(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 228355, 7457]*) (*NotebookOutlinePosition[ 229016, 7480]*) (* CellTagsIndexPosition[ 228972, 7476]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-21\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 1;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[ \(\(\[Alpha][1] = 0;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(L[1] = \[ScriptCapitalL];\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .25 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0535714 0.952381 [ [ 0 0 0 0 ] [ 1 .25 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .25 L 0 .25 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05357 m .97619 .05357 L s .5 Mabswid .2619 .00595 m .2619 .10119 L s .5 .00595 m .5 .10119 L s .7381 .00595 m .7381 .10119 L s 0 0 0 r 2 Mabswid .5 .05357 m .69048 .05357 L s .62698 .08532 m .69048 .05357 L s .62698 .02183 m .69048 .05357 L s .5 .05357 m .5 .24405 L s .46825 .18056 m .5 .24405 L s .53175 .18056 m .5 .24405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 72}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2 002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00QWoo00<007ooOol01Goo0P0027oo00<007ooOol0QGoo0026Ool00`00Oomoo`05Ool20008Ool0 0`00Oomoo`25Ool008Ioo`8000Ioo`8000Moo`8008Moo`00Qgoo00<007ooOol017oo0P001goo00<0 07ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03001o ogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00Oomo o`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo08Uo o`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool00`00Oomoo`020003Ool00`00Oomoo`2:Ool008]o o`800003Ool00000009oo`8008aoo`00S7oo00@007oo0000009oo`03001oogoo08]oo`00S7oo1000 00=oo`000000SGoo002=Ool300000goo001oo`2=Ool008eoo`D008ioo`00SWoo0`00Sgoo002>Ool3 002?Ool008ioo`80091oo`00SWoo0P00T7oo0000\ \>"], ImageRangeCache->{{{0, 287}, {71, 0}} -> {-0.0305511, -0.0562513, \ 0.00369722, 0.00369722}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(b[1]\)[\[Zeta]_] := \(-\[ScriptB]\)\ e\_2\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ \[ScriptCapitalC][2] + \[ScriptCapitalC][3]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptB]\ \[Zeta] + sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) - \[Zeta]\ \ sQo[1] + sMo[1]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "\[ScriptB]"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 1]][ \[Zeta]], \[ScriptB]], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + \[ScriptCapitalC][ 2]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ \[ScriptCapitalC][ 2] + \(sM[1]\)[\[Zeta]] == \[ScriptCapitalC][3]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], \[ScriptCapitalC][ 2]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], \[ScriptCapitalC][ 2]], sM[ 1][ \[Zeta]]], \[ScriptCapitalC][ 3]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptB]\ \[Zeta] + sQo[1]\)}, {\(\(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[1] + \(sM[ 1]\)[\[Zeta]] == sMo[1]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], Plus[ Times[ \[ScriptB], \[Zeta]], sQo[ 1]]], Equal[ Plus[ Times[ Rational[ 1, 2], \[ScriptB], Power[ \[Zeta], 2]], Times[ \[Zeta], sQo[ 1]], sM[ 1][ \[Zeta]]], sMo[ 1]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(incastro[1]\)[meno], \(incastro[1]\)[ pi\[UGrave]]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(vincoli := \(Block[{carrello = carrelloV, cerniera = cernieraV, perno = pernoV, incastro = incastroV, saldatura = saldaturaV}, vincoliDef] // Flatten\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, \(ub\_d[1]\)["+"] == 0, \(ub\_n[1]\)["+"] == 0, \(\[Theta]b[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Theta]b[1]\)["-"] \[Rule] 0, \(\[Theta]b[1]\)["+"] \[Rule] 0, \(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_d[1]\)["+"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(incastro[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{carrello = \((\((Null\ &)\)\ &)\), incastro = \((\((Null\ &)\)\ &)\), cerniera = \((\((Null\ &)\)\ &)\), perno = coll, saldatura = coll}, Complement[vincoliDef, {Null}]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(incastro[1]\)["+"]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(vincoliFig := Block[{carrello = carrelloFig, cerniera = cernieraFig, perno = pernoFig, saldatura = saldaturaFig, incastro = incastroFig}, vincoliDef];\)\)], "Input"], Cell[BoxData[ \(vincolibFig := Block[{carrello = crosshairFig, cerniera = crosshairFig, perno = crosshairFig, saldatura = crosshairFig, incastro = crosshairFig}, vincoliDef]\)], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .27857 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0918367 0.816327 0.108673 0.816327 [ [ 0 0 0 0 ] [ 1 .27857 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .27857 L 0 .27857 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .09184 .10867 m .90816 .10867 L s 0 0 0 r .5 .10867 m .66327 .10867 L s .60884 .13588 m .66327 .10867 L s .60884 .08146 m .66327 .10867 L s .5 .10867 m .5 .27194 L s .47279 .21752 m .5 .27194 L s .52721 .21752 m .5 .27194 L s 0 g 1 Mabswid .02381 .10867 m .15986 .10867 L s .09184 .00663 m .09184 .21071 L s newpath .09184 .10867 .03265 0 365.73 arc s .84014 .10867 m .97619 .10867 L s .90816 .00663 m .90816 .21071 L s newpath .90816 .10867 .03265 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 80.1875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgEoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo 000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`00 6goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]o o`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol0 0`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<0 07ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001o ogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomo o`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0 iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eo o`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000HOol6002@Ool00`00Oomo o`1?Ool7000IOol001Ioo`8000=oo`03001oogoo008008eoo`@004eoo`8000=oo`05001oogooOol0 000HOol001Eoo`03001oogoo00=oo`03001oogoo009oo`8008aoo`D004Yoo`03001oogoo00=oo`03 001oogoo009oo`8001Ioo`0057oo00<007ooOol017oo00<007ooOol017oo00<007ooOol0Rgoo1@00 Agoo00<007ooOol017oo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomoo`04Ool00`00 Oomoo`04Ool00`00Oomoo`2=Ool40016Ool00`00Oomoo`04Ool00`00Oomoo`04Ool00`00Oomoo`0C Ool001=oo`03001oogoo00Eoo`03001oogoo00Eoo`03001oogoo08ioo`@004=oo`03001oogoo00Eo o`03001oogoo00Eoo`03001oogoo019oo`004Woo00<007ooOol01Woo00<007ooOol01Woo00<007oo Ool0SWoo1@00@7oo00<007ooOol01Woo00<007ooOol01Woo00<007ooOol04Goo000BOol00`00Oomo o`06Ool00`00Oomoo`06Ool00`00Oomoo`2@Ool5000nOol00`00Oomoo`06Ool00`00Oomoo`06Ool0 0`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo099oo`D003aoo`03 001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`0027ooo`0040002Goo000BOol00`00Oomo o`05OooZ0008Ool00`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo 06Moo`8002Moo`D003ioo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`004Woo00<0 07ooOol01Woo00<007ooOol01Woo00<007ooOol0Igoo0P009Goo1@00@7oo00<007ooOol01Woo00<0 07ooOol01Woo00<007ooOol04Goo000BOol00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`1W Ool2000TOol40012Ool00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`0AOol001=oo`03001o ogoo00Eoo`03001oogoo00Eoo`03001oogoo06Qoo`80029oo`@004Eoo`03001oogoo00Eoo`03001o ogoo00Eoo`03001oogoo019oo`004goo00<007ooOol01Goo00<007ooOol017oo00<007ooOol0JGoo 0P0087oo1@00AWoo00<007ooOol01Goo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomo