .34023 L .809 .34078 L .8087 .34131 L .8084 .34182 L .80809 .34236 L .80779 .34289 L .8075 .34339 L .80719 .34392 L .8069 .34443 L .80658 .34498 L .80628 .34551 L .80598 .34601 L .80567 .34655 L .80537 .34707 L .80506 .34762 L .80475 .34815 L .80445 .34866 L .80414 .34921 L .80385 .3497 L s .51088 .17214 m .5114 .17244 L .51195 .17276 L .51248 .17306 L .51298 .17335 L .51352 .17366 L .51404 .17396 L .51459 .17428 L .51512 .17459 L .51562 .17488 L .51617 .17519 L .51669 .17549 L .51719 .17578 L .51772 .17609 L .51824 .17639 L .51878 .1767 L .51931 .17701 L .51982 .1773 L .52035 .17761 L .52087 .17791 L .52142 .17823 L .52196 .17853 L .52247 .17883 L .52301 .17914 L .52351 .17943 L s .80119 .33975 m .8017 .34004 L .80226 .34037 L .80278 .34067 L .80329 .34096 L .80382 .34127 L .80434 .34157 L .80489 .34189 L .80542 .34219 L .80593 .34249 L .80647 .3428 L .80699 .3431 L .80749 .34339 L .80803 .3437 L .80854 .34399 L .80909 .34431 L .80961 .34461 L .81012 .34491 L .81066 .34522 L .81118 .34552 L .81173 .34583 L .81226 .34614 L .81277 .34644 L .81331 .34675 L .81381 .34704 L s 0 0 m 1 0 L 1 .44814 L 0 .44814 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 129.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MoohmcW003001cW7>L07icW0Uoo`001goo9W>L00<000?/0000IP0000<3 k0000000OW>L2Goo0007OolVLi`00`000n`0001U00020n`3001mLi`9Ool000MoobMcW0030nacW7>L 06AcW083k003Li`00000008007]cW0Uoo`001goo9g>L00<3k7>LLi`0Hg>L00<3k7>L0n`00W>L1@00 NG>L2Goo0007OolWLi`00`?/LiacW01SLi`00`?/Li`3k004Li`5001gLi`9Ool000MoobMcW0030nac W7>L069cW0040nacW7>L0n`6Li`4001fLi`9Ool000MoobMcW0030nacW7>L065cW083k09cW0030nac W7>L00IcW0@007AcW0Uoo`001goo9g>L00<3k7>LLi`0HG>L00D3k7>LLiacW0?/00UcW0D0079cW0Uo o`001goo9g>L00D3k7>LLiacW0?/05icW083k0=cW0030nacW7>L00UcW0D0071cW0Uoo`001goo9g>L 00D3k7>LLiacW0?/05icW083k0=cW0030nacW7>L00]cW0@006mcW0Uoo`001goo9g>L00<3k7>L0n`0 10?/Fg>L1`?/3g>L1000KG>L2Goo0007OolWLi`01@?/LiacW7>L0n`0G7>L00<3k7>LLi`01@?/47>L 1@00Jg>L2Goo0007OolWLi`01@?/LiacW7>L0n`0G7>L00<3k7>LLi`01@?/4W>L1000JW>L2Goo0007 OolWLi`00`?/LiacW01MLi`00`?/LiacW002Li`010?/Li`3k0?/57>L1000J7>L2Goo0007OolWLi`0 0`?/LiacW01MLi`00`?/LiacW005Li`00`?/LiacW00CLi`5001VLi`9Ool000MoobMcW0030nacW7>L 05acW0030nacW7>L00IcW0030nacW7>L01EcW0D006AcW0Uoo`001goo9g>L00<3k7>LLi`0G7>L00<3 k7>LLi`01W>L00<3k7>LLi`05g>L1000Hg>L2Goo0007OolWLi`00`?/LiacW01KLi`00`?/LiacW007 Li`00`?/LiacW00ILi`4001QLi`9Ool000MoobMcW0030nacW7>L05]cW0030nacW7>L00McW0030nac W7>L01YcW0D005mcW0Uoo`001goo9g>LJ@?/7W>L1@00GG>L2Goo0007Oon5Li`00`?/LiacW00XLi`4 001LLi`9Ool000MoohIcW0030nacW7>L02UcW0@005YcW0Uoo`001gooQg>L00<3k7>LLi`0:G>L1@00 F7>L2Goo0007Oon8Li`20n`[Li`5001FLi`9Ool000MoohYcW083k2]cW0@005EcW0Uoo`001gooS7>L 0P?/:g>L1000Dg>L2Goo0007Oon>Li`20n`ZLi`5001ALi`9Ool000Mooi1cW083k2YcW0@0051cW0Uo o`001gooTW>L0P?/:W>L1000CW>L2Goo0007OonDLi`20n`YLi`5001L02QcW0D004YcW0Uoo`001gooUg>L0P?/:W>L1000BG>L2Goo0007OonILi`20n`ZLi`40017Li`9 Ool000Mooi]cW0030nacW7>L02QcW0D004EcW0Uoo`001gooW7>L0P?/:W>L1@00@g>L2Goo0007OonN Li`00`?/LiacW00YLi`40012Li`9Ool000MooimcW083k2]cW0@0041cW0Uoo`001gooXG>L0P?/:W>L 1@00?W>L2Goo0007OonSLi`20n`ZLi`5000lLi`9Ool000MoojEcW083k2YcW0@003]cW0Uoo`001goo Yg>L0P?/:W>L1000>G>L2Goo0007OonYLi`00`?/LiacW00XLi`5000gLi`9Ool000MoojYcW083k2Yc W0@003IcW0Uoo`001goo[7>L0P?/:W>L1000=7>L2Goo0007Oon^Li`20n`YLi`5000bLi`9Ool000Mo ok1cW083k2UcW0D0031cW0Uoo`001goo/W>L00<3k7>LLi`0:7>L1000;g>L2Goo0007OoncLi`00`?/ LiacW00YLi`4000]Li`9Ool000MookAcW0030nacW7>L02UcW0D002]cW0Uoo`001goo]G>L0P?/:g>L 1@00:G>L2Goo0007OongLi`20n`[Li`4000XLi`9Ool000MookUcW083k2]cW0@002IcW0Uoo`001goo ^g>L0P?/:W>L0P0000<3k000Li`097>L2Goo0007OonmLi`20n`YLi`20n`VLi`9Ool000MookmcW083 k2McW0030nacW7>L02EcW0Uoo`001goo`G>L0P?/97>L00<3k7>LLi`09W>L2Goo0007Ooo3Li`00`?/ LiacW00QLi`00`?/LiacW00VLi`9Ool000MoolAcW083k21cW0030nacW7>L02McW0Uoo`001gooaW>L 0P?/6G>L00@3k7>LLiacW083k2UcW0Uoo`001goob7>L00<3k7>LLi`04g>L0`?/17>L00<3k7>LLi`0 :7>L2Goo0007Ooo9Li`20n`DLi`30n`2Li`00`?/LiacW00YLi`9Ool000Mool]cW0030nacW7>L015c W0060nacW7>L0nacW0?/:g>L2Goo0007OooL02YcW0Uoo`001good7>L0P?/47>L00<3k7>LLi`0:g>L2Goo0007OooBLi`20n`> Li`00`?/LiacW00[Li`9Ool000MoomAcW083k0]cW0030nacW7>L02acW0Uoo`001gooeW>L00<3k7>L Li`01g>L0P?/;W>L2Goo0007OooGLi`20n`7Li`00`?/LiacW00]Li`9Ool000MoomUcW083k0AcW003 0nacW7>L02icW0Uoo`001goofg>L0P?/0W>L00<3k7>LLi`0;W>L2Goo0007OooMLi`20n`aLi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool00?moob5oo`00ogoo8Goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {128.063, 0}} -> {-0.445198, -0.368171, \ 0.00960427, 0.00960427}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44814 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160046 0.364361 0.134145 0.364361 [ [ 0 0 0 0 ] [ 1 .44814 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01067 m .02381 .43747 L .97619 .43747 L .97619 .01067 L F 0 g 2 Mabswid [ ] 0 setdash .16005 .13415 m .52441 .13415 L s .52441 .13415 m .83995 .31633 L s 0 .4 1 r .5 Mabswid .16005 .4224 m .17483 .4091 L .19095 .39459 L .20609 .38097 L .22065 .36786 L .23614 .35391 L .25106 .34049 L .26692 .32622 L .28219 .31247 L .29689 .29924 L .31253 .28517 L .32758 .27162 L .34206 .25859 L .35747 .24472 L .3723 .23137 L .38807 .21718 L .40327 .20351 L .41788 .19035 L .43343 .17636 L .4484 .16289 L .46431 .14857 L .47963 .13477 L .49438 .1215 L .51007 .10738 L .52441 .09448 L s .52441 .13415 m .53721 .14154 L .55117 .1496 L .56428 .15717 L .57689 .16445 L .59031 .17219 L .60323 .17965 L .61696 .18758 L .63019 .19522 L .64292 .20257 L .65646 .21038 L .6695 .21791 L .68203 .22515 L .69538 .23286 L .70823 .24027 L .72189 .24816 L .73504 .25575 L .7477 .26306 L .76116 .27084 L .77413 .27832 L .7879 .28628 L .80118 .29394 L .81395 .30131 L .82754 .30916 L .83995 .31633 L s .16005 .13415 m .16005 .14584 L .16005 .15859 L .16005 .17057 L .16005 .18209 L .16005 .19435 L .16005 .20615 L .16005 .21869 L .16005 .23078 L .16005 .24241 L .16005 .25478 L .16005 .26669 L .16005 .27814 L .16005 .29033 L .16005 .30207 L .16005 .31454 L .16005 .32656 L .16005 .33812 L .16005 .35042 L .16005 .36227 L .16005 .37485 L .16005 .38698 L .16005 .39865 L .16005 .41106 L .16005 .4224 L s .52441 .13415 m .52441 .13254 L .52441 .13078 L .52441 .12913 L .52441 .12755 L .52441 .12586 L .52441 .12424 L .52441 .12251 L .52441 .12085 L .52441 .11925 L .52441 .11754 L .52441 .11591 L .52441 .11433 L .52441 .11265 L .52441 .11104 L .52441 .10932 L .52441 .10767 L .52441 .10607 L .52441 .10438 L .52441 .10275 L .52441 .10102 L .52441 .09935 L .52441 .09775 L .52441 .09604 L .52441 .09448 L s .52441 .13415 m .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L s .83995 .31633 m .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L s .50983 .10702 m .50983 .10762 L .50983 .10826 L .50983 .10887 L .50983 .10945 L .50983 .11007 L .50983 .11066 L .50983 .1113 L .50983 .11191 L .50983 .1125 L .50983 .11312 L .50983 .11373 L .50983 .1143 L .50983 .11492 L .50983 .11551 L .50983 .11614 L .50983 .11675 L .50983 .11734 L .50983 .11796 L .50983 .11856 L .50983 .11919 L .50983 .11981 L .50983 .1204 L .50983 .12102 L .50983 .1216 L s .16733 .27827 m .16792 .27827 L .16857 .27827 L .16917 .27827 L .16976 .27827 L .17038 .27827 L .17097 .27827 L .17161 .27827 L .17222 .27827 L .17281 .27827 L .17343 .27827 L .17403 .27827 L .17461 .27827 L .17523 .27827 L .17582 .27827 L .17645 .27827 L .17706 .27827 L .17765 .27827 L .17827 .27827 L .17887 .27827 L .1795 .27827 L .18012 .27827 L .18071 .27827 L .18133 .27827 L .18191 .27827 L s .50255 .11431 m .50314 .11431 L .50378 .11431 L .50439 .11431 L .50497 .11431 L .50559 .11431 L .50619 .11431 L .50682 .11431 L .50743 .11431 L .50802 .11431 L .50865 .11431 L .50925 .11431 L .50983 .11431 L .51044 .11431 L .51104 .11431 L .51167 .11431 L .51227 .11431 L .51286 .11431 L .51348 .11431 L .51408 .11431 L .51472 .11431 L .51533 .11431 L .51592 .11431 L .51655 .11431 L .51712 .11431 L s 0 0 m 1 0 L 1 .44814 L 0 .44814 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 129.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooSg>L00<1Wg>LLi`0OW>L 2Goo0007Oon>Li`20In0Li`9Ool000MoohecW0030ImcW06O081cW0Uoo`001gooS7>L00@1Wg>LLi`1 Wh1cW0Uoo`001gooRg>L00D1Wg>LLiacW06O081cW0Uoo`001gooRW>L0P6O0g>L00<1Wg>LLi`0OW>L 2Goo0007Oon8Li`60Il00g>L0ImcW01oLi`9Ool000MoohMcW0050ImcW7>LLi`1W`03Li`00`6OLiac W01nLi`9Ool000MoohIcW0030ImcW7>L009cW0050ImcW7>LLi`1W`20Li`9Ool000MoohEcW0030Imc W7>L00McW0030ImcW7>L07icW0Uoo`001gooQ7>L00<1Wg>LLi`027>L00<1Wg>LLi`0OW>L2Goo0007 Oon3Li`00`6OLiacW009Li`00`6OLiacW01nLi`9Ool000MoobIcW0030001W`0005T000030Il00000 00X000030Il0000007icW0Uoo`001goo9W>L00<0006O0000F00000<1W`00000030000P6O00<007>L Li`0Ng>L2Goo0007OolWLi`00`6OLiacW01FLi`00`6OLiacW00>Li`010000Il1W`00Ng>L2Goo0007 OolWLi`00`6OLiacW01ELi`00`6OLiacW00@Li`200020Il00`00LiacW01gLi`9Ool000MoobMcW003 0ImcW7>L05AcW0030ImcW7>L01=cW0800081W`03001cW7>L07EcW0Uoo`001goo9g>L00<1Wg>LLi`0 Dg>L00<1Wg>LLi`05W>L0P000P6OMW>L2Goo0007OolWLi`00`6OLiacW01ALi`20IlKLi`200000`6O 001cW01cLi`9Ool000MoobMcW0030ImcW7>L051cW0030ImcW7>L01acW0800081W`03001cW7>L071c W0Uoo`001goo9g>L00<1Wg>LLi`0Cg>L00<1Wg>LLi`07g>L0P000P6O00<007>LLi`0KW>L2Goo0007 OolWLi`00`6OLiacW01>Li`00`6OLiacW00RLi`200000`6O001cW01^Li`9Ool000MoobMcW0030Imc W7>L04ecW0030ImcW7>L02EcW0040001W`6O001]Li`9Ool000MoobMcW0030ImcW7>L04acW0030Imc W7>L02McW08000030Il0000006]cW0Uoo`001goo9g>L00<1Wg>LLi`0Bg>L00<1Wg>LLi`0:W>L00@0 006O0Il006YcW0Uoo`001goo9g>L00<1Wg>LLi`0BW>L00<1Wg>LLi`0;G>L00@0006O0Il006QcW0Uo o`001goo9g>L00<1Wg>LLi`0BG>L00<1Wg>LLi`0;g>L0P000P6O00<007>LLi`0I7>L2Goo0007OolW Li`00`6OLiacW018Li`00`6OLiacW00bLi`200000`6O0000001TLi`9Ool000MoobMcW0030ImcW7>L 04McW0030ImcW7>L03EcW0040001W`6O001SLi`9Ool000MoobMcW0030ImcW7>L04IcW0030ImcW7>L 03QcW0040001W`6O001QLi`9Ool000MoobMcW0030ImcW7>L04AcW081WcacW0800081W`03001cW7>L 05ecW0Uoo`001goo9g>L00<1Wg>LLi`0@g>L00<1Wg>LLi`0?W>L0P000P6O00<007>LLi`0Fg>L2Goo 0007OolWLi`00`6OLiacW012Li`00`6OLiacW011Li`200000`6O001cW01KLi`9Ool000MoobMcW003 0ImcW7>L045cW0030ImcW7>L04AcW0040001W`6O001JLi`9Ool000MoobMcW0030ImcW7>L03mcW081 WdQcW08000030Il0000005QcW0Uoo`001goo9g>L00<1Wg>LLi`0?W>L00<1Wg>LLi`0BW>L00<0006O 0Il00P00EW>L2Goo0007OolWLi`00`6OLiacW00mLi`00`6OLiacW01=Li`010000Il00000EG>L2Goo 0007OolWLi`00`6OLiacW00lLi`00`6OLiacW01@Li`20Il2001CLi`9Ool000MoobMcW0030ImcW7>L 03acW0030ImcW7>L055cW0030001W`6O0080055cW0Uoo`001goo9g>L00<1Wg>LLi`0>g>L00<1Wg>L Li`0E7>L00@0006O0Il0051cW0Uoo`001goo9g>L00<1Wg>LLi`0>W>L00<1Wg>LLi`0Eg>L00@0006O 0Il004icW0Uoo`001goo9g>L00<1Wg>LLi`0>7>L0P6OFg>L0P000P6O00<007>LLi`0BW>L2Goo0007 OolWLi`00`6OLiacW00fLi`20ImOLi`200020Il00`00LiacW018Li`9Ool000MoobMcW0030ImcW7>L 03EcW0030ImcW7>L065cW0800081WdUcW0Uoo`001goo9g>L00<1Wg>LLi`0=7>L00<1Wg>LLi`0I7>L 0P0000<1W`00Li`0AW>L2Goo0007OolWLi`00`6OLiacW00cLi`00`6OLiacW01VLi`200000`6O0000 0015Li`9Ool000MoobMcW0030ImcW7>L039cW0030ImcW7>L06UcW0030001W`6O008004=cW0Uoo`00 1goo9g>L00<1Wg>LLi`0L00<1Wg>LLi`0K7>L00@0006O0000049cW0Uoo`001goo9g>L00<1Wg>L Li`0<7>L00<1Wg>LLi`0Kg>L0P6O0P00@7>L2Goo0007OolWLi`00`6OLiacW00_Li`00`6OLiacW01a Li`00`000Il1W`02000nLi`9Ool000MoobMcW0030ImcW7>L02icW0030ImcW7>L07AcW0030001W`6O 008003acW0Uoo`001goo9g>L00<1Wg>LLi`0;G>L00<1Wg>LLi`0Mg>L00@0006O0Il003]cW0Uoo`00 1goo9g>L00<1Wg>LLi`0;7>L00<1Wg>LLi`0NW>L00@0006O0Il003UcW0Uoo`001goo9g>L00<1Wg>L 0Il0106O9W>L0P6OOW>L0P0000<1W`000000=g>L2Goo0007OolWLi`00`6OLiacW00YLi`00`6OLiac W020Li`010000Il1W`00=W>L2Goo0007OolWLi`00`6OLiacW00XLi`00`6OLiacW023Li`010000Il1 W`00=7>L2Goo0007OolWLi`00`6OLiacW00WLi`00`6OLiacW025Li`200020Il00`00LiacW00`Li`9 Ool000MoobMcW0030ImcW7>L02IcW0030ImcW7>L08QcW0800081W`03001cW7>L02icW0Uoo`001goo 9g>L00<1Wg>LLi`09G>L00<1Wg>LLi`0Rg>L0P0000<1W`00Li`0;W>L2Goo0007OolWLi`00`6OLiac W00TLi`00`6OLiacW02>Li`010000Il1W`00;G>L2Goo0007OolWLi`00`6OLiacW00SLi`00`6OLiac W02@Li`200000`6O0000000[Li`9Ool000MoobMcW0030ImcW7>L029cW0030ImcW7>L09=cW0030001 W`6O008002UcW0Uoo`001goo9g>L00<1Wg>LLi`08G>L00<1Wg>LLi`0UW>L00@0006O0Il002QcW0Uo o`001goo9g>L00<1Wg>LLi`087>L00<1Wg>LLi`0VG>L00@0006O0Il002IcW0Uoo`001goo9g>L00<1 Wg>LLi`07g>L00<1Wg>LLi`0Vg>L0P0000<1W`00Li`097>L2Goo0007OolWLi`00`6OLiacW00MLi`2 0InPLi`00`00LiacW00TLi`9Ool000MoobMcW0030ImcW7>L01acW0030ImcW7>L0L00<1Wg>LLi`06g>L00<1Wg>LLi`0b7>L2Goo0007OolWLi`00`6OLiacW00JLi`00`6OLiacW039 Li`9Ool000MoobMcW0030ImcW7>L01UcW0030ImcW7>L0L00<1Wg>LLi`067>L 00<1Wg>LLi`0bg>L2Goo0007OolWLi`00`6OLiacW00GLi`00`6OLiacW03L01IcW0030ImcW7>L0L00<1Wg>LLi`05G>L00<1Wg>LLi`0cW>L2Goo 0007OolWLi`00`6OLiacW00DLi`00`6OLiacW03?Li`9Ool000MoobMcW0030ImcW7>L01=cW0030Imc W7>L0=1cW0Uoo`001goo9g>L00<1Wg>LLi`04W>L00<1Wg>LLi`0dG>L2Goo0007OolWLi`00`6OLiac W00@Li`20IoDLi`9Ool000MoobMcW0030ImcW7>L00mcW0030ImcW7>L0=AcW0Uoo`001goo9g>L00<1 Wg>LLi`03W>L00<1Wg>LLi`0eG>L2Goo0007OolWLi`00`6OLiacW00=Li`00`6OLiacW03FLi`9Ool0 00MoobMcW0030ImcW7>L00]cW081WmUcW0Uoo`001goo9g>L00<1Wg>LLi`02W>L00<1Wg>LLi`0fG>L 2Goo0007OolWLi`00`6OLiacW009Li`00`6OLiacW03JLi`9Ool000MoobMcW0030ImcW7>L00QcW003 0ImcW7>L0=]cW0Uoo`001goo9g>L00<1Wg>LLi`01g>L00<1Wg>LLi`0g7>L2Goo0007OolWLi`00`6O LiacW006Li`00`6OLiacW03MLi`9Ool000MoobMcW0030ImcW7>L00EcW0030ImcW7>L0=icW0Uoo`00 1goo9g>L00<1Wg>LLi`00g>L0P6OhG>L2Goo0007OolWLi`00`6OLiacW002Li`00`6OLiacW03QLi`9 Ool000MoobMcW0050ImcW7>LLi`1W`3TLi`9Ool000MoobMcW0040ImcW7>L0IoULi`9Ool000MoobMc W0030ImcW06O0>IcW0Uoo`001goo9g>L0P6Oig>L2Goo0007OolWLi`00`6OLiacW03VLi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo8Goo 003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {128.063, 0}} -> {-0.445198, -0.368171, \ 0.00960427, 0.00960427}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44814 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160046 0.364361 0.134145 0.364361 [ [ 0 0 0 0 ] [ 1 .44814 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .01067 m .02381 .43747 L .97619 .43747 L .97619 .01067 L F 0 g 2 Mabswid [ ] 0 setdash .16005 .13415 m .52441 .13415 L s .52441 .13415 m .83995 .31633 L s .8 0 1 r .5 Mabswid .16005 .3413 m .17483 .32226 L .19095 .30252 L .20609 .28496 L .22065 .26896 L .23614 .25288 L .25106 .23835 L .26692 .2239 L .28219 .21096 L .29689 .19941 L .31253 .18811 L .32758 .17817 L .34206 .1695 L .35747 .16122 L .3723 .15417 L .38807 .14767 L .40327 .14237 L .41788 .13818 L .43343 .13467 L .4484 .13225 L .45659 .13131 L .46034 .13097 L .46431 .13068 L .46797 .13046 L .46991 .13037 L .47199 .13029 L .4739 .13023 L .47564 .13019 L .47648 .13018 L .47739 .13016 L .47781 .13016 L .47826 .13016 L .47867 .13015 L .47905 .13015 L .47949 .13015 L .47997 .13015 L .48043 .13015 L .48092 .13015 L .48139 .13015 L .48182 .13015 L .48221 .13015 L .48264 .13016 L .48362 .13017 L .48465 .13018 L .4865 .13022 L .48822 .13027 L .48983 .13033 L .4935 .1305 L .49748 .13075 L .50126 .13105 L Mistroke .50835 .13176 L .51594 .13276 L .52298 .13389 L .52441 .13415 L Mfstroke .52441 .13415 m .53721 .14154 L .55117 .1496 L .56428 .15717 L .57689 .16445 L .59031 .17219 L .60323 .17965 L .61696 .18758 L .63019 .19522 L .64292 .20257 L .65646 .21038 L .6695 .21791 L .68203 .22515 L .69538 .23286 L .70823 .24027 L .72189 .24816 L .73504 .25575 L .7477 .26306 L .76116 .27084 L .77413 .27832 L .7879 .28628 L .80118 .29394 L .81395 .30131 L .82754 .30916 L .83995 .31633 L s .16005 .13415 m .16005 .14255 L .16005 .15171 L .16005 .16032 L .16005 .1686 L .16005 .17741 L .16005 .18589 L .16005 .19491 L .16005 .20359 L .16005 .21195 L .16005 .22084 L .16005 .2294 L .16005 .23763 L .16005 .24639 L .16005 .25482 L .16005 .26379 L .16005 .27243 L .16005 .28073 L .16005 .28958 L .16005 .29809 L .16005 .30713 L .16005 .31585 L .16005 .32423 L .16005 .33315 L .16005 .3413 L s .52441 .13415 m .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L s .52441 .13415 m .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L .52441 .13415 L s .83995 .31633 m .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L .83995 .31633 L s 0 0 m 1 0 L 1 .44814 L 0 .44814 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 129.