o`04Ool00`00Oomoo`03Ool00`00Oomoo`1ZOol2000NOol50019Ool00`00Oomoo`04Ool00`00Oomo o`04Ool00`00Oomoo`0COol001Eoo`8000Aoo`03001oogoo009oo`03001oogoo06]oo`8001eoo`@0 04aoo`8000Aoo`03001oogoo009oo`8001Ioo`005goo2@00KWoo0P007Woo00<007ooOol0CWoo2@00 67oo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo 0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03 001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol0 6Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00Qgoo00<007ooOol017oo 0P001goo00<007ooOol0QWoo0027Ool00`00Oomoo`04Ool20007Ool00`00Oomoo`26Ool008Moo`80 00Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P001Woo00<007ooOol0Qgoo0028Ool20004 Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eoo`03001oogoo08Qoo`00RGoo0P000goo 0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<007ooOol0RGoo002:Ool20002Ool20003 Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo08Yoo`00Rgoo0P0000=oo`0000000Woo 0P00S7oo002Ool3002?Ool008ioo`<008moo`00SWoo0P00T7oo 002>Ool2002@Ool00001\ \>"], ImageRangeCache->{{{0, 287}, {79.1875, 0}} -> {-0.118401, -0.133126, \ 0.00430941, 0.00430941}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .3 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.102381 0.952381 [ [ 0 0 0 0 ] [ 1 .3 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .3 L 0 .3 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .10238 m .97619 .10238 L s 0 0 0 r .5 .10238 m .69048 .10238 L s .62698 .13413 m .69048 .10238 L s .62698 .07063 m .69048 .10238 L s .5 .10238 m .5 .29286 L s .46825 .22937 m .5 .29286 L s .53175 .22937 m .5 .29286 L s 0 g .02381 .00714 m .02381 .19762 L s .97619 .00714 m .97619 .19762 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 86.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo0026Ool00`00Oomoo`05Ool20008Ool00`00 Oomoo`25Ool008Ioo`03001oogoo00Eoo`8000Qoo`03001oogoo08Eoo`00QWoo0P001Woo0P001goo 0P00Qgoo0027Ool00`00Oomoo`04Ool20007Ool00`00Oomoo`26Ool008Moo`8000Eoo`8000Ioo`80 08Qoo`00R7oo00<007ooOol00goo0P001Woo00<007ooOol0Qgoo0028Ool20004Ool20005Ool20029 Ool008Uoo`03001oogoo009oo`8000Eoo`03001oogoo08Qoo`00RGoo0P000goo0P0017oo0P00RWoo 002:Ool01000Oomoogoo0P0017oo00<007ooOol0RGoo002:Ool20002Ool20003Ool2002;Ool008]o o`03001oogoo008000=oo`03001oogoo08Yoo`00Rgoo0P0000=oo`0000000Woo0P00S7oo002Ool3002?Ool008ioo`<008moo`00SWoo0P00T7oo002>Ool2002@Ool0 0?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {85.375, 0}} -> {-0.0294635, -0.107502, \ 0.00368964, 0.00368964}}] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {"0"} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {"0"}, {"0"}, {"0"} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, 0}, {0, 0, 0}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(\[Theta]b[1]\)["-"] == 0\)}, {\(\(ub\_d[1]\)["+"] == 0\)}, {\(\(ub\_n[1]\)["+"] == 0\)}, {\(\(\[Theta]b[1]\)["+"] == 0\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ \[Theta]b[ 1][ "-"], 0], Equal[ Subscript[ ub, d][ 1][ "+"], 0], Equal[ Subscript[ ub, n][ 1][ "+"], 0], Equal[ \[Theta]b[ 1][ "+"], 0]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["-"]\ \(wb\_d[1]\)[ "-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)["+"] + \(sb\_n[1]\)[ "-"]\ \(wb\_n[1]\)["-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, \(ub\_d[1]\)["+"] == 0, \(ub\_n[1]\)["+"] == 0, \(\[Theta]b[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(\[Omega]b[1]\)["-"] == 0, \(wb\_d[1]\)["+"] == 0, \(wb\_n[1]\)["+"] == 0, \(\[Omega]b[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"] \[Rule] 0, \(\[Omega]b[1]\)["+"] \[Rule] 0, \(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_d[1]\)["+"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{}, {}}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, False, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 3\n nc \[Rule] 0\n nv \[Rule] 6\n nf \[Rule] 0\n rango \ \[Rule] 0"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli eccedenti (le forze attive al bordo possono essere qualsiasi)"\ \)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {\ };\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], \[ScriptB]\ \[Zeta] + sQo[1], \(-\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\)\) + sMo[1] - \[Zeta]\ sQo[1]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[1] == \(\[ScriptB]\ \[Zeta]\^2\)\/2 + \[Zeta]\ sQo[ 1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\), "+", \(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\(\[ScriptB]\ \[Zeta]\^2\)\/2\), "+", \(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\[ScriptB]\ \[Zeta]\^2 - 12\ sMo[1] + 4\ \[Zeta]\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[ScriptB]\ \[Zeta]\^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][ 3]\)\/\(6\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\[ScriptB]\ \[Zeta]\^2 - 12\ sMo[1] + 4\ \[Zeta]\ sQo[ 1])\)\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\ \) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(-\(\(\[ScriptB]\ \[Zeta]\^3 - 6\ \[Zeta]\ sMo[1] + 3\ \[Zeta]\^2\ sQo[1] - 6\ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[ScriptCapitalD][ 3]\)\/\(6\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}\)], \ "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1], \[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(\(-\(\(\[ScriptB]\ \[Zeta]\^4\)\/12\)\) + \ \[Zeta]\^2\ sMo[1] - 1\/3\ \[Zeta]\^3\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(\[Theta][1]\)[0] == 0, \(u\_1[1]\)[\[ScriptCapitalL]] == 0, \(u\_2[1]\)[\[ScriptCapitalL]] == 0, \(\[Theta][1]\)[\[ScriptCapitalL]] == 0}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \[Theta]o[1] == 0, \(\[ScriptCapitalL]\^3\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + uo\_1[1] == 0, \[ScriptCapitalL]\ \[Theta]o[1] + uo\_2[1] == \(\[ScriptCapitalL]\^2\ \((\[ScriptB]\ \ \[ScriptCapitalL]\^2 - 12\ sMo[1] + 4\ \[ScriptCapitalL]\ sQo[1])\)\)\/\(24\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\), \(\[ScriptB]\ \[ScriptCapitalL]\^3 - 6\ \ \[ScriptCapitalL]\ sMo[1] + 3\ \[ScriptCapitalL]\^2\ sQo[1] - 6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\ \[Theta]o[1]\)\/\(6\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "1", "0", "0"}, {"0", "0", "0", "0", "1", "0"}, {"0", "0", "0", "0", "0", "1"}, { "0", \(\(\[ScriptCapitalL]\^3\ \[Kappa]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ]\), "0", "1", "0", "0"}, {\(\[ScriptCapitalL]\^2\/\(2\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\), "0", \(-\(\[ScriptCapitalL]\^3\/\(6\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\), "0", "1", "\[ScriptCapitalL]"}, {\(-\(\[ScriptCapitalL]\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\), "0", \(\[ScriptCapitalL]\^2\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\), "0", "0", \(-1\)} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {"0"}, {"0"}, {\(\(\[ScriptB]\ \[ScriptCapitalL]\^4\)\/\(24\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)}, {\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^3\)\/\(6\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, 0, 0, Times[ Rational[ 1, 24], \[ScriptB], Power[ \[ScriptCapitalL], 4], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1]], Times[ Rational[ -1, 6], \[ScriptB], Power[ \[ScriptCapitalL], 3], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\)\), 0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), 0, 0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({\(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\)\), 0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), 0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\)\), sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {\(-\(\(\[ScriptB]\ \((\[ScriptCapitalL] - \[Zeta])\)\^2\ \ \[Zeta]\^2\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)}, {\(-\(\(\[ScriptB]\ \[Zeta]\ \((\(-\[ScriptCapitalL]\) + \[Zeta])\)\ \ \((\(-\[ScriptCapitalL]\) + 2\ \[Zeta])\)\)\/\(12\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, Times[ Rational[ -1, 24], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], Power[ Plus[ \[ScriptCapitalL], Times[ -1, \[Zeta]]], 2], Power[ \[Zeta], 2]], Times[ Rational[ -1, 12], \[ScriptB], Power[ \[ScriptCapitalY]\[ScriptCapitalJ], -1], \[Zeta], Plus[ Times[ -1, \[ScriptCapitalL]], \[Zeta]], Plus[ Times[ -1, \[ScriptCapitalL]], Times[ 2, \[Zeta]]]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(#1 &\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\)\), sNo[1] \[Rule] 0, sQo[1] \[Rule] \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\[ScriptB]\ \((\(-\(\[ScriptCapitalL]\/2\)\) \ + \[Zeta])\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(-\(1\/12\)\)\ \[ScriptB]\ \((\ \[ScriptCapitalL]\^2 - 6\ \[ScriptCapitalL]\ \[Zeta] + 6\ \[Zeta]\^2)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \((\[ScriptCapitalL] - \ \[Zeta])\)\^2\ \[Zeta]\^2\)\/\(24\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(\[ScriptB]\ \[Zeta]\ \ \((\[ScriptCapitalL]\^2 - 3\ \[ScriptCapitalL]\ \[Zeta] + 2\ \[Zeta]\^2)\)\)\/\(12\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2}\), \ \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\), \ \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\^2\)\/12\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptB] \[Rule] 300, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptB] \[Rule] 300, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[0]\), ",", \(\(u\_2[2]\)[0]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", "0", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[L[2]]\), ",", \(\(u\_2[2]\)[L[2]]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", \(L[2]\), "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(-\(\(\[ScriptB]\ \[ScriptCapitalL]\)\/2\)\), \(-\(\(\[ScriptB]\ \ \[ScriptCapitalL]\^2\)\/12\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(\[ScriptB]\ \[ScriptCapitalL]\)\/2, \(-\(\(\[ScriptB]\ \ \[ScriptCapitalL]\^2\)\/12\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[0], \(sQ[2]\)[0], \(sM[2]\)[0]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[L[2]], \(sQ[2]\)[L[2]], \(sM[2]\)[L[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 1 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.00196201 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 .4 1 r .004 w .02381 .01472 m .06244 .03859 L .10458 .06463 L .14415 .08909 L .18221 .11261 L .22272 .13765 L .26171 .16175 L .30316 .18736 L .34309 .21204 L .3815 .23578 L .42237 .26104 L .46172 .28536 L .49955 .30874 L .53984 .33364 L .57861 .3576 L .61984 .38308 L .65954 .40762 L .69774 .43123 L .73838 .45635 L .77751 .48053 L .81909 .50623 L .85916 .53099 L .89771 .55482 L .93871 .58016 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.407118 0.0156961 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .40712 m 1 .40712 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .40712 m .06244 .40712 L .10458 .40712 L .14415 .40712 L .18221 .40712 L .22272 .40712 L .26171 .40712 L .30316 .40712 L .34309 .40712 L .3815 .40712 L .42237 .40712 L .46172 .40712 L .49955 .40712 L .53984 .40712 L .57861 .40712 L .61984 .40712 L .65954 .40712 L .69774 .40712 L .73838 .40712 L .77751 .40712 L .81909 .40712 L .85916 .40712 L .89771 .40712 L .93871 .40712 L .97619 .40712 L s 1 0 .9 r .004 w .02381 .01472 m .06244 .10635 L .10458 .19746 L .14415 .27463 L .18221 .34117 L .22272 .40374 L .26171 .45593 L .30316 .50274 L .34309 .53941 L .3815 .56687 L .40095 .57785 L .42237 .58767 L .44268 .59479 L .45178 .59728 L .46172 .59952 L .4671 .60051 L .4721 .6013 L .47727 .60198 L .48196 .60248 L .48658 .60285 L .4887 .60299 L .49093 .60311 L .49332 .6032 L .49438 .60324 L .49552 .60327 L .49675 .60329 L .49789 .60331 L .49859 .60331 L .49925 .60332 L .50049 .60332 L .50163 .60331 L .50286 .6033 L .50401 .60328 L .50508 .60325 L .50754 .60317 L .51014 .60305 L .51268 .6029 L .51504 .60273 L .5204 .60224 L .5293 .60109 L .53882 .59941 L .54906 .59707 L .56016 .59392 L .58032 .58658 L .60019 .57726 L .62123 .56517 L .65912 .5376 L .69946 .50005 L .73829 .45593 L .77956 .40045 L Mistroke .81932 .33864 L .85757 .27144 L .89827 .19159 L .93745 .1066 L .97619 .01472 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`000Imo o`2>Ool00g`LOomoo`1OOol00g`LOomoo`0>Ool000moo`03001oogoo08ioo`04001oo`6O0In=Ool0 0`00O1aoo`1NOol00g`LOomoo`0?Ool000moo`03001oogoo08ioo`05001oogooOol1W`2Ool00`00Oomoo`05Ool00`6OOomo o`26Ool00`00Ooml701MOol00g`LOomoo`0@Ool000moo`03001oogoo08ioo`03001oogoo00Ioo`81 WhIoo`04001oogooO1aKOol00g`LOomoo`0AOol000moo`03001oogoo08ioo`03001oogoo00Qoo`81 WhAoo`04001oogooO1aKOol00g`LOomoo`0AOol000moo`03001oogoo08ioo`03001oogoo00Yoo`03 0Imoogoo085oo`05001oogooOoml701IOol00g`LOomoo`0BOol000moo`03001oogoo08ioo`03001o ogoo00]oo`81Wh5oo`05001oogooOoml701IOol00g`LOomoo`0BOol000moo`03001oogoo08ioo`03 001oogoo00eoo`030Imoogoo07ioo`05001oogooOoml701IOol00g`LOomoo`0BOol000moo`03001o ogoo08ioo`03001oogoo00ioo`81Wgioo`03001oogoo009oo`03O1aoogoo05Eoo`03O1aoogoo01=o o`003goo00<007ooOol0SWoo00<007ooOol047oo0P6OO7oo00<007ooOol00Woo00=l77ooOol0EGoo 00=l77ooOol04goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0BOol00`6OOomoo`1iOol00`00Oomo o`03Ool00g`LOomoo`1COol00g`LOomoo`0DOol000moo`03001oogoo08ioo`03001oogoo01=oo`81 WgUoo`03001oogoo00=oo`03O1aoogoo05=oo`03O1aoogoo01Aoo`003goo00<007ooOol0SWoo00<0 07ooOol05Goo0P6OMgoo00<007ooOol017oo00=l77ooOol0DGoo00=l77ooOol05Goo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`0GOol20ImeOol00`00Oomoo`04Ool00g`LOomoo`1AOol00g`LOomoo`0E Ool000moo`03001oogoo08ioo`03001oogoo01Uoo`81Wg=oo`03001oogoo00Eoo`03O1aoogoo04mo o`03O1aoogoo01Ioo`003goo00<007ooOol0SWoo00<007ooOol06goo00<1WgooOol0L7oo00<007oo Ool01Goo00=l77ooOol0Cgoo00=l77ooOol05Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0LOol2 0Im`Ool00`00Oomoo`05Ool00g`LOomoo`1>Ool00g`LOomoo`0GOol000moo`03001oogoo08ioo`03 001oogoo01ioo`030Imoogoo06eoo`03001oogoo00Ioo`03O1aoogoo04eoo`03O1aoogoo01Moo`00 3goo00<007ooOol0SWoo00<007ooOol07goo0P6OKGoo00<007ooOol01Woo00=l77ooOol0C7oo00=l 77ooOol067oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0QOol20Im[Ool00`00Oomoo`07Ool00g`L Oomoo`1;Ool00g`LOomoo`0HOol000moo`03001oogoo08ioo`03001oogoo02=oo`030Imoogoo06Qo o`03001oogoo00Moo`03O1aoogoo04Yoo`03O1aoogoo01Uoo`003goo00<007ooOol0SWoo00<007oo Ool097oo0P6OJ7oo00<007ooOol027oo00=l77ooOol0BGoo00=l77ooOol06Goo000?Ool00`00Oomo o`2>Ool00`00Oomoo`0VOol00`6OOomoo`1UOol00`00Oomoo`08Ool00g`LOomoo`18Ool00g`LOomo o`0JOol000moo`03001oogoo08ioo`03001oogoo02Moo`81WfEoo`03001oogoo00Uoo`03O1aoogoo 04Moo`03O1aoogoo01Yoo`003goo00<007ooOol0SWoo00<007ooOol0:Goo0P6OHgoo00<007ooOol0 2Woo00=l77ooOol0AGoo00=l77ooOol06goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0[Ool00`6O Oomoo`1POol00`00Oomoo`0:Ool00g`LOomoo`15Ool00g`LOomoo`0KOol000moo`03001oogoo08io o`03001oogoo02aoo`81Wf1oo`03001oogoo00]oo`03O1aoogoo04=oo`03O1aoogoo01aoo`0037oo 0`00H`?o0`00:7oo=00000<1W`000000Ool00`00Oomoo`0_Ool20ImMOol00`00Oomoo`0 Ool00`00Oomoo`0dOol20ImHOol00`00Oomoo`0>Ool00g`LOomoo`0mOol00g`LOomoo`0OOol000mo o`03001oogoo08ioo`03001oogoo03Ioo`030Imoogoo05Eoo`03001oogoo00ioo`03O1aoogoo03eo o`03O1aoogoo01moo`003goo00<007ooOol0SWoo00<007ooOol0=goo00<1WgooOol0E7oo00<007oo Ool03goo00=l77ooOol0>goo00=l77ooOol087oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0hOol2 