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MoogQcW1IT7`03Li`007>L07mcW0Uoo`001goo9W>L00<006@O0000B`00 16@O5P000V@O0P00OW>L2Goo0007OolVLi`00`00I1l000160005I1lL0002I1l00`00LiacW01kLi`9 Ool000MoobMcW003I1mcW7>L049cW0=T7b9cW004001T7f@O001kLi`9Ool000MoobMcW003I1mcW7>L 041cW09T7bIcW080009T7`03001cW7>L07McW0Uoo`001goo9g>L00=T7g>LLi`0?G>L0f@O:W>L0P00 0V@O00<007>LLi`0MG>L2Goo0007OolWLi`00f@OLiacW00jLi`3I1l_Li`20002I1mfLi`9Ool000Mo obMcW003I1mcW7>L03QcW09T7cAcW0800003I1l007>L07=cW0Uoo`001goo9g>L00=T7g>LLi`0=W>L 0V@O=g>L0P000V@O00<007>LLi`0L7>L2Goo0007OolWLi`00f@OLiacW00eLi`00f@OLiacW00iLi`2 0002I1l00`00LiacW01^Li`9Ool000MoobMcW003I1mcW7>L03=cW09T7cicW0800003I1l007>L06ic W0Uoo`001goo9g>L00=T7g>LLi`0L0V@O@W>L00@006@OI1l006ecW0Uoo`001goo9g>L00=T7g>L Li`0;g>L0V@OAG>L0P0000=T7`000000Jg>L2Goo0007OolWLi`00f@OLiacW00]Li`2I1m9Li`01000 I1mT7`00JW>L2Goo0007OolWLi`00f@OLiacW00[Li`2I1m=Li`01000I1mT7`00J7>L2Goo0007OolW Li`00f@OLiacW00YLi`2I1m@Li`20002I1l00`00LiacW01TLi`9Ool000MoobMcW003I1mcW7>L02Qc W003I1mcW7>L059cW0800003I1l0000006AcW0Uoo`001goo9g>L00=T7g>LLi`09g>L00=T7g>LLi`0 EG>L00@006@OI1l006=cW0Uoo`001goo9g>L00=T7g>LLi`09G>L0V@OFW>L00@006@OI1l0065cW0Uo o`001goo9g>L00=T7g>LLi`097>L00=T7g>LLi`0Fg>L0P000V@O00<007>LLi`0GG>L2Goo0007OolW Li`00f@OLiacW00SLi`00f@OLiacW01NLi`20002I1l00`00LiacW01KLi`9Ool000MoobMcW003I1mc W7>L029cW003I1mcW7>L065cW0800003I1l007>L05]cW0Uoo`001goo9g>L00=T7g>LLi`08G>L00=T 7g>LLi`0I7>L00@006@OI1l005YcW0Uoo`001goo9g>L00=T7g>LLi`087>L00=T7g>LLi`0IW>L0P00 00=T7`000000F7>L2Goo0007OolWLi`00f@OLiacW00NLi`2I1m[Li`00`00I1mT7`02001FLi`9Ool0 00MoobMcW003I1mcW7>L01acW09T7fmcW004001T7`00001ELi`9Ool000MoobMcW003I1mcW7>L01]c W003I1mcW7>L075cW09T7`8005=cW0Uoo`001goo9g>L00=T7g>LLi`06W>L00=T7g>LLi`0Lg>L00<0 06@OI1l00P00DG>L2Goo0007OolWLi`00f@OLiacW00ILi`00f@OLiacW01fLi`01000I1mT7`00D7>L 2Goo0007OolWLi`00f@OLiacW00ILi`00f@OLiacW01hLi`01000I1mT7`00CW>L2Goo0007OolWLi`0 0f@OLiacW00HLi`00f@OLiacW01jLi`20002I1l00`00LiacW01:Li`9Ool000MoobMcW003I1mcW7>L 01McW003I1mcW7>L07ecW080009T7`03001cW7>L04QcW0Uoo`001goo9g>L00=T7g>LLi`05W>L00=T 7g>LLi`0P7>L0P000V@OBG>L2Goo0007OolWLi`00f@OLiacW00ELi`00f@OLiacW023Li`200000f@O 001cW016Li`9Ool000MoobMcW003I1mcW7>L01AcW003I1mcW7>L08EcW0800003I1l0000004EcW0Uo o`001goo9g>L00=T7g>LLi`04g>L00=T7g>LLi`0R7>L00<006@OI1l00P00@g>L2Goo0007OolWLi`0 0f@OLiacW00BLi`00f@OLiacW02;Li`01000I1l00000@W>L2Goo0007OolWLi`00f@OLiacW00@Li`2 I1n@Li`2I1l20010Li`9Ool000MoobMcW003I1mcW7>L00mcW003I1mcW7>L095cW003001T7f@O0080 03icW0Uoo`001goo9g>L00=T7g>LLi`03W>L00=T7g>LLi`0U7>L00<006@OI1l00P00?7>L2Goo0007 OolWLi`00f@OLiacW00=Li`00f@OLiacW02GLi`01000I1mT7`00>g>L2Goo0007OolWLi`00f@OLiac W00G>L2Goo0007OolWLi`00f@OLiacW00L00]cW003I1mcW7>L09icW004001T 7f@O000fLi`9Ool000MoobMcW003I1mcW7>L00YcW003I1mcW7>L0:5cW004001T7f@O000dLi`9Ool0 00MoobMcW003I1mcW7>L00UcW003I1mcW7>L0:=cW080009T7`03001cW7>L031cW0Uoo`001goo9g>L 00=T7g>LLi`027>L00=T7g>LLi`0YW>L0P000V@O00<007>LLi`0;W>L2Goo0007OolWLi`00f@OLiac W008Li`00f@OLiacW02XLi`200000f@O001cW00^Li`9Ool000MoobMcW003I1mcW7>L00McW003I1mc W7>L0:]cW004001T7f@O000]Li`9Ool000MoobMcW003I1mcW7>L00IcW003I1mcW7>L0:ecW0800003 I1l0000002]cW0Uoo`001goo9g>L00=T7g>LLi`01G>L00=T7g>LLi`0/7>L00<006@OI1l00P00:G>L 2Goo0007OolWLi`00f@OLiacW004Li`00f@OLiacW02cLi`01000I1mT7`00:7>L2Goo0007OolWLi`0 0f@OLiacW003Li`00f@OLiacW02fLi`01000I1mT7`009W>L2Goo0007OolWLi`00f@OLiacW003Li`0 0f@OLiacW02gLi`200000f@O001cW00TLi`9Ool000MoobMcW003I1mcW7>L009cW003I1mcW7>L0;Yc W003001cW7>L02AcW0Uoo`001goo9g>L00ET7g>LLiacW6@O0>AcW0Uoo`001goo9g>L00AT7g>LLiaT 7nEcW0Uoo`001goo9g>L00=T7g>LI1l0iW>L2Goo0007OolWLi`00f@OLiaT7`3VLi`9Ool000MoobMc W09T7nMcW0Uoo`001goo9g>L00=T7g>LLi`0iW>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo003oOolQOol0 0?moob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {128.063, 0}} -> {-0.445198, -0.368171, \ 0.00960427, 0.00960427}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-14\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({261, 117}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-14\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cerniera\"\>", \ "\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>"}, {"\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>", \ "\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>"}, {"\<\"cRnull\"\>", "\<\"crosshairFig\"\>", "\<\"cRsol\"\>", \ "\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>"}, {"\<\"d\"\>", "\<\"datinum\"\>", "\<\"datiO\"\>", "\<\"datip\"\>", \ "\<\"diaM\"\>", "\<\"diaMb\"\>"}, {"\<\"diaN\"\>", "\<\"diaNb\"\>", "\<\"diaNs\"\>", "\<\"diaQ\"\>", \ "\<\"diaQb\"\>", "\<\"diaQs\"\>"}, {"\<\"dsh\"\>", "\<\"e\"\>", "\<\"eqbil\"\>", "\<\"eqbilbd\"\>", \ "\<\"eqbilt\"\>", "\<\"eqnsp\"\>"}, {"\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>", \ "\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>"}, {"\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>", "\<\"fabdp1\"\>", \ "\<\"fbd\"\>", "\<\"figM\"\>"}, {"\<\"figMb\"\>", "\<\"figN\"\>", "\<\"figNb\"\>", "\<\"figNs\"\>", \ "\<\"figQ\"\>", "\<\"figQb\"\>"}, {"\<\"figQs\"\>", "\<\"forze\"\>", "\<\"frame\"\>", \ "\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>"}, {"\<\"g\"\>", "\<\"grad\"\>", "\<\"grNQM\"\>", \ "\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"i\"\>"}, {"\<\"imageH\"\>", "\<\"imageW\"\>", "\<\"incastro\"\>", \ "\<\"incastroFig\"\>", "\<\"incastroV\"\>", "\<\"it\"\>"}, {"\<\"ix\"\>", "\<\"j\"\>", "\<\"jx\"\>", "\<\"ker\"\>", \ "\<\"ker0\"\>", "\<\"L\"\>"}, {"\<\"Li\"\>", "\<\"Lo\"\>", "\<\"m\"\>", "\<\"M\"\>", \ "\<\"matbilbd\"\>", "\<\"matvin\"\>"}, {"\<\"maxL\"\>", "\<\"mb\"\>", "\<\"meno\"\>", "\<\"mU\"\>", \ "\<\"myTeXForm\"\>", "\<\"n\"\>"}, {"\<\"nc\"\>", "\<\"ndiv\"\>", "\<\"newsym\"\>", \ "\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", "\<\"newsymlist2\"\>"}, {"\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>", \ "\<\"newsymlist5\"\>", "\<\"newsymlist6\"\>", "\<\"nf\"\>", "\<\"no\"\>"}, {"\<\"nv\"\>", "\<\"org\"\>", "\<\"outputDir\"\>", "\<\"p\"\>", "\<\ \"perno\"\>", "\<\"pernoFig\"\>"}, {"\<\"pernoV\"\>", "\<\"phframe\"\>", "\<\"pi\[UGrave]\"\>", \ "\<\"pltD\"\>", "\<\"pltDbv\"\>", "\<\"pltDs\"\>"}, {"\<\"pltDv\"\>", "\<\"pltM\"\>", "\<\"pltN\"\>", "\<\"pltO\"\>", "\ \<\"pltOa\"\>", "\<\"pltOax\"\>"}, {"\<\"pltObv\"\>", "\<\"pltOs\"\>", "\<\"pltOv\"\>", \ "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>"}, {"\<\"potbdv\"\>", "\<\"pote\"\>", "\<\"pt1\"\>", "\<\"pt2\"\>", \ "\<\"rango\"\>", "\<\"risp\"\>"}, {"\<\"s\"\>", "\<\"saldatura\"\>", "\<\"saldaturaFig\"\>", \ "\<\"saldaturaV\"\>", "\<\"sb\"\>", "\<\"sc\"\>"}, {"\<\"scM\"\>", "\<\"scN\"\>", "\<\"scQ\"\>", "\<\"secD\"\>", \ "\<\"secO\"\>", "\<\"simplifyDirac\"\>"}, {"\<\"sM\"\>", "\<\"sMf\"\>", "\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\ \"\>", "\<\"sNo\"\>"}, {"\<\"sNQM\"\>", "\<\"spbd\"\>", "\<\"splist\"\>", \ "\<\"splistV\"\>", "\<\"spro\"\>", "\<\"spsol\"\>"}, {"\<\"spsolD\"\>", "\<\"spsolDO\"\>", "\<\"spsolO\"\>", "\<\"spuv\ \[Theta]\"\>", "\<\"sQ\"\>", "\<\"sQo\"\>"}, {"\<\"stFile\"\>", "\<\"svar\"\>", "\<\"texBil1\"\>", \ "\<\"texBil2\"\>", "\<\"texBil3\"\>", "\<\"texCDval\"\>"}, {"\<\"texCname\"\>", "\<\"texCval\"\>", "\<\"texDname\"\>", \ "\<\"texDval\"\>", "\<\"texeqbd\"\>", "\<\"texeqbdO\"\>"}, {"\<\"texm\"\>", "\<\"texM\"\>", "\<\"texMin\"\>", "\<\"texMn\"\>", \ "\<\"texN\"\>", "\<\"texNin\"\>"}, {"\<\"texNn\"\>", "\<\"texQ\"\>", "\<\"texQin\"\>", \ "\<\"texQn\"\>", "\<\"texs\"\>", "\<\"texsm\"\>"}, {"\<\"texsn\"\>", "\<\"texu1\"\>", "\<\"texu1in\"\>", "\<\"texu1inO\ \"\>", "\<\"texu1n\"\>", "\<\"texu2\"\>"}, {"\<\"texu2in\"\>", "\<\"texu2inO\"\>", "\<\"texu2n\"\>", \ "\<\"texvinc\"\>", "\<\"texvincO\"\>", "\<\"tex\[Theta]\"\>"}, {"\<\"tex\[Theta]in\"\>", "\<\"tex\[Theta]inO\"\>", \ "\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", "\<\"thetao\"\>", "\<\"ticksOption\"\ \>"}, {"\<\"travi\"\>", "\<\"trv\"\>", "\<\"trv1\"\>", "\<\"trv2\"\>", \ "\<\"u\"\>", "\<\"u1\"\>"}, {"\<\"u1o\"\>", "\<\"u2\"\>", "\<\"u2o\"\>", "\<\"ub\"\>", \ "\<\"uo\"\>", "\<\"vam\"\>"}, {"\<\"var\"\>", "\<\"vecOa1\"\>", "\<\"vecOa2\"\>", \ "\<\"vinBer\"\>", "\<\"vincoli\"\>", "\<\"vincolibFig\"\>"}, {"\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>", "\<\"vsp\"\>", "\<\"wb\ \"\>", "\<\"xC\"\>", "\<\"xCshift\"\>"}, {"\<\"xDiag\"\>", "\<\"xLowerL\"\>", "\<\"xMax\"\>", \ "\<\"xMin\"\>", "\<\"xUpperR\"\>", "\<\"y1\"\>"}, {"\<\"y2\"\>", "\<\"YA\"\>", "\<\"YJ\"\>", "\<\"\[ScriptA]\"\>", \ "\<\"\[ScriptB]\"\>", "\<\"\[ScriptC]\"\>"}, {"\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\"\>", "\<\"\ \[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\[ScriptCapitalL]\"\>", \ "\<\"\[ScriptCapitalM]\"\>"}, {"\<\"\[ScriptCapitalY]\[ScriptCapitalA]\"\>", "\<\"\ \[ScriptCapitalY]\[ScriptCapitalJ]\"\>", "\<\"\[Alpha]\"\>", \ "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>", "\<\"\[Zeta]\"\>"}, {"\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>", "\<\"\[Theta]b\"\>", "\<\"\ \[Theta]o\"\>", "\<\"\[Kappa]\"\>", "\<\"\[Xi]\"\>"}, {"\<\"\[Chi]\"\>", "\<\"\[Omega]b\"\>", "\<\"\"\>", "\<\"\"\>", "\<\ \"\"\>", "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cerniera", "cernieraFig", "cernieraV", "cNQM"}, {"cNQMb", "cNQMsol", "cNQMval", "col", "coll", "cRlist"}, {"cRnull", "crosshairFig", "cRsol", "cRsol0", "cRsol1", "cRval"}, {"d", "datinum", "datiO", "datip", "diaM", "diaMb"}, { "diaN", "diaNb", "diaNs", "diaQ", "diaQb", "diaQs"}, {"dsh", "e", "eqbil", "eqbilbd", "eqbilt", "eqnsp"}, {"eqnspO", "eqvin", "eqvinO", "exp", "expr1", "extraSimplify"}, {"f", "fabd", "fabdp", "fabdp1", "fbd", "figM"}, {"figMb", "figN", "figNb", "figNs", "figQ", "figQb"}, {"figQs", "forze", "frame", "frameb", "fromCtoNQM", "fromDtoU"}, {"g", "grad", "grNQM", "gruv\[Theta]", "g$", "i"}, { "imageH", "imageW", "incastro", "incastroFig", "incastroV", "it"}, { "ix", "j", "jx", "ker", "ker0", "L"}, {"Li", "Lo", "m", "M", "matbilbd", "matvin"}, {"maxL", "mb", "meno", "mU", "myTeXForm", "n"}, {"nc", "ndiv", "newsym", "newsymlist", "newsymlist1", "newsymlist2"}, {"newsymlist3", "newsymlist4", "newsymlist5", "newsymlist6", "nf", "no"}, {"nv", "org", "outputDir", "p", "perno", "pernoFig"}, {"pernoV", "phframe", "pi\[UGrave]", "pltD", "pltDbv", "pltDs"}, {"pltDv", "pltM", "pltN", "pltO", "pltOa", "pltOax"}, { "pltObv", "pltOs", "pltOv", "pltOx", "pltQ", "potbd"}, {"potbdv", "pote", "pt1", "pt2", "rango", "risp"}, {"s", "saldatura", "saldaturaFig", "saldaturaV", "sb", "sc"}, {"scM", "scN", "scQ", "secD", "secO", "simplifyDirac"}, {"sM", "sMf", "sMo", "sN", "sNf", "sNo"}, {"sNQM", "spbd", "splist", "splistV", "spro", "spsol"}, { "spsolD", "spsolDO", "spsolO", "spuv\[Theta]", "sQ", "sQo"}, { "stFile", "svar", "texBil1", "texBil2", "texBil3", "texCDval"}, { "texCname", "texCval", "texDname", "texDval", "texeqbd", "texeqbdO"}, {"texm", "texM", "texMin", "texMn", "texN", "texNin"}, { "texNn", "texQ", "texQin", "texQn", "texs", "texsm"}, {"texsn", "texu1", "texu1in", "texu1inO", "texu1n", "texu2"}, {"texu2in", "texu2inO", "texu2n", "texvinc", "texvincO", "tex\[Theta]"}, { "tex\[Theta]in", "tex\[Theta]inO", "tex\[Theta]n", "theta", "thetao", "ticksOption"}, {"travi", "trv", "trv1", "trv2", "u", "u1"}, {"u1o", "u2", "u2o", "ub", "uo", "vam"}, {"var", "vecOa1", "vecOa2", "vinBer", "vincoli", "vincolibFig"}, {"vincoliDef", "vincoliFig", "vsp", "wb", "xC", "xCshift"}, {"xDiag", "xLowerL", "xMax", "xMin", "xUpperR", "y1"}, {"y2", "YA", "YJ", "\[ScriptA]", "\[ScriptB]", "\[ScriptC]"}, { "\[ScriptCapitalC]", "\[ScriptD]", "\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]", "\[ScriptCapitalM]"}, { "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]", "\[Alpha]", "\[Gamma]", "\[Epsilon]", "\[Zeta]"}, {"\[Zeta]$", "\[Theta]", "\[Theta]b", "\[Theta]o", "\[Kappa]", "\[Xi]"}, {"\[Chi]", "\[Omega]b"}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{653, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 280, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2522, 81, 51, 1, 59, "Section", Evaluatable->False], Cell[2576, 84, 1127, 30, 252, "SmallText"], Cell[3706, 116, 1520, 27, 236, "SmallText"], Cell[5229, 145, 498, 12, 60, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[5764, 162, 57, 1, 39, "Section", Evaluatable->False], Cell[5824, 165, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[5955, 171, 56, 1, 30, "Input"], Cell[6014, 174, 91, 1, 70, "Output"] }, Open ]], Cell[6120, 178, 97, 2, 28, "SmallText"], Cell[6220, 182, 130, 2, 50, "Input"], Cell[6353, 186, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6885, 199, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7071, 209, 84, 2, 47, "Subsection"], Cell[7158, 213, 109, 2, 28, "SmallText"], Cell[7270, 217, 128, 4, 50, "Input"], Cell[7401, 223, 131, 4, 28, "SmallText"], Cell[7535, 229, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7817, 240, 103, 5, 31, "Subsection"], Cell[7923, 247, 46, 0, 28, "SmallText"], Cell[7972, 249, 101, 3, 46, "Input"], Cell[8076, 254, 364, 10, 60, "SmallText"], Cell[8443, 266, 153, 4, 77, "Input"], Cell[8599, 272, 319, 9, 60, "SmallText"], Cell[8921, 283, 181, 4, 66, "Input"], Cell[9105, 289, 369, 7, 106, "Input"], Cell[9477, 298, 130, 3, 28, "SmallText"], Cell[9610, 303, 129, 3, 46, "Input"], Cell[9742, 308, 121, 3, 28, "SmallText"], Cell[9866, 313, 199, 5, 58, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[10102, 323, 56, 0, 47, "Subsection"], Cell[10161, 325, 45, 0, 28, "SmallText"], Cell[10209, 327, 124, 3, 30, "Input"], Cell[10336, 332, 42, 0, 28, "SmallText"], Cell[10381, 334, 118, 2, 30, "Input"], Cell[10502, 338, 43, 1, 30, "Input"], Cell[10548, 341, 227, 4, 28, "SmallText"], Cell[10778, 347, 53, 1, 30, "Input"], Cell[10834, 350, 271, 5, 42, "Input"], Cell[11108, 357, 46, 0, 28, "SmallText"], Cell[11157, 359, 195, 4, 42, "Input"], Cell[11355, 365, 52, 0, 28, "SmallText"], Cell[11410, 367, 504, 9, 131, "Input"], Cell[11917, 378, 613, 11, 131, "Input"], Cell[12533, 391, 73, 0, 28, "SmallText"], Cell[12609, 393, 46, 1, 30, "Input"], Cell[12658, 396, 134, 3, 28, "SmallText"], Cell[12795, 401, 182, 4, 30, "Input"], Cell[12980, 407, 146, 3, 30, "Input"], Cell[13129, 412, 42, 0, 28, "SmallText"], Cell[13174, 414, 203, 4, 42, "Input"], Cell[13380, 420, 48, 0, 28, "SmallText"], Cell[13431, 422, 226, 5, 85, "Input"], Cell[13660, 429, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13902, 439, 111, 3, 50, "Subsection"], Cell[CellGroupData[{ Cell[14038, 446, 144, 2, 70, "Input"], Cell[14185, 450, 4659, 148, 89, 1325, 102, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[18905, 605, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[19080, 615, 103, 5, 47, "Subsection"], Cell[19186, 622, 62, 1, 30, "Input"], Cell[19251, 625, 57, 1, 30, "Input"], Cell[19311, 628, 417, 11, 76, "SmallText"], Cell[19731, 641, 130, 3, 46, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[19898, 649, 210, 7, 66, "Subsection"], Cell[CellGroupData[{ Cell[20133, 660, 52, 1, 30, "Input"], Cell[20188, 663, 46, 1, 70, "Output"] }, Open ]], Cell[20249, 667, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[20584, 676, 50, 1, 30, "Input"], Cell[20637, 679, 46, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[20744, 687, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[20885, 694, 132, 3, 47, "Subsection"], Cell[21020, 699, 137, 3, 30, "Input"], Cell[21160, 704, 74, 1, 30, "Input"], Cell[21237, 707, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[22364, 739, 92, 1, 30, "Input"], Cell[22459, 742, 76, 1, 70, "Output"] }, Open ]], Cell[22550, 746, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[22680, 752, 174, 3, 30, "Input"], Cell[22857, 757, 589, 11, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[23495, 774, 64, 0, 31, "Subsection"], Cell[23562, 776, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[23867, 786, 87, 1, 30, "Input"], Cell[23957, 789, 184, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24178, 797, 104, 2, 30, "Input"], Cell[24285, 801, 82, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24404, 807, 190, 3, 50, "Input"], Cell[24597, 812, 253, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24887, 821, 264, 4, 71, "Input"], Cell[25154, 827, 292, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25483, 837, 65, 1, 30, "Input"], Cell[25551, 840, 444, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[26044, 854, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[26135, 858, 116, 2, 30, "Input"], Cell[26254, 862, 2144, 66, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28435, 933, 290, 5, 50, "Input"], Cell[28728, 940, 1547, 44, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[30312, 989, 289, 5, 50, "Input"], Cell[30604, 996, 1283, 42, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[31948, 1045, 62, 0, 39, "Section"], Cell[32013, 1047, 71, 1, 30, "Input"], Cell[32087, 1050, 146, 3, 28, "SmallText"], Cell[32236, 1055, 408, 9, 70, "Input"], Cell[32647, 1066, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[32742, 1070, 198, 4, 30, "Input"], Cell[32943, 1076, 314, 5, 70, "Output"] }, Open ]], Cell[33272, 1084, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[33367, 1088, 198, 4, 30, "Input"], Cell[33568, 1094, 314, 5, 70, "Output"] }, Open ]], Cell[33897, 1102, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[33986, 1106, 190, 4, 30, "Input"], Cell[34179, 1112, 277, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[34505, 1122, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[34658, 1131, 53, 0, 47, "Subsection"], Cell[34714, 1133, 110, 2, 30, "Input"], Cell[34827, 1137, 152, 3, 30, "Input"], Cell[34982, 1142, 249, 5, 50, "Input"], Cell[35234, 1149, 330, 6, 70, "Input"], Cell[35567, 1157, 193, 4, 30, "Input"], Cell[35763, 1163, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[35933, 1171, 103, 5, 31, "Subsection"], Cell[36039, 1178, 160, 4, 60, "SmallText"], Cell[36202, 1184, 49, 1, 30, "Input"], Cell[36254, 1187, 106, 2, 50, "Input"], Cell[36363, 1191, 119, 3, 28, "SmallText"], Cell[36485, 1196, 199, 4, 66, "Input"], Cell[36687, 1202, 505, 8, 92, "SmallText"], Cell[37195, 1212, 201, 4, 66, "Input"], Cell[37399, 1218, 224, 3, 110, "Input"], Cell[CellGroupData[{ Cell[37648, 1225, 40, 1, 30, "Input"], Cell[37691, 1228, 573, 9, 70, "Output"] }, Open ]], Cell[38279, 1240, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[38374, 1244, 137, 3, 30, "Input"], Cell[38514, 1249, 313, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[38876, 1260, 56, 0, 31, "Subsection"], Cell[38935, 1262, 72, 0, 28, "SmallText"], Cell[39010, 1264, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[39079, 1269, 43, 1, 30, "Input"], Cell[39125, 1272, 114, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[39276, 1279, 280, 5, 90, "Input"], Cell[39559, 1286, 60, 1, 70, "Output"] }, Open ]], Cell[39634, 1290, 150, 3, 44, "SmallText"], Cell[39787, 1295, 43, 1, 30, "Input"], Cell[39833, 1298, 53, 1, 30, "Input"], Cell[39889, 1301, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[41191, 1331, 240, 4, 70, "Input"], Cell[41434, 1337, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[41515, 1343, 48, 1, 30, "Input"], Cell[41566, 1346, 458, 14, 70, "Output"] }, Open ]], Cell[42039, 1363, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[42154, 1369, 43, 1, 30, "Input"], Cell[42200, 1372, 114, 2, 70, "Output"] }, Open ]], Cell[42329, 1377, 222, 4, 90, "Input"], Cell[42554, 1383, 219, 4, 90, "Input"], Cell[42776, 1389, 67, 0, 28, "SmallText"], Cell[42846, 1391, 72, 1, 30, "Input"], Cell[42921, 1394, 82, 1, 30, "Input"], Cell[43006, 1397, 393, 7, 208, "Input"], Cell[43402, 1406, 403, 7, 208, "Input"], Cell[43808, 1415, 214, 4, 118, "Input"], Cell[44025, 1421, 717, 13, 338, "Input"], Cell[44745, 1436, 452, 8, 202, "Input"], Cell[45200, 1446, 213, 4, 90, "Input"], Cell[45416, 1452, 155, 3, 70, "Input"], Cell[45574, 1457, 57, 1, 30, "Input"], Cell[45634, 1460, 59, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[45730, 1466, 75, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[45830, 1470, 145, 2, 70, "Input"], Cell[45978, 1474, 5989, 171, 115, 1457, 111, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[52004, 1650, 144, 2, 70, "Input"], Cell[52151, 1654, 4661, 152, 111, 1413, 107, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[56861, 1812, 78, 0, 47, "Subsection"], Cell[56942, 1814, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[57198, 1822, 213, 4, 50, "Input"], Cell[57414, 1828, 1626, 48, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59077, 1881, 70, 1, 30, "Input"], Cell[59150, 1884, 2480, 71, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[61691, 1962, 89, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[61805, 1967, 68, 1, 47, "Subsection", Evaluatable->False], Cell[61876, 1970, 119, 3, 28, "SmallText"], Cell[61998, 1975, 156, 3, 28, "SmallText"], Cell[62157, 1980, 356, 5, 95, "Input"], Cell[62516, 1987, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[62884, 1997, 37, 1, 30, "Input"], Cell[62924, 2000, 591, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[63552, 2014, 71, 1, 30, "Input"], Cell[63626, 2017, 1249, 21, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[64924, 2044, 57, 0, 31, "Subsection"], Cell[64984, 2046, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[65103, 2052, 169, 3, 30, "Input"], Cell[65275, 2057, 562, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[65874, 2071, 93, 1, 30, "Input"], Cell[65970, 2074, 573, 9, 70, "Output"] }, Open ]], Cell[66558, 2086, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[66644, 2090, 344, 6, 90, "Input"], Cell[66991, 2098, 313, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[67341, 2108, 69, 1, 30, "Input"], Cell[67413, 2111, 150, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[67612, 2119, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[67702, 2123, 70, 1, 30, "Input"], Cell[67775, 2126, 657, 10, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[68481, 2142, 105, 2, 50, "Subsection"], Cell[CellGroupData[{ Cell[68611, 2148, 195, 4, 30, "Input"], Cell[68809, 2154, 512, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[69358, 2168, 63, 1, 30, "Input"], Cell[69424, 2171, 491, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[69964, 2185, 88, 1, 31, "Subsection", Evaluatable->False], Cell[70055, 2188, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[70260, 2196, 37, 1, 30, "Input"], Cell[70300, 2199, 82, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70419, 2205, 138, 4, 30, "Input"], Cell[70560, 2211, 82, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70679, 2217, 103, 2, 30, "Input"], Cell[70785, 2221, 526, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[71348, 2235, 134, 3, 30, "Input"], Cell[71485, 2240, 472, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[71994, 2255, 134, 3, 30, "Input"], Cell[72131, 2260, 1125, 34, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[73305, 2300, 78, 0, 31, "Subsection"], Cell[73386, 2302, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[73494, 2307, 45, 1, 30, "Input"], Cell[73542, 2310, 35, 1, 70, "Output"] }, Open ]], Cell[73592, 2314, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[73835, 2322, 51, 1, 30, "Input"], Cell[73889, 2325, 35, 1, 70, "Output"] }, Open ]], Cell[73939, 2329, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[74087, 2336, 53, 1, 30, "Input"], Cell[74143, 2339, 35, 1, 70, "Output"] }, Open ]], Cell[74193, 2343, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[74350, 2350, 51, 1, 30, "Input"], Cell[74404, 2353, 35, 1, 70, "Output"] }, Open ]], Cell[74454, 2357, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[74509, 2361, 134, 2, 