0ImDOol00`00Oomoo`0?Ool00g`LOomoo`0jOol00g`LOomoo`0QOol000moo`03001oogoo08ioo`03 001oogoo03Yoo`81We9oo`03001oogoo011oo`03O1aoogoo03Uoo`03O1aoogoo025oo`003goo00<0 07ooOol0SWoo00<007ooOol0?7oo0P6OD7oo00<007ooOol047oo00=l77ooOol0>7oo00=l77ooOol0 8Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`0nOol20Im;OolG00000g`L0000000f00000g`L0000 000F000=Ool000moo`03001oogoo08ioo`03001oogoo041oo`030Imoogoo04]oo`03001oogoo019o o`03O1aoogoo03Eoo`03O1aoogoo02=oo`003goo00<007ooOol0SWoo00<007ooOol0@Goo00<1Wgoo Ool0BWoo00<007ooOol04goo00=l77ooOol0Ool0 0`00Oomoo`12Ool20Im:Ool00`00Oomoo`0COol00g`LOomoo`0bOol00g`LOomoo`0UOol000moo`03 001oogoo08ioo`03001oogoo04Aoo`81WdQoo`03001oogoo01Aoo`03O1aoogoo035oo`03O1aoogoo 02Eoo`003goo00<007ooOol0SWoo00<007ooOol0AWoo0P6OAWoo00<007ooOol05Goo00=l77ooOol0 ;goo00=l77ooOol09Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`18Ool00`6OOomoo`13Ool00`00 Oomoo`0FOol00g`LOomoo`0]Ool00g`LOomoo`0WOol000moo`03001oogoo08ioo`03001oogoo04Uo o`81Wd=oo`03001oogoo01Moo`03O1aoogoo02]oo`03O1aoogoo02Qoo`003goo00<007ooOol0SWoo 00<007ooOol0Bgoo00<1WgooOol0@7oo00<007ooOol067oo00=l77ooOol0:Woo00=l77ooOol0:7oo 000?Ool00`00Oomoo`2>Ool00`00Oomoo`1goo00<007ooOol06goo00=l77ooOol097oo00=l77ooOol0:goo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`1AOol20IlkOol00`00Oomoo`0LOol00g`LOomoo`0ROol00g`LOomoo`0/Ool000moo`03001o ogoo08ioo`03001oogoo05=oo`030Imoogoo03Qoo`03001oogoo01eoo`03O1aoogoo021oo`03O1ao ogoo02eoo`003goo00<007ooOol0SWoo00<007ooOol0E7oo0P6O>7oo00<007ooOol07Woo00=l77oo Ool07Woo00=l77ooOol0;Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`1FOol20IlfOol00`00Oomo o`0OOol00g`LOomoo`0KOol2O1`aOol000moo`03001oogoo08ioo`03001oogoo05Qoo`030Imoogoo 03=oo`03001oogoo021oo`9l71Uoo`9l73=oo`003goo00<007ooOol0SWoo00<007ooOol0FGoo0P6O Ool00`00Oomoo`1K Ool00`6OOomoo`0`Ool00`00Oomoo`0SOol2O1`COol00g`LOomoo`0eOol000moo`03001oogoo08io o`03001oogoo05aoo`81Wc1oo`03001oogoo02Eoo`9l70eoo`Al73Qoo`003goo00<007ooOol0SWoo 00<007ooOol0GWoo0P6O;Woo00<007ooOol09goo3G`L?7oo000?Ool00`00Oomoo`2>Ool00`00Oomo o`2>Ool00`00Oomoo`1`Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`00 ogooYGoo0000\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -1.10361, 0.0101328, 0.0327904}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -165.492, 0.0101298, 4.9171}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -26.9427, 0.0101328, 0.61482}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 .9 0 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.603319 7.53414 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .60332 m 1 .60332 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 1 .6 0 r .004 w .02381 .60332 m .02499 .6033 L .02605 .60327 L .02729 .60319 L .02846 .6031 L .03053 .60286 L .03279 .6025 L .03527 .60199 L .0379 .60132 L .04262 .59979 L .05205 .59552 L .06244 .58905 L .0842 .5701 L .10458 .54658 L .14335 .48985 L .18458 .41791 L .22428 .34321 L .26248 .27117 L .30312 .19874 L .34225 .13681 L .38383 .08269 L .4047 .06092 L .4239 .04439 L .44265 .03167 L .45221 .02651 L .46245 .02201 L .46773 .02011 L .47272 .01857 L .47759 .01732 L .48209 .01638 L .48635 .01568 L .48852 .0154 L .49087 .01515 L .49321 .01495 L .49426 .01488 L .49541 .01482 L .49669 .01477 L .49738 .01475 L .49803 .01473 L .49919 .01472 L .50042 .01472 L .50166 .01473 L .50236 .01474 L .50301 .01476 L .50433 .01481 L .50575 .01489 L .50832 .01507 L .51067 .0153 L .51339 .01564 L .51636 .0161 L Mistroke .52177 .01717 L .53223 .02009 L .54192 .0238 L .56248 .03481 L .5811 .04837 L .62122 .08853 L .65983 .13986 L .70088 .20557 L .74042 .27655 L .77844 .34841 L .81892 .42432 L .85788 .49185 L .87773 .5224 L .89929 .55144 L .91865 .57297 L .92925 .58264 L .93919 .59019 L .94767 .59537 L .95679 .59957 L .96173 .60121 L .96442 .60192 L .96692 .60244 L .96906 .6028 L .97135 .60308 L .97266 .60319 L .97389 .60326 L .97499 .6033 L .97619 .60332 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 1.22339 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s .68 1 0 r .004 w .02381 .30902 m .06244 .19963 L .08255 .15384 L .10458 .11189 L .1253 .07988 L .14415 .05671 L .16372 .03833 L .17449 .03058 L .18466 .02472 L .19436 .02043 L .19966 .0186 L .20463 .01721 L .20886 .01628 L .21341 .01552 L .216 .0152 L .21727 .01507 L .21846 .01497 L .21961 .01489 L .22066 .01483 L .22183 .01478 L .22307 .01474 L .22428 .01472 L .2254 .01472 L .22663 .01473 L .22795 .01476 L .22861 .01479 L .22933 .01482 L .23064 .01489 L .2331 .01509 L .23542 .01533 L .23789 .01566 L .24232 .01642 L .24743 .01755 L .25222 .01888 L .26314 .02279 L .27297 .02734 L .28332 .03313 L .30183 .04592 L .33994 .08104 L .3805 .12922 L .41954 .18351 L .46104 .24688 L .50102 .31066 L .53949 .37199 L .58041 .43445 L .61981 .48922 L .6577 .53446 L .67878 .55562 L .69804 .57201 L .71795 .58567 L Mistroke .73686 .59525 L .74647 .59875 L .75175 .60027 L .75671 .60142 L .76135 .60226 L .76396 .60263 L .76636 .6029 L .76839 .60307 L .76956 .60315 L .77062 .60321 L .77174 .60326 L .77294 .6033 L .77405 .60331 L .77511 .60332 L .77625 .60331 L .77748 .60328 L .77865 .60324 L .77971 .60318 L .78219 .60301 L .78343 .60289 L .78479 .60274 L .78736 .6024 L .79011 .60195 L .79506 .6009 L .80003 .59953 L .80472 .59795 L .81349 .59423 L .82324 .58889 L .83354 .58183 L .85201 .56538 L .87162 .54231 L .88995 .51528 L .92882 .43919 L .97015 .32804 L .97619 .30902 L Mfstroke 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2OV1@Ool00`00Oomoo`0;Ool2En0>Ool2En1IOol000moo`03001o ogoo08]oo`03001oogoo02Qoo`03OV1oogoo011oo`03OV1oogoo04eoo`03001oogoo00Yoo`03En1o ogoo011oo`03En1oogoo05Ioo`003goo00<007ooOol0Rgoo00<007ooOol09goo00=nH7ooOol04Woo 00=nH7ooOol0C7oo00<007ooOol02Goo00=Gh7ooOol04Woo00=Gh7ooOol0EGoo000?Ool00`00Oomo o`2;Ool00`00Oomoo`0UOol2OV0EOol00giPOomoo`1Ool000moo`03001oogoo08]oo`03001oogoo01Aoo`03OV1oogoo03Moo`03OV1oogoo03Yoo`03 001oogoo039oo`03En1oogoo031oo`03En1oogoo00ioo`003goo00<007ooOol0Rgoo00<007ooOol0 4goo00=nH7ooOol0>7oo00=nH7ooOol0>Woo00<007ooOol0goo00=nH7ooOol0>7oo00<007oo Ool0=Goo00=Gh7ooOol0:goo00=Gh7ooOol047oo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0AOol0 0giPOomoo`0mOol00giPOomoo`0gOol00`00Oomoo`0fOol00eOPOomoo`0ZOol00eOPOomoo`0@Ool0 00moo`03001oogoo08]oo`03001oogoo011oo`03OV1oogoo03ioo`03OV1oogoo03Moo`03001oogoo 03Moo`03En1oogoo02Qoo`03En1oogoo015oo`003goo00<007ooOol0Rgoo00<007ooOol047oo00=n H7ooOol0?goo00=nH7ooOol0=Woo00<007ooOol0=goo00=Gh7ooOol0:7oo00=Gh7ooOol04Goo000? Ool00`00Oomoo`2;Ool00`00Oomoo`0?Ool00giPOomoo`10Ool00giPOomoo`0fOol00`00Oomoo`0h Ool00eOPOomoo`0WOol00eOPOomoo`0AOol000moo`03001oogoo08]oo`03001oogoo00moo`03OV1o ogoo045oo`03OV1oogoo03Eoo`03001oogoo03Qoo`03En1oogoo02Ioo`03En1oogoo019oo`003goo 00<007ooOol0Rgoo00<007ooOol03Woo00=nH7ooOol0@Woo00=nH7ooOol0=Goo00<007ooOol0>Goo 00=Gh7ooOol09Goo00=Gh7ooOol04Woo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0=Ool00giPOomo o`14Ool00giPOomoo`0dOol00`00Oomoo`0iOol00eOPOomoo`0TOol00eOPOomoo`0COol000moo`03 001oogoo08]oo`03001oogoo00eoo`03OV1oogoo04Eoo`03OV1oogoo03=oo`03001oogoo03Yoo`03 En1oogoo02=oo`03En1oogoo01=oo`003goo00<007ooOol0Rgoo00<007ooOol037oo00=nH7ooOol0 AWoo00=nH7ooOol0goo00=Gh7ooOol08Woo00=Gh7ooOol04goo000?Ool00`00 Oomoo`2;Ool00`00Oomoo`0"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -1.10435, 0.00959613, 0.0310537}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.0822012, 0.00959613, 0.00121303}, {{297.063, 406.563}, \ {69.3125, 1.6875}} -> {-2.87604, -0.265666, 0.00959613, 0.00747036}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.`, 0.`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, 0.