30, "Input"], Cell[74646, 2365, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[74735, 2371, 230, 5, 30, "Input"], Cell[74968, 2378, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[75052, 2385, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[75149, 2389, 461, 8, 19, "Input", CellOpen->False], Cell[75613, 2399, 195, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[75845, 2409, 1993, 32, 19, "Input", CellOpen->False], Cell[77841, 2443, 189, 5, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[78091, 2455, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[78258, 2465, 56, 0, 47, "Subsection"], Cell[78317, 2467, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[78417, 2471, 92, 1, 50, "Input"], Cell[78512, 2474, 325, 5, 70, "Output"] }, Open ]], Cell[78852, 2482, 182, 3, 44, "SmallText"], Cell[79037, 2487, 248, 7, 50, "Input"], Cell[CellGroupData[{ Cell[79310, 2498, 71, 1, 30, "Input"], Cell[79384, 2501, 657, 20, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[80090, 2527, 134, 5, 31, "Subsection"], Cell[80227, 2534, 420, 7, 76, "SmallText"], Cell[80650, 2543, 104, 3, 46, "Input"], Cell[80757, 2548, 313, 9, 44, "SmallText"], Cell[81073, 2559, 407, 8, 106, "Input"], Cell[81483, 2569, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[81598, 2575, 135, 3, 30, "Input"], Cell[81736, 2580, 36, 1, 29, "Output"] }, Open ]], Cell[81787, 2584, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[81939, 2591, 140, 3, 70, "Input"], Cell[82082, 2596, 180, 3, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82299, 2604, 182, 4, 50, "Input"], Cell[82484, 2610, 241, 4, 48, "Output"] }, Open ]], Cell[82740, 2617, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[82811, 2621, 46, 1, 30, "Input"], Cell[82860, 2624, 49, 1, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[82958, 2631, 72, 0, 47, "Subsection"], Cell[83033, 2633, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[83199, 2640, 271, 7, 50, "Input"], Cell[83473, 2649, 51, 1, 70, "Output"] }, Open ]], Cell[83539, 2653, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[83749, 2661, 160, 4, 30, "Input"], Cell[83912, 2667, 36, 1, 70, "Output"] }, Open ]], Cell[83963, 2671, 524, 9, 110, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[84536, 2686, 88, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[84649, 2691, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[84726, 2695, 76, 1, 30, "Input"], Cell[84805, 2698, 366, 6, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[85220, 2710, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[85336, 2715, 571, 10, 70, "Input"], Cell[85910, 2727, 303, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[86250, 2737, 149, 2, 30, "Input"], Cell[86402, 2741, 216, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[86655, 2750, 40, 1, 30, "Input"], Cell[86698, 2753, 303, 5, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[87062, 2765, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[87203, 2772, 45, 0, 47, "Subsection"], Cell[87251, 2774, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[87417, 2781, 1094, 25, 50, "Input"], Cell[88514, 2808, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[89578, 2838, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[89668, 2842, 217, 4, 50, "Input"], Cell[89888, 2848, 186, 3, 70, "Output"] }, Open ]], Cell[90089, 2854, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[90193, 2858, 365, 9, 30, "Input"], Cell[90561, 2869, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[90930, 2883, 40, 0, 31, "Subsection"], Cell[90973, 2885, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[91140, 2892, 227, 3, 50, "Input"], Cell[91370, 2897, 570, 11, 70, "Output"] }, Open ]], Cell[91955, 2911, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[92088, 2918, 289, 4, 70, "Input"], Cell[92380, 2924, 1424, 32, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[93841, 2961, 246, 4, 70, "Input"], Cell[94090, 2967, 876, 15, 70, "Output"] }, Open ]], Cell[94981, 2985, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[95108, 2991, 330, 5, 70, "Input"], Cell[95441, 2998, 1422, 28, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[96900, 3031, 244, 4, 70, "Input"], Cell[97147, 3037, 1145, 23, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[98329, 3065, 169, 3, 30, "Input"], Cell[98501, 3070, 196, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[98734, 3078, 76, 1, 30, "Input"], Cell[98813, 3081, 1105, 19, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[99955, 3105, 75, 1, 30, "Input"], Cell[100033, 3108, 1153, 20, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[101235, 3134, 64, 0, 31, "Subsection"], Cell[101302, 3136, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[101552, 3145, 190, 4, 50, "Input"], Cell[101745, 3151, 184, 3, 70, "Output"] }, Open ]], Cell[101944, 3157, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[102081, 3164, 311, 7, 90, "Input"], Cell[102395, 3173, 192, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[102624, 3181, 257, 4, 50, "Input"], Cell[102884, 3187, 273, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[103194, 3196, 127, 2, 31, "Input"], Cell[103324, 3200, 314, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[103675, 3210, 60, 1, 30, "Input"], Cell[103738, 3213, 117, 2, 70, "Output"] }, Open ]], Cell[103870, 3218, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[104003, 3225, 61, 1, 30, "Input"], Cell[104067, 3228, 823, 15, 70, "Output"] }, Open ]], Cell[104905, 3246, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[105032, 3252, 59, 1, 30, "Input"], Cell[105094, 3255, 1073, 21, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[106228, 3283, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[106331, 3288, 64, 1, 47, "Subsection", Evaluatable->False], Cell[106398, 3291, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[106574, 3298, 422, 8, 90, "Input"], Cell[106999, 3308, 452, 8, 70, "Output"] }, Open ]], Cell[107466, 3319, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[107682, 3327, 82, 1, 30, "Input"], Cell[107767, 3330, 1216, 18, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[109032, 3354, 78, 1, 31, "Subsection", Evaluatable->False], Cell[109113, 3357, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[109246, 3363, 93, 1, 30, "Input"], Cell[109342, 3366, 971, 19, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[110350, 3390, 93, 1, 30, "Input"], Cell[110446, 3393, 1317, 35, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[111800, 3433, 107, 2, 30, "Input"], Cell[111910, 3437, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[111982, 3443, 108, 2, 30, "Input"], Cell[112093, 3447, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[112166, 3453, 39, 1, 30, "Input"], Cell[112208, 3456, 117, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[112374, 3464, 55, 0, 31, "Subsection"], Cell[112432, 3466, 246, 4, 110, "Input"], Cell[112681, 3472, 244, 4, 110, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[112962, 3481, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[113067, 3486, 169, 3, 30, "Input"], Cell[113239, 3491, 611, 10, 70, "Output"] }, Open ]], Cell[113865, 3504, 42, 1, 30, "Input"], Cell[113910, 3507, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[114021, 3512, 88, 1, 30, "Input"], Cell[114112, 3515, 611, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[114760, 3530, 221, 4, 30, "Input"], Cell[114984, 3536, 853, 15, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[115874, 3556, 128, 2, 30, "Input"], Cell[116005, 3560, 4284, 102, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[120350, 3669, 123, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[120498, 3676, 140, 5, 47, "Subsection"], Cell[120641, 3683, 110, 2, 30, "Input"], Cell[120754, 3687, 78, 1, 30, "Input"], Cell[120835, 3690, 76, 1, 30, "Input"], Cell[120914, 3693, 59, 1, 30, "Input"], Cell[120976, 3696, 471, 8, 139, "Input"], Cell[121450, 3706, 65, 1, 30, "Input"], Cell[121518, 3709, 85, 1, 30, "Input"], Cell[121606, 3712, 150, 3, 70, "Input"], Cell[121759, 3717, 193, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[121977, 3725, 304, 5, 130, "Input"], Cell[122284, 3732, 38, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[122371, 3739, 64, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[122460, 3743, 91, 1, 30, "Input"], Cell[122554, 3746, 334, 6, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[122925, 3757, 89, 1, 30, "Input"], Cell[123017, 3760, 743, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[123809, 3778, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[123870, 3782, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[123933, 3786, 297, 6, 90, "Input"], Cell[124233, 3794, 507, 13, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[124789, 3813, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[124854, 3817, 292, 6, 90, "Input"], Cell[125149, 3825, 462, 12, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[125660, 3843, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[125717, 3847, 292, 6, 90, "Input"], Cell[126012, 3855, 590, 14, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[126663, 3876, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[126721, 3880, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[126790, 3884, 289, 6, 130, "Input"], Cell[127082, 3892, 747, 16, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[127878, 3914, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[127951, 3918, 289, 6, 130, "Input"], Cell[128243, 3926, 930, 19, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[129222, 3951, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[129281, 3955, 295, 6, 130, "Input"], Cell[129579, 3963, 901, 19, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[130541, 3989, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[130684, 3996, 58, 1, 30, "Input"], Cell[130745, 3999, 411, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[131193, 4016, 62, 0, 43, "Subsubsection"], Cell[131258, 4018, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[131342, 4022, 302, 5, 150, "Input"], Cell[131647, 4029, 1018, 22, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[132714, 4057, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[132803, 4061, 302, 5, 150, "Input"], Cell[133108, 4068, 479, 12, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[133636, 4086, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[133713, 4090, 453, 8, 189, "Input"], Cell[134169, 4100, 380, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[134598, 4117, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[134677, 4121, 623, 11, 191, "Input"], Cell[135303, 4134, 366, 11, 70, "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[135742, 4153, 131, 6, 39, "Section", Evaluatable->False], Cell[135876, 4161, 118, 3, 33, "Text"], Cell[135997, 4166, 322, 7, 46, "Input"], Cell[136322, 4175, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[136572, 4183, 132, 3, 50, "Input"], Cell[136707, 4188, 36, 1, 29, "Output"] }, Open ]], Cell[136758, 4192, 123, 3, 33, "Text"], Cell[136884, 4197, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[137011, 4204, 142, 3, 70, "Input"], Cell[137156, 4209, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[137229, 4215, 69, 1, 30, "Input"], Cell[137301, 4218, 299, 5, 42, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[137649, 4229, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[137781, 4236, 33, 0, 47, "Subsection"], Cell[137817, 4238, 215, 4, 50, "Input"], Cell[138035, 4244, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[138286, 4253, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[138377, 4258, 67, 1, 30, "Input"], Cell[138447, 4261, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[138527, 4267, 68, 1, 30, "Input"], Cell[138598, 4270, 478, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[139113, 4283, 81, 1, 30, "Input"], Cell[139197, 4286, 445, 7, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[139679, 4298, 84, 1, 30, "Input"], Cell[139766, 4301, 172, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[139975, 4309, 73, 1, 30, "Input"], Cell[140051, 4312, 352, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[140440, 4322, 76, 1, 30, "Input"], Cell[140519, 4325, 189, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[140745, 4333, 73, 1, 30, "Input"], Cell[140821, 4336, 116, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[140974, 4343, 76, 1, 30, "Input"], Cell[141053, 4346, 116, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[141218, 4354, 75, 1, 31, "Subsection", Evaluatable->False], Cell[141296, 4357, 384, 16, 28, "SmallText"], Cell[141683, 4375, 261, 12, 28, "SmallText"], Cell[141947, 4389, 1652, 33, 152, "Input"], Cell[143602, 4424, 1634, 32, 152, "Input"], Cell[145239, 4458, 393, 16, 50, "Text"], Cell[145635, 4476, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[145736, 4482, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[145853, 4487, 132, 3, 19, "Input", CellOpen->False], Cell[CellGroupData[{ Cell[146010, 4494, 10693, 412, 77, 5150, 340, "GraphicsData", "PostScript", \ "Graphics"], Cell[156706, 4908, 8802, 364, 77, 4680, 310, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[165569, 5279, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[165688, 5286, 155, 4, 19, "Input", CellOpen->False], Cell[CellGroupData[{ Cell[165868, 5294, 12307, 453, 81, 5581, 367, "GraphicsData", "PostScript", \ "Graphics"], Cell[178178, 5749, 10418, 384, 81, 4675, 310, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[188669, 6141, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[188859, 6151, 56, 0, 47, "Subsection"], Cell[188918, 6153, 136, 3, 28, "SmallText"], Cell[189057, 6158, 222, 5, 30, "Input"], Cell[189282, 6165, 446, 7, 84, "Input"], Cell[189731, 6174, 38, 0, 28, "SmallText"], Cell[189772, 6176, 328, 7, 50, "Input"], Cell[190103, 6185, 42, 0, 28, "SmallText"], Cell[190148, 6187, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[190402, 6196, 86, 1, 30, "Input"], Cell[190491, 6199, 432, 11, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[190960, 6215, 88, 1, 30, "Input"], Cell[191051, 6218, 432, 11, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[191532, 6235, 42, 0, 31, "Subsection"], Cell[191577, 6237, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[191834, 6245, 263, 5, 90, "Input"], Cell[192100, 6252, 61, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[192198, 6258, 263, 5, 90, "Input"], Cell[192464, 6265, 66, 1, 70, "Output"] }, Open ]], Cell[192545, 6269, 86, 1, 30, "Input"], Cell[192634, 6272, 128, 2, 76, "Input"], Cell[192765, 6276, 112, 2, 30, "Input"], Cell[192880, 6280, 129, 3, 30, "Input"], Cell[193012, 6285, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[193116, 6291, 132, 5, 31, "Subsection"], Cell[193251, 6298, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[193457, 6307, 83, 1, 32, "Input"], Cell[193543, 6310, 58, 1, 29, "Output"] }, Open ]], Cell[193616, 6314, 180, 6, 41, "Input"], Cell[CellGroupData[{ Cell[193821, 6324, 62, 1, 30, "Input"], Cell[193886, 6327, 131, 2, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[194066, 6335, 28, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[194119, 6339, 221, 3, 70, "Input"], Cell[194343, 6344, 10135, 340, 138, 3333, 252, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[204515, 6689, 219, 3, 70, "Input"], Cell[204737, 6694, 9179, 323, 138, 3280, 246, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[213977, 7024, 159, 6, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[214161, 7034, 34, 0, 47, "Subsection"], Cell[214198, 7036, 136, 3, 28, "SmallText"], Cell[214337, 7041, 191, 4, 