`}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = 0 \(\@\( xDiag . xDiag\)\) \((e\_1 + e\_2)\)\)], "Input"], Cell[BoxData[ \({0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.4", "0"}, {"0", "512"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{1.4013999999999998`, 0.512`}, {0.5`, 0.`}}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36535 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.182674 0.679593 [ [ 0 0 0 0 ] [ 1 .36535 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0087 m .02381 .35665 L .97619 .35665 L .97619 .0087 L F 0 g .008 w .02381 .0087 Mdot .97619 .35665 Mdot 2 Mabswid [ ] 0 setdash .1602 .18267 m .8398 .18267 L s .5 Mabswid .3301 .14869 m .3301 .21665 L s .5 .14869 m .5 .21665 L s .6699 .14869 m .6699 .21665 L s 0 0 0 r .5 .18267 m .63592 .18267 L s .59061 .20533 m .63592 .18267 L s .59061 .16002 m .63592 .18267 L s .5 .18267 m .5 .31859 L s .47735 .27329 m .5 .31859 L s .52265 .27329 m .5 .31859 L s 0 g 1 Mabswid .10357 .18267 m .21684 .18267 L s .1602 .09773 m .1602 .26762 L s newpath .1602 .18267 .02718 0 365.73 arc s .78316 .18267 m .89643 .18267 L s .8398 .09773 m .8398 .26762 L s newpath .8398 .18267 .02718 0 365.73 arc s 1 0 0 r .5 Mabswid .1602 .18267 m .16104 .18267 L .16181 .18267 L .16269 .18266 L .16352 .18265 L .165 .18263 L .16661 .1826 L .16838 .18255 L .17026 .18249 L .17362 .18236 L .18036 .18197 L .18777 .18139 L .2033 .17968 L .21784 .17756 L .24551 .17244 L .27492 .16595 L .30326 .15921 L .33051 .15271 L .35951 .14618 L .38744 .14059 L .41711 .13571 L .432 .13375 L .4457 .13226 L .45907 .13111 L .4659 .13065 L .47321 .13024 L .47697 .13007 L .48054 .12993 L .48401 .12982 L .48722 .12973 L .49026 .12967 L .49181 .12964 L .49349 .12962 L .49516 .1296 L .49591 .1296 L .49673 .12959 L .49763 .12959 L .49813 .12958 L .49859 .12958 L .49942 .12958 L .5003 .12958 L .50118 .12958 L .50168 .12958 L .50215 .12959 L .50309 .12959 L .50411 .1296 L .50594 .12961 L .50761 .12963 L .50956 .12967 L .51168 .12971 L Mistroke .51553 .1298 L .523 .13007 L .52991 .1304 L .54459 .13139 L .55787 .13262 L .5865 .13624 L .61405 .14087 L .64334 .1468 L .67156 .1532 L .69869 .15968 L .72757 .16653 L .75537 .17262 L .76954 .17538 L .78493 .17799 L .79874 .17994 L .8063 .18081 L .8134 .18149 L .81944 .18196 L .82595 .18234 L .82948 .18248 L .8314 .18255 L .83318 .1826 L .83471 .18263 L .83634 .18265 L .83727 .18266 L .83815 .18267 L .83894 .18267 L .8398 .18267 L Mfstroke .32214 .11883 m .33807 .18679 L s .5 .0956 m .5 .16356 L s .67786 .11883 m .66193 .18679 L s 0 g 1 Mabswid .10357 .18267 m .21684 .18267 L s .1602 .09773 m .1602 .26762 L s newpath .1602 .18267 .02718 0 365.73 arc s .78316 .18267 m .89643 .18267 L s .8398 .09773 m .8398 .26762 L s newpath .8398 .18267 .02718 0 365.73 arc s 0 0 m 1 0 L 1 .36535 L 0 .36535 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 105.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OolWLi`00`00LiacW01NLi`00g`0LiacW01NLi`00`00LiacW00T Li`9Ool000MoobMcW003001cW7>L05icW003O01cW7>L05icW003001cW7>L02AcW0Uoo`001goo9g>L 00<007>LLi`0GW>L00=l07>LLi`0GW>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW01NLi`0 0g`0LiacW01NLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L05icW003O01cW7>L05icW003 001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0GW>L00=l07>LLi`0GW>L00<007>LLi`097>L2Goo 0007OolWLi`00`00LiacW00[Li`00g`0LiacW00`Li`00g`0LiacW00`Li`00g`0LiacW00[Li`00`00 LiacW00TLi`9Ool000MoobMcW003001cW7>L02]cW003O01cW7>L031cW003O01cW7>L031cW003O01c W7>L02]cW003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0:g>L00=l07>LLi`0<7>L00=l07>L Li`0;g>L00=l07>LLi`0;7>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW00/Li`00g`0Liac W00WLi`CO00WLi`00g`0LiacW00/Li`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L02acW003 O01cW7>L01YcW0el00QcW003O01cW7>L00QcW0Yl01ecW003O01cW7>L02acW003001cW7>L02AcW0Uo o`001goo9g>L00<007>LLi`0;7>L00=l07>LLi`057>L1W`05G>L00=l07>LLi`04W>L27`05G>L00=l 07>LLi`0;7>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW00/Li`00g`0LiacW00>Li`6O00K Li`00g`0LiacW00JLi`6O00>Li`00g`0LiacW00]Li`00`00LiacW00TLi`9Ool000MoobMcW003001c W7>L02ecW003O01cW7>L00UcW0Al025cW003O01cW7>L021cW0Al00YcW003O01cW7>L02ecW003001c W7>L02AcW0Uoo`001goo9g>L00<007>LLi`0;G>L00=l07>LLi`01G>L17`09G>L00=l07>LLi`097>L 17`01W>L00=l07>LLi`0;G>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW00]Li`017`0001c W7>L17`0:G>L00=l07>LLi`0:7>L17`000=cW000O000;g>L00<007>LLi`097>L2Goo0007OolWLi`0 0`00LiacW00]Li`4O00]Li`00g`0LiacW00/Li`4O00^Li`00`00LiacW00TLi`9Ool000MoobEcW0D0 02UcW0Al0003Lial07>L02icW003O01cW7>L02ecW003O01cW7>L00Al02McW0D002EcW0Uoo`001goo 8g>L0P000W>L00<007>LLi`00P008g>L17`01G>L00=l07>LLi`0;G>L00=l07>LLi`05g>L0P0057>L 00=l07>LLi`017>L17`08W>L00H007>LLiacW000Li`3000RLi`9Ool000Moob9cW003001cW7>L009c W003001cW7>L009cW08001ecW0Al00UcW003O01cW7>L02ecW003O01cW7>L01UcW080019cW003O01c W7>L00QcW0Al01ecW003001cW7>L009cW003001cW7>L009cW080021cW0Uoo`001goo8G>L00<007>L Li`00g>L00<007>LLi`017>L00<007>LLi`04g>L1g`03G>L00=l07>LLi`0;G>L00<007>LLi`06g>L 0P003g>L00=l0000Li`03G>L17`067>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`07W>L 2Goo0007OolPLi`00`00LiacW004Li`00`00LiacW004Li`00`00LiacW00=Li`6O00DLi`00`00O01c W00]Li`00`00LiacW00MLi`2000=Li`00g`0001cW00ALi`4O00CLi`00`00LiacW004Li`00`00Liac W004Li`00`00LiacW00MLi`9Ool000Moob1cW003001cW7>L00AcW003001cW7>L00EcW003001cW7>L 00QcW0Al01YcW003001l07>L02ecW003001cW7>L01mcW08000]cW003O00007>L01EcW0Ql00]cW003 001cW7>L00AcW003001cW7>L00AcW003001cW7>L01ecW0Uoo`001goo7g>L00<007>LLi`01G>L00<0 07>LLi`01G>L00<007>LLi`017>L17`07W>L00<007`0Li`0;G>L00<007>LLi`08G>L0P002G>L00=l 0000Li`07G>L17`01W>L00<007>LLi`01G>L00<007>LLi`017>L00<007>LLi`07G>L2Goo0007OolG Lia200000g`00000001J00000g`000000011000FLi`9Ool000MooamcW003001cW7>L00AcW3@00003 O000000005T00003O0000000034000IcW08001icW0Uoo`001goo7g>L00<007>LLi`01G>L00<007>L Li`01G>L00<007>LLi`09W>L00<007>LO000;G>L00<007>LLi`087>L0P002G>L00=l07>L0000:7>L 00<007>LLi`01G>L00<007>LLi`017>L00<007>LLi`07G>L2Goo0007OolPLi`00`00LiacW004Li`0 0`00LiacW004Li`00`00LiacW00WLi`00`00LiacW00]Li`00`00LiacW00NLi`2000=Li`00`00Liac W00WLi`00`00LiacW004Li`00`00LiacW004Li`00`00LiacW00MLi`9Ool000Moob1cW003001cW7>L 00AcW003001cW7>L00AcW003001cW7>L02McW003001cW7>L02ecW003001cW7>L01acW08000mcW003 001cW7>L02McW003001cW7>L00AcW003001cW7>L00=cW003001cW7>L01icW0Uoo`001goo8G>L00<0 07>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0:7>L00<007>LLi`0;G>L00<007>LLi`06W>L0P00 4G>L00<007>LLi`0:7>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`07W>L2Goo0007OolQ Li`20004Li`00`00LiacW003Li`00`00LiacW00XLi`00`00LiacW00]Li`00`00LiacW00HLi`2000C Li`00`00LiacW00XLi`20004Li`00`00LiacW002Li`00`00LiacW00OLi`9Ool000Moob=cW0<00003 Li`007>L009cW08002]cW003001cW7>L02ecW003001cW7>L01McW003001cW7>L01=cW003001cW7>L 02YcW0<00003Li`007>L009cW003001cW7>L021cW0Uoo`001goo9W>L1@00;G>L00<007>LLi`0;G>L 00<007>LLi`0;G>L00<007>LLi`0;G>L1@008g>L2Goo0007OolWLi`00`00LiacW00^Li`00`00Liac W00]Li`00`00LiacW00]Li`00`00LiacW00^Li`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L 02icW003001cW7>L02ecW003001cW7>L02ecW003001cW7>L02icW003001cW7>L02AcW0Uoo`001goo 9g>L00<007>LLi`0GW>L00<007>LLi`0GW>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW01N Li`00`00LiacW01NLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L05icW003001cW7>L05ic W003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0GW>L00<007>LLi`0GW>L00<007>LLi`097>L 2Goo0007OolWLi`00`00LiacW01NLi`00`00LiacW01NLi`00`00LiacW00TLi`9Ool000MoobMcW003 001cW7>L05icW003001cW7>L05icW003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0GW>L00<0 07>LLi`0GW>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW01NLi`00`00LiacW01NLi`00`00 LiacW00TLi`9Ool000MoobMcW003001cW7>L05icW003001cW7>L05icW003001cW7>L02AcW0Uoo`00 1goo9g>L00<007>LLi`0GW>L00<007>LLi`0GW>L00<007>LLi`097>L2Goo0007OolWLi`00`00Liac W01NLi`00`00LiacW01NLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L05icW003001cW7>L 05icW003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0GW>L00<007>LLi`0GW>L00<007>LLi`0 97>L2Goo0007OolWLi`00`00LiacW01NLi`00`00LiacW01NLi`00`00LiacW00TLi`9Ool000MoobMc W003001cW7>L05icW003001cW7>L05icW003001cW7>L02AcW0Uoo`001gooPW>L00<007>LLi`00g>L 00<007>LLi`00g>L00<007>LLi`0Og>L2Goo0007Oon2Li`00`00LiacW003Li`00`00LiacW003Li`0 0`00LiacW01oLi`9Ool000Mooh=cW003001cW7>L009cW003001cW7>L009cW003001cW7>L081cW0Uo o`001gooPg>L00<007>LLi`00W>L00<007>LLi`00W>L00<007>LLi`0P7>L2Goo0007Oon4Li`01@00 LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0 PG>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007Oon5Li`01000LiacW000 0W>L00<007>LLi`0PW>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo0007Oon6Li`01@00Li`0 07>L0000QG>L2Goo0007Oon7Li`30026Li`9Ool000MoohMcW0<008IcW0Uoo`001gooR7>L00<007>L Li`0QG>L2Goo0007Oon8Li`00`00LiacW025Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 47>L00<007ooOol01goo003oOolGOol00`00Oomoo`07Ool00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {104.188, 0}} -> {-0.240459, -0.268802, \ 0.00515999, 0.00515999}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36535 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.182674 0.679593 [ [ 0 0 0 0 ] [ 1 .36535 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0087 m .02381 .35665 L .97619 .35665 L .97619 .0087 L F 0 g .008 w .02381 .0087 Mdot .97619 .35665 Mdot 2 Mabswid [ ] 0 setdash .1602 .18267 m .8398 .18267 L s .5 Mabswid .3301 .14869 m .3301 .21665 L s .5 .14869 m .5 .21665 L s .6699 .14869 m .6699 .21665 L s 0 0 0 r .5 .18267 m .63592 .18267 L s .59061 .20533 m .63592 .18267 L s .59061 .16002 m .63592 .18267 L s .5 .18267 m .5 .31859 L s .47735 .27329 m .5 .31859 L s .52265 .27329 m .5 .31859 L s 0 g 2 Mabswid .1602 .11472 m .1602 .25063 L s .8398 .11472 m .8398 .25063 L s 1 0 0 r .5 Mabswid .1602 .18267 m .16104 .18267 L .16181 .18267 L .16269 .18266 L .16352 .18265 L .165 .18263 L .16661 .1826 L .16838 .18255 L .17026 .18249 L .17362 .18236 L .18036 .18197 L .18777 .18139 L .2033 .17968 L .21784 .17756 L .24551 .17244 L .27492 .16595 L .30326 .15921 L .33051 .15271 L .35951 .14618 L .38744 .14059 L .41711 .13571 L .432 .13375 L .4457 .13226 L .45907 .13111 L .4659 .13065 L .47321 .13024 L .47697 .13007 L .48054 .12993 L .48401 .12982 L .48722 .12973 L .49026 .12967 L .49181 .12964 L .49349 .12962 L .49516 .1296 L .49591 .1296 L .49673 .12959 L .49763 .12959 L .49813 .12958 L .49859 .12958 L .49942 .12958 L .5003 .12958 L .50118 .12958 L .50168 .12958 L .50215 .12959 L .50309 .12959 L .50411 .1296 L .50594 .12961 L .50761 .12963 L .50956 .12967 L .51168 .12971 L Mistroke .51553 .1298 L .523 .13007 L .52991 .1304 L .54459 .13139 L .55787 .13262 L .5865 .13624 L .61405 .14087 L .64334 .1468 L .67156 .1532 L .69869 .15968 L .72757 .16653 L .75537 .17262 L .76954 .17538 L .78493 .17799 L .79874 .17994 L .8063 .18081 L .8134 .18149 L .81944 .18196 L .82595 .18234 L .82948 .18248 L .8314 .18255 L .83318 .1826 L .83471 .18263 L .83634 .18265 L .83727 .18266 L .83815 .18267 L .83894 .18267 L .8398 .18267 L Mfstroke .32214 .11883 m .33807 .18679 L s .5 .0956 m .5 .16356 L s .67786 .11883 m .66193 .18679 L s 0 g 2 Mabswid .1602 .11472 m .1602 .25063 L s .8398 .11472 m .8398 .25063 L s 0 0 m 1 0 L 1 .36535 L 0 .36535 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 105.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007Oon8Li`00g`0LiacW025Li`9Ool000MoohQcW003O01cW7>L08Ec W0Uoo`001gooR7>L00=l07>LLi`0QG>L2Goo0007Oon8Li`00g`0LiacW025Li`9Ool000MoohQcW003 O01cW7>L08EcW0Uoo`001goo9W>L0P00H7>L00=l07>LLi`0GG>L0P009W>L2Goo0007OolVLi`2000] Li`00g`0LiacW00`Li`00g`0LiacW00`Li`00g`0LiacW00ZLi`2000VLi`9Ool000MoobIcW08002ec W003O01cW7>L031cW003O01cW7>L031cW003O01cW7>L02YcW08002IcW0Uoo`001goo9W>L0P00;G>L 00=l07>LLi`0<7>L00=l07>LLi`0;g>L00=l07>LLi`0:g>L0P009W>L2Goo0007OolVLi`2000^Li`0 0g`0LiacW00WLi`CO00WLi`00g`0LiacW00[Li`2000VLi`9Ool000MoobIcW08002icW003O01cW7>L 01YcW0el00QcW003O01cW7>L00QcW0Yl01ecW003O01cW7>L02]cW08002IcW0Uoo`001goo9W>L0P00 ;W>L00=l07>LLi`057>L1W`05G>L00=l07>LLi`04W>L27`05G>L00=l07>LLi`0:g>L0P009W>L2Goo 0007OolVLi`2000^Li`00g`0LiacW00>Li`6O00KLi`00g`0LiacW00JLi`6O00>Li`00g`0LiacW00/ Li`2000VLi`9Ool000MoobIcW08002mcW003O01cW7>L00UcW0Al025cW003O01cW7>L021cW0Al00Yc W003O01cW7>L02acW08002IcW0Uoo`001goo9W>L0P00;g>L00=l07>LLi`01G>L17`09G>L00=l07>L Li`097>L17`01W>L00=l07>LLi`0;7>L0P009W>L2Goo0007OolVLi`2000_Li`017`0001cW7>L17`0 :G>L00=l07>LLi`0:7>L17`000=cW000O000;W>L0P009W>L2Goo0007OolVLi`2000_Li`4O00]Li`0 0g`0LiacW00/Li`4O00]Li`2000VLi`9Ool000MoobIcW08002]cW0Al0003Lial07>L02icW003O01c W7>L02ecW003O01cW7>L00Al02UcW08002IcW0Uoo`001goo9W>L0P009g>L17`01G>L00=l07>LLi`0 ;G>L00=l07>LLi`05g>L0P0057>L00=l07>LLi`017>L17`09G>L0P009W>L2Goo0007OolVLi`2000S Li`4O009Li`00g`0LiacW00]Li`00g`0LiacW00ILi`2000BLi`00g`0LiacW008Li`4O00QLi`2000V Li`9Ool000MoobIcW08001acW0Ml00ecW003O01cW7>L02ecW003001cW7>L01]cW08000mcW003O000 07>L00ecW0Al01ecW08002IcW0Uoo`001goo9W>L0P005W>L1W`057>L00<007`0Li`0;G>L00<007>L Li`07G>L0P003G>L00=l0000Li`04G>L17`06G>L0P009W>L2Goo0007OolVLi`2000BLi`4O00JLi`0 0`00O01cW00]Li`00`00LiacW00OLi`2000;Li`00g`0001cW00ELi`8O00ALi`2000VLi`9Ool000Mo obIcW08000icW0Al01icW003001l07>L02ecW003001cW7>L025cW08000UcW003O00007>L01ecW0Al 00ecW08002IcW0Uoo`001goo9W>L0P003W`08`0000=l00000000FP0000=l000000008P003G`00P00 9W>L2Goo0007OolVLi`d00000g`00000001I00000g`00000000a000VLi`9Ool000MoobIcW080031c W003001cW7`002ecW003001cW7>L021cW08000UcW003O01cW00002mcW08002IcW0Uoo`001goo9W>L 0P00<7>L00<007>LLi`0;G>L00<007>LLi`07W>L0P003G>L00<007>LLi`0;G>L0P009W>L2Goo0007 OolVLi`2000`Li`00`00LiacW00]Li`00`00LiacW00LLi`2000?Li`00`00LiacW00]Li`2000VLi`9 Ool000MoobIcW080031cW003001cW7>L02ecW003001cW7>L01YcW080015cW003001cW7>L02ecW080 02IcW0Uoo`001goo9W>L0P00<7>L00<007>LLi`0;G>L00<007>LLi`067>L0P004g>L00<007>LLi`0 ;G>L0P009W>L2Goo0007OolVLi`2000`Li`00`00LiacW00]Li`00`00LiacW00GLi`00`00LiacW00C Li`00`00LiacW00]Li`2000VLi`9Ool000MoobIcW080031cW003001cW7>L02ecW003001cW7>L02ec W003001cW7>L02ecW08002IcW0Uoo`001goo9W>L0P00<7>L00<007>LLi`0;G>L00<007>LLi`0;G>L 00<007>LLi`0;G>L0P009W>L2Goo0007OolVLi`2000`Li`00`00LiacW00]Li`00`00LiacW00]Li`0 0`00LiacW00]Li`2000VLi`9Ool000MoobIcW080061cW003001cW7>L05ecW08002IcW0Uoo`001goo 9W>L0P00H7>L00<007>LLi`0GG>L0P009W>L2Goo0007OolVLi`2001PLi`00`00LiacW01MLi`2000V Li`9Ool000MoobIcW080061cW003001cW7>L05ecW08002IcW0Uoo`001goo9W>L0P00H7>L00<007>L Li`0GG>L0P009W>L2Goo0007OolVLi`2001PLi`00`00LiacW01MLi`2000VLi`9Ool000MoobIcW080 061cW003001cW7>L05ecW08002IcW0Uoo`001goo9W>L0P00H7>L00<007>LLi`0GG>L0P009W>L2Goo 0007OolVLi`2001PLi`00`00LiacW01MLi`2000VLi`9Ool000MoobIcW080061cW003001cW7>L05ec W08002IcW0Uoo`001goo9W>L0P00H7>L00<007>LLi`0GG>L0P009W>L2Goo0007Oon8Li`00`00Liac W025Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007Oon8 Li`00`00LiacW025Li`9Ool000Mooh9cW003001cW7>L00=cW003001cW7>L00=cW003001cW7>L07mc W0Uoo`001gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Og>L2Goo0007Oon3Li`0 0`00LiacW002Li`00`00LiacW002Li`00`00LiacW020Li`9Ool000Mooh=cW003001cW7>L009cW003 001cW7>L009cW003001cW7>L081cW0Uoo`001gooQ7>L00D007>LLiacW00000=cW003001cW7>L085c W0Uoo`001gooQ7>L00D007>LLiacW00000=cW003001cW7>L085cW0Uoo`001gooQG>L00@007>LLi`0 009cW003001cW7>L089cW0Uoo`001gooQG>L00@007>LLi`0009cW003001cW7>L089cW0Uoo`001goo QW>L00D007>L001cW00008EcW0Uoo`001gooQW>L00D007>L001cW00008EcW0Uoo`001gooQg>L0`00 