30, "Input"], Cell[214531, 7047, 36, 0, 28, "SmallText"], Cell[214570, 7049, 349, 8, 50, "Input"], Cell[214922, 7059, 46, 0, 28, "SmallText"], Cell[214971, 7061, 925, 20, 210, "Input"], Cell[215899, 7083, 122, 3, 30, "Input"], Cell[216024, 7088, 109, 2, 50, "Input"], Cell[216136, 7092, 109, 2, 50, "Input"], Cell[216248, 7096, 270, 5, 70, "Input"], Cell[216521, 7103, 191, 4, 30, "Input"], Cell[216715, 7109, 349, 8, 50, "Input"], Cell[217067, 7119, 925, 20, 210, "Input"], Cell[217995, 7141, 122, 3, 30, "Input"], Cell[218120, 7146, 109, 2, 50, "Input"], Cell[218232, 7150, 109, 2, 50, "Input"], Cell[218344, 7154, 270, 5, 70, "Input"], Cell[218617, 7161, 191, 4, 30, "Input"], Cell[218811, 7167, 349, 8, 50, "Input"], Cell[219163, 7177, 122, 3, 30, "Input"], Cell[219288, 7182, 109, 2, 50, "Input"], Cell[219400, 7186, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[219700, 7196, 128, 5, 31, "Subsection"], Cell[219831, 7203, 48, 1, 30, "Input"], Cell[219882, 7206, 48, 1, 30, "Input"], Cell[219933, 7209, 48, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[220018, 7215, 51, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[220094, 7219, 167, 2, 70, "Input"], Cell[220264, 7223, 10758, 476, 138, 6305, 417, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[231071, 7705, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[231138, 7709, 167, 2, 70, "Input"], Cell[231308, 7713, 10568, 368, 138, 4385, 287, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[241925, 8087, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[241993, 8091, 167, 2, 70, "Input"], Cell[242163, 8095, 8870, 308, 138, 3659, 239, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[251094, 8410, 104, 1, 59, "Section"], Cell[CellGroupData[{ Cell[251223, 8415, 44, 1, 30, "Input"], Cell[251270, 8418, 91, 1, 70, "Output"] }, Open ]], Cell[251376, 8422, 137, 3, 70, "Input"], Cell[251516, 8427, 231, 4, 70, "Input"], Cell[251750, 8433, 237, 4, 70, "Input"], Cell[251990, 8439, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[252129, 8445, 328, 5, 72, "Input"], Cell[252460, 8452, 44, 1, 70, "Output"] }, Open ]], Cell[252519, 8456, 255, 4, 90, "Input"], Cell[252777, 8462, 257, 4, 90, "Input"], Cell[253037, 8468, 281, 5, 90, "Input"], Cell[253321, 8475, 254, 4, 90, "Input"], Cell[253578, 8481, 254, 4, 90, "Input"], Cell[253835, 8487, 254, 4, 90, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[254126, 8496, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[254452, 8510, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[254519, 8514, 44, 1, 30, "Input"], Cell[254566, 8517, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[254694, 8523, 69, 1, 30, "Input"], Cell[254766, 8526, 70, 1, 70, "Output"] }, Open ]], Cell[254851, 8530, 137, 3, 28, "SmallText"], Cell[254991, 8535, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[255531, 8549, 58, 1, 30, "Input"], Cell[255592, 8552, 411, 12, 70, "Output"] }, Open ]], Cell[256018, 8567, 226, 5, 44, "SmallText"], Cell[256247, 8574, 144, 3, 50, "Input"], Cell[256394, 8579, 191, 4, 28, "SmallText"], Cell[256588, 8585, 191, 5, 70, "Input"], Cell[256782, 8592, 347, 6, 70, "Input"], Cell[257132, 8600, 219, 4, 50, "Input"], Cell[257354, 8606, 548, 10, 110, "Input"], Cell[257905, 8618, 197, 3, 50, "Input"], Cell[258105, 8623, 381, 7, 70, "Input"], Cell[258489, 8632, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[258807, 8641, 259, 9, 31, "Subsection"], Cell[259069, 8652, 122, 3, 28, "SmallText"], Cell[259194, 8657, 193, 4, 31, "Input"], Cell[259390, 8663, 193, 4, 31, "Input"], Cell[259586, 8669, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[259804, 8677, 801, 15, 130, "Input"], Cell[260608, 8694, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[260703, 8701, 275, 9, 31, "Subsection"], Cell[260981, 8712, 175, 4, 30, "Input"], Cell[261159, 8718, 175, 4, 30, "Input"], Cell[261337, 8724, 175, 4, 30, "Input"], Cell[261515, 8730, 89, 1, 30, "Input"], Cell[261607, 8733, 89, 1, 30, "Input"], Cell[261699, 8736, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[261813, 8741, 759, 14, 130, "Input"], Cell[262575, 8757, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[262672, 8764, 260, 9, 31, "Subsection"], Cell[262935, 8775, 122, 3, 28, "SmallText"], Cell[263060, 8780, 214, 4, 31, "Input"], Cell[263277, 8786, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[263514, 8794, 446, 7, 110, "Input"], Cell[263963, 8803, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[264048, 8809, 450, 7, 110, "Input"], Cell[264501, 8818, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[264597, 8825, 268, 9, 31, "Subsection"], Cell[264868, 8836, 122, 3, 28, "SmallText"], Cell[264993, 8841, 224, 4, 31, "Input"], Cell[265220, 8847, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[265474, 8855, 449, 7, 110, "Input"], Cell[265926, 8864, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[266012, 8870, 446, 7, 110, "Input"], Cell[266461, 8879, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[266558, 8886, 262, 9, 31, "Subsection"], Cell[266823, 8897, 203, 4, 30, "Input"], Cell[267029, 8903, 216, 4, 30, "Input"], Cell[267248, 8909, 230, 4, 30, "Input"], Cell[267481, 8915, 201, 4, 30, "Input"], Cell[267685, 8921, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[267924, 8929, 469, 7, 110, "Input"], Cell[268396, 8938, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[268477, 8944, 465, 7, 90, "Input"], Cell[268945, 8953, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[269026, 8959, 471, 7, 110, "Input"], Cell[269500, 8968, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[269594, 8975, 272, 9, 31, "Subsection"], Cell[269869, 8986, 203, 4, 30, "Input"], Cell[270075, 8992, 203, 4, 30, "Input"], Cell[270281, 8998, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[270509, 9006, 751, 14, 130, "Input"], Cell[271263, 9022, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[271358, 9029, 293, 9, 31, "Subsection"], Cell[271654, 9040, 108, 3, 28, "SmallText"], Cell[271765, 9045, 206, 3, 50, "Input"], Cell[271974, 9050, 194, 4, 30, "Input"], Cell[272171, 9056, 204, 4, 30, "Input"], Cell[272378, 9062, 92, 1, 30, "Input"], Cell[272473, 9065, 92, 1, 30, "Input"], Cell[272568, 9068, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[272702, 9074, 780, 14, 130, "Input"], Cell[273485, 9090, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[273582, 9097, 274, 9, 31, "Subsection"], Cell[273859, 9108, 102, 2, 28, "SmallText"], Cell[273964, 9112, 202, 3, 50, "Input"], Cell[274169, 9117, 190, 4, 30, "Input"], Cell[274362, 9123, 202, 4, 30, "Input"], Cell[274567, 9129, 92, 1, 30, "Input"], Cell[274662, 9132, 92, 1, 30, "Input"], Cell[274757, 9135, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[274891, 9141, 776, 14, 130, "Input"], Cell[275670, 9157, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[275766, 9164, 266, 9, 31, "Subsection"], Cell[276035, 9175, 203, 4, 30, "Input"], Cell[276241, 9181, 203, 4, 30, "Input"], Cell[276447, 9187, 227, 4, 30, "Input"], Cell[276677, 9193, 92, 1, 30, "Input"], Cell[276772, 9196, 92, 1, 30, "Input"], Cell[276867, 9199, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[277001, 9205, 795, 15, 150, "Input"], Cell[277799, 9222, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[277893, 9229, 280, 9, 31, "Subsection"], Cell[278176, 9240, 51, 1, 30, "Input"], Cell[278230, 9243, 275, 5, 91, "Input"], Cell[278508, 9250, 280, 5, 91, "Input"], Cell[278791, 9257, 207, 4, 90, "Input"], Cell[279001, 9263, 212, 4, 90, "Input"], Cell[279216, 9269, 91, 1, 30, "Input"], Cell[279310, 9272, 84, 1, 30, "Input"], Cell[279397, 9275, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[280870, 9309, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[280960, 9314, 346, 8, 19, "Input", CellOpen->False], Cell[281309, 9324, 9474, 154, 70, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)