QW>L2Goo0007Oon7Li`30026Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooR7>L00<007>L Li`0QG>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW11cW003001oogoo00Moo`00ogoo5goo 00<007ooOol01goo003oOolQOol00001\ \>"], ImageRangeCache->{{{0, 287}, {104.188, 0}} -> {-0.240459, -0.268802, \ 0.00515999, 0.00515999}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.001;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.01;\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36535 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.182674 0.679593 [ [ 0 0 0 0 ] [ 1 .36535 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0087 m .02381 .35665 L .97619 .35665 L .97619 .0087 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .18267 m .8398 .18267 L s 0 1 .4 r .5 Mabswid .1602 .18267 m .18777 .18267 L .21784 .18267 L .24608 .18267 L .27323 .18267 L .30214 .18267 L .32996 .18267 L .35954 .18267 L .38803 .18267 L .41544 .18267 L .4446 .18267 L .47268 .18267 L .49968 .18267 L .52843 .18267 L .55609 .18267 L .58551 .18267 L .61385 .18267 L .6411 .18267 L .6701 .18267 L .69802 .18267 L .7277 .18267 L .75629 .18267 L .7838 .18267 L .81305 .18267 L .8398 .18267 L s .1602 .18267 m .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L .1602 .18267 L s .8398 .18267 m .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L .8398 .18267 L s 0 0 m 1 0 L 1 .36535 L 0 .36535 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 105.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolVLi`00`000n`3k0310n`VLi`9Ool000Mo obIcW<@002IcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {104.188, 0}} -> {-0.240459, -0.268802, \ 0.00515999, 0.00515999}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36535 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.182674 0.679593 [ [ 0 0 0 0 ] [ 1 .36535 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0087 m .02381 .35665 L .97619 .35665 L .97619 .0087 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .18267 m .8398 .18267 L s 0 .4 1 r .5 Mabswid .1602 .28461 m .18777 .27634 L .21784 .26732 L .24608 .25885 L .27323 .2507 L .30214 .24203 L .32996 .23369 L .35954 .22481 L .38803 .21627 L .41544 .20804 L .4446 .19929 L .47268 .19087 L .49968 .18277 L .52843 .17415 L .55609 .16585 L .58551 .15702 L .61385 .14852 L .6411 .14034 L .6701 .13164 L .69802 .12327 L .7277 .11437 L .75629 .10579 L .7838 .09754 L .81305 .08876 L .8398 .08074 L s .1602 .18267 m .1602 .18681 L .1602 .19132 L .1602 .19556 L .1602 .19963 L .1602 .20396 L .1602 .20814 L .1602 .21257 L .1602 .21685 L .1602 .22096 L .1602 .22533 L .1602 .22955 L .1602 .2336 L .1602 .23791 L .1602 .24206 L .1602 .24647 L .1602 .25072 L .1602 .25481 L .1602 .25916 L .1602 .26335 L .1602 .2678 L .1602 .27209 L .1602 .27621 L .1602 .2806 L .1602 .28461 L s .8398 .18267 m .8398 .17854 L .8398 .17403 L .8398 .16979 L .8398 .16572 L .8398 .16138 L .8398 .15721 L .8398 .15277 L .8398 .1485 L .8398 .14439 L .8398 .14001 L .8398 .1358 L .8398 .13175 L .8398 .12744 L .8398 .12329 L .8398 .11888 L .8398 .11463 L .8398 .11054 L .8398 .10619 L .8398 .102 L .8398 .09755 L .8398 .09326 L .8398 .08914 L .8398 .08475 L .8398 .08074 L s .81261 .11811 m .81261 .11922 L .81261 .12042 L .81261 .12155 L .81261 .12263 L .81261 .12379 L .81261 .1249 L .81261 .12609 L .81261 .12723 L .81261 .12832 L .81261 .12949 L .81261 .13061 L .81261 .13169 L .81261 .13284 L .81261 .13395 L .81261 .13513 L .81261 .13626 L .81261 .13735 L .81261 .13851 L .81261 .13963 L .81261 .14081 L .81261 .14196 L .81261 .14306 L .81261 .14423 L .81261 .1453 L s .1738 .23364 m .1749 .23364 L .1761 .23364 L .17723 .23364 L .17832 .23364 L .17947 .23364 L .18059 .23364 L .18177 .23364 L .18291 .23364 L .18401 .23364 L .18517 .23364 L .18629 .23364 L .18737 .23364 L .18852 .23364 L .18963 .23364 L .19081 .23364 L .19194 .23364 L .19303 .23364 L .19419 .23364 L .19531 .23364 L .1965 .23364 L .19764 .23364 L .19874 .23364 L .19991 .23364 L .20098 .23364 L s .79902 .13171 m .80012 .13171 L .80133 .13171 L .80246 .13171 L .80354 .13171 L .8047 .13171 L .80581 .13171 L .80699 .13171 L .80813 .13171 L .80923 .13171 L .8104 .13171 L .81152 .13171 L .8126 .13171 L .81375 .13171 L .81486 .13171 L .81603 .13171 L .81717 .13171 L .81826 .13171 L .81942 .13171 L .82053 .13171 L .82172 .13171 L .82286 .13171 L .82396 .13171 L .82513 .13171 L .8262 .13171 L s 0 0 m 1 0 L 1 .36535 L 0 .36535 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 105.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MoonQcW081WbIcW0Uo o`001gooiW>L0P6O00=cW06OLi`09G>L2Goo0007OooSLi`30Il3Li`00`6OLiacW00TLi`9Ool000Mo on1cW0<1W`IcW0030ImcW7>L02AcW0Uoo`001goog7>L106O2G>L00<1Wg>LLi`097>L2Goo0007OooH Li`40Il=Li`00`6OLiacW00TLi`9Ool000MoomAcW0@1Wa5cW0030ImcW7>L02AcW0Uoo`001good7>L 106O5G>L00<1Wg>LLi`097>L2Goo0007Ooo>Li`20IlILi`00`6OLiacW00TLi`9Ool000Mool]cW0<1 Wa]cW0030ImcW7>L02AcW0Uoo`001gooag>L106O7W>L00<1Wg>LLi`097>L2Goo0007Ooo3Li`40IlJ Li`00`6OLiacW005Li`00`6OLiacW00TLi`9Ool000MookmcW0@1WaicW0030ImcW7>L00EcW0030Imc W7>L02AcW0Uoo`001goo_G>L0P6O8W>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007OonkLi`2 0IlTLi`00`6OLiacW005Li`00`6OLiacW00TLi`9Ool000MookMcW0@1Wb9cW0T1W`=cW0030ImcW7>L 02AcW0Uoo`001goo/g>L106O:W>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007Oon_Li`40Il^ Li`00`6OLiacW005Li`00`6OLiacW00TLi`9Ool000MoojecW081Wc9cW0030ImcW7>L00EcW0030Imc W7>L02AcW0Uoo`001gooZW>L0`6O=7>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007OonWLi`3 0IloLi`00`6OLiacW00TLi`9Ool000Mooj=cW0@1Wd9cW0030ImcW7>L02AcW0Uoo`001gooWg>L106O AW>L00<1Wg>LLi`097>L2Goo0007OonMLi`20Im:Li`00`6OLiacW00TLi`9Ool000MooiYcW0<1Wdac W0030ImcW7>L02AcW0Uoo`001gooUg>L0`6OCg>L00<1Wg>LLi`097>L2Goo0007OonCLi`40ImBLi`0 0`6OLiacW00TLi`9Ool000MoohmcW0@1WeIcW0030ImcW7>L02AcW0Uoo`001gooRg>L106OFW>L00<1 Wg>LLi`097>L2Goo0007OolVLi`00`000Il0001N00040ImN00000`6OLiacW00TLi`9Ool000MoobIc W0030001W`0005`00081Wf<002IcW0Uoo`001goo9g>L00<1Wg>LLi`0F7>L0`6ORg>L2Goo0007OolW Li`00`6OLiacW01ELi`30In>Li`9Ool000MoobMcW0030ImcW7>L055cW0@1Wi5cW0Uoo`001goo9g>L 00<1Wg>LLi`0CG>L106OUG>L2Goo0007OolWLi`00`6OLiacW01;Li`20InILi`9Ool000MoobMcW003 0ImcW7>L04QcW0<1Wi]cW0Uoo`001goo9g>L00<1Wg>LLi`0AG>L0`6OWW>L2Goo0007OolWLi`00`6O LiacW011Li`40InQLi`9Ool000MoobMcW0030ImcW7>L03ecW0@1WjEcW0Uoo`001goo9g>L00<1Wg>L Li`0>G>L106OZG>L2Goo0007OolWLi`00`6OLiacW00eLi`40In]Li`9Ool000MoobMcW0030ImcW7>L 03=cW081Wk5cW0Uoo`001goo9g>L00<1Wg>LLi`0<7>L0`6O/g>L2Goo0007OolWLi`0106OLiacW7>L 2@6O8g>L0`6O]W>L2Goo0007OolWLi`00`6OLiacW00YLi`40IniLi`9Ool000MoobMcW0030ImcW7>L 02EcW0@1WkecW0Uoo`001goo9g>L00<1Wg>LLi`08W>L0`6O`G>L2Goo0007OolWLi`00`6OLiacW00O Li`30Io4Li`9Ool000MoobMcW0030ImcW7>L01acW0<1WlMcW0Uoo`001goo9g>L00<1Wg>LLi`067>L 106ObW>L2Goo0007OolWLi`00`6OLiacW00ELi`30Io>Li`9Ool000MoobMcW0030ImcW7>L01=cW081 Wm5cW0Uoo`001goo9g>L00<1Wg>LLi`047>L0`6Odg>L2Goo0007OolWLi`00`6OLiacW00L00QcW0@1WmYcW0Uoo`001goo9g>L00<1Wg>LLi`017>L106OgW>L 2Goo0007OolWLi`00`6OLiacW0040IoRLi`9Ool000MoobMcW0<1WnIcW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo8Goo003oOolQOol00001 \ \>"], ImageRangeCache->{{{0, 287}, {104.188, 0}} -> {-0.240459, -0.268802, \ 0.00515999, 0.00515999}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .36535 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.182674 0.679593 [ [ 0 0 0 0 ] [ 1 .36535 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0087 m .02381 .35665 L .97619 .35665 L .97619 .0087 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .18267 m .8398 .18267 L s .8 0 1 r .5 Mabswid .1602 .35257 m .18777 .3129 L .21784 .27345 L .24608 .24004 L .27323 .21123 L .30214 .18414 L .32996 .16154 L .35954 .14127 L .38803 .1254 L .41544 .11351 L .42932 .10875 L .4446 .1045 L .4591 .10142 L .46559 .10034 L .47268 .09937 L .47652 .09894 L .48009 .0986 L .48378 .09831 L .48713 .09809 L .49042 .09793 L .49193 .09787 L .49353 .09782 L .49523 .09778 L .49599 .09776 L .4968 .09775 L .49768 .09774 L .49849 .09773 L .49899 .09773 L .49946 .09773 L .50035 .09773 L .50116 .09773 L .50204 .09773 L .50286 .09774 L .50362 .09775 L .50538 .09779 L .50724 .09784 L .50905 .09791 L .51073 .09798 L .51456 .09819 L .52091 .09869 L .5277 .09942 L .53501 .10043 L .54293 .10179 L .55731 .10498 L .57149 .10901 L .58651 .11424 L .61354 .12618 L .64233 .14244 L .67003 .16154 L .69949 .18556 L Mistroke .72786 .21232 L .75515 .24142 L .78419 .27599 L .81215 .31279 L .8398 .35257 L Mfstroke .1602 .18267 m .1602 .18957 L .1602 .19708 L .1602 .20414 L .1602 .21093 L .1602 .21816 L .1602 .22511 L .1602 .23251 L .1602 .23963 L .1602 .24648 L .1602 .25377 L .1602 .26079 L .1602 .26754 L .1602 .27473 L .1602 .28165 L .1602 .289 L .1602 .29609 L .1602 .3029 L .1602 .31015 L .1602 .31713 L .1602 .32455 L .1602 .3317 L .1602 .33857 L .1602 .34589 L .1602 .35257 L s .8398 .18267 m .8398 .18957 L .8398 .19708 L .8398 .20414 L .8398 .21093 L .8398 .21816 L .8398 .22511 L .8398 .23251 L .8398 .23963 L .8398 .24648 L .8398 .25377 L .8398 .26079 L .8398 .26754 L .8398 .27473 L .8398 .28165 L .8398 .289 L .8398 .29609 L .8398 .3029 L .8398 .31015 L .8398 .31713 L .8398 .32455 L .8398 .3317 L .8398 .33857 L .8398 .34589 L .8398 .35257 L s 0 0 m 1 0 L 1 .36535 L 0 .36535 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 105.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oon2 Li`=I1n1Li`9Ool000Moog]cW0MT7`ecW0MT7gYcW0Uoo`001gooMg>L16@O6g>L16@OMW>L2Goo0007 OomdLi`3I1lSLi`4I1mbLi`9Ool000Moog9cW09T7bYcW09T7g1cW0Uoo`001gooKg>L0f@O;W>L0f@O KG>L2Goo0007Oom]Li`2I1ldLi`2I1m[Li`9Ool000MoofYcW0=T7cQcW09T7fUcW0Uoo`001gooJ7>L 0V@O?G>L0V@OIg>L2Goo0007OomVLi`2I1m1Li`2I1mULi`9Ool000MoofEcW003I1mcW7>L04=cW09T 7f=cW0Uoo`001gooHg>L0V@OB7>L0V@OHG>L2Goo0007OomQLi`2I1mL04icW003I1mcW7>L05acW0Uoo`001gooGW>L0V@ODW>L0V@OG7>L2Goo0007OomMLi`0 0f@OLiacW01DLi`00f@OLiacW01ILi`9Ool000Mooe]cW09T7eQcW003I1mcW7>L05QcW0Uoo`001goo FG>L0V@OFg>L0V@OF7>L2Goo0007OomHLi`00f@OLiacW01MLi`00f@OLiacW01ELi`9Ool000MooeMc W003I1mcW7>L05mcW003I1mcW7>L05AcW0Uoo`001gooEW>L00=T7g>LLi`0HG>L0V@OE7>L2Goo0007 OomELi`00f@OLiacW01TLi`00f@OLiacW01ALi`9Ool000Mooe=cW09T7fQcW003I1mcW7>L051cW0Uo o`001gooDW>L00=T7g>LLi`0JG>L0V@OD7>L2Goo0007OolVLi`00`00I1l0000X00000f@O0000001/ 00000f@O0000000V00000f@OLiacW00TLi`9Ool000MoobIcW003001T7`0002L00003I1l0000006h0 0003I1l0000002D00003I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`09G>L00=T7g>LLi`0L7>L 00=T7g>LLi`097>L00=T7g>LLi`097>L2Goo0007OolWLi`00f@OLiacW00TLi`00f@OLiacW01bLi`0 0f@OLiacW00SLi`00f@OLiacW00TLi`9Ool000MoobMcW003I1mcW7>L02=cW003I1mcW7>L07AcW003 I1mcW7>L029cW003I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`08G>L0V@ON7>L00=T7g>LLi`0 8G>L00=T7g>LLi`097>L2Goo0007OolWLi`00f@OLiacW00PLi`00f@OLiacW01iLi`00f@OLiacW00P Li`00f@OLiacW00TLi`9Ool000MoobMcW003I1mcW7>L01mcW003I1mcW7>L07]cW003I1mcW7>L01mc W003I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`07W>L00=T7g>LLi`0OG>L00=T7g>LLi`07W>L 00=T7g>LLi`097>L2Goo0007OolWLi`00f@OLiacW00MLi`00f@OLiacW01oLi`00f@OLiacW00MLi`0 0f@OLiacW00TLi`9Ool000MoobMcW003I1mcW7>L01acW003I1mcW7>L085cW003I1mcW7>L01acW003 I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`06g>L00=T7g>LLi`0Pg>L00=T7g>LLi`06g>L00=T 7g>LLi`097>L2Goo0007OolWLi`00f@OLiacW00JLi`00f@OLiacW025Li`00f@OLiacW00JLi`00f@O LiacW00TLi`9Ool000MoobMcW003I1mcW7>L01UcW003I1mcW7>L08McW003I1mcW7>L01UcW003I1mc W7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`06G>L00=T7g>LLi`0R7>L00=T7g>LLi`067>L00=T7g>L Li`097>L2Goo0007OolWLi`00f@OLiacW00HLi`00f@OLiacW02:Li`00f@OLiacW00GLi`00f@OLiac W00TLi`9Ool000MoobMcW003I1mcW7>L01McW003I1mcW7>L08acW003I1mcW7>L01IcW003I1mcW7>L 02AcW0Uoo`001goo9g>L00=T7g>LLi`05W>L00=T7g>LLi`0SW>L00=T7g>LLi`05G>L00=T7g>LLi`0 97>L2Goo0007OolWLi`00f@OLiacW00ELi`00f@OLiacW02@Li`00f@OLiacW00DLi`00f@OLiacW00T Li`9Ool000MoobMcW003I1mcW7>L01AcW003I1mcW7>L099cW003I1mcW7>L01=cW003I1mcW7>L02Ac W0Uoo`001goo9g>L00=T7g>LLi`04g>L00=T7g>LLi`0Tg>L00=T7g>LLi`04g>L00=T7g>LLi`097>L 2Goo0007OolWLi`00f@OLiacW00BLi`00f@OLiacW02ELi`00f@OLiacW00BLi`00f@OLiacW00TLi`9 Ool000MoobMcW003I1mcW7>L019cW003I1mcW7>L09IcW003I1mcW7>L015cW003I1mcW7>L02AcW0Uo o`001goo9g>L00=T7g>LLi`04G>L00=T7g>LLi`0V7>L00=T7g>LLi`047>L00=T7g>LLi`097>L2Goo 0007OolWLi`00f@OLiacW00@Li`00f@OLiacW02JLi`00f@OLiacW00?Li`00f@OLiacW00TLi`9Ool0 00MoobMcW003I1mcW7>L00mcW003I1mcW7>L09]cW003I1mcW7>L00mcW003I1mcW7>L02AcW0Uoo`00 1goo9g>L00=T7g>LLi`03W>L00=T7g>LLi`0WG>L00=T7g>LLi`03W>L00=T7g>LLi`097>L2Goo0007 OolWLi`00f@OLiacW00=Li`00f@OLiacW02OLi`00f@OLiacW00=Li`00f@OLiacW00TLi`9Ool000Mo obMcW003I1mcW7>L00acW003I1mcW7>L0:5cW003I1mcW7>L00acW003I1mcW7>L02AcW0Uoo`001goo 9g>L00=T7g>LLi`037>L00=T7g>LLi`0XG>L00=T7g>LLi`037>L00=T7g>LLi`097>L2Goo0007OolW Li`00f@OLiacW00;Li`00f@OLiacW02SLi`00f@OLiacW00;Li`00f@OLiacW00TLi`9Ool000MoobMc W003I1mcW7>L00YcW003I1mcW7>L0:EcW003I1mcW7>L00YcW003I1mcW7>L02AcW0Uoo`001goo9g>L 00=T7g>LLi`02G>L00=T7g>LLi`0Yg>L00=T7g>LLi`02G>L00=T7g>LLi`097>L2Goo0007OolWLi`0 0f@OLiacW009Li`00f@OLiacW02WLi`00f@OLiacW009Li`00f@OLiacW00TLi`9Ool000MoobMcW003 I1mcW7>L00QcW003I1mcW7>L0:UcW003I1mcW7>L00QcW003I1mcW7>L02AcW0Uoo`001goo9g>L00=T 7g>LLi`01g>L00=T7g>LLi`0Zg>L00=T7g>LLi`01g>L00=T7g>LLi`097>L2Goo0007OolWLi`00f@O LiacW006Li`00f@OLiacW02]Li`00f@OLiacW006Li`00f@OLiacW00TLi`9Ool000MoobMcW003I1mc W7>L00IcW003I1mcW7>L0:ecW003I1mcW7>L00IcW003I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>L Li`01G>L00=T7g>LLi`0[g>L00=T7g>LLi`01G>L00=T7g>LLi`097>L2Goo0007OolWLi`00f@OLiac W004Li`00f@OLiacW02aLi`00f@OLiacW004Li`00f@OLiacW00TLi`9Ool000MoobMcW003I1mcW7>L 00AcW003I1mcW7>L0;5cW003I1mcW7>L00AcW003I1mcW7>L02AcW0Uoo`001goo9g>L00=T7g>LLi`0 0g>L00=T7g>LLi`0/g>L00=T7g>LLi`00g>L00=T7g>LLi`097>L2Goo0007OolWLi`00f@OLiacW002 Li`00f@OLiacW02eLi`00f@OLiacW002Li`00f@OLiacW00TLi`9Ool000MoobMcW005I1mcW7>LLiaT 7`2iLi`01F@OLiacW7>LI1l09W>L2Goo0007OolWLi`01F@OLiacW7>LI1l0^G>L00ET7g>LLiacW6@O 02IcW0Uoo`001goo9g>L00AT7g>LLiaT7k]cW004I1mcW7>LI1lVLi`9Ool000MoobMcW003I1mcW6@O 0;ecW003I1mcW6@O02IcW0Uoo`001goo9g>L0V@O_g>L0V@O9W>L2Goo0007OolWLi`2I1noLi`2I1lV Li`9Ool000MoobMcW003I1mcW7>L0;mcW003I1mcW7>L02AcW0Uoo`001gooog>L4G>L2Goo003oOolQ Ool00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {104.188, 0}} -> {-0.240459, -0.268802, \ 0.00515999, 0.00515999}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-21\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({140, 51}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-21\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cerniera\"\>", \ "\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>"}, {"\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>", \ "\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>"}, {"\<\"cRnull\"\>", "\<\"crosshairFig\"\>", "\<\"cRsol\"\>", \ "\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>"}, {"\<\"d\"\>", "\<\"datinum\"\>", "\<\"datiO\"\>", "\<\"datip\"\>", \ "\<\"diaM\"\>", "\<\"diaMb\"\>"}, {"\<\"diaN\"\>", "\<\"diaNb\"\>", "\<\"diaNs\"\>", "\<\"diaQ\"\>", \ "\<\"diaQb\"\>", "\<\"diaQs\"\>"}, {"\<\"dsh\"\>", "\<\"e\"\>", "\<\"eqbil\"\>", "\<\"eqbilbd\"\>", \ "\<\"eqbilt\"\>", "\<\"eqnsp\"\>"}, {"\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>", \ "\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>"}, {"\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>", "\<\"fabdp1\"\>", \ "\<\"fbd\"\>", "\<\"figM\"\>"}, {"\<\"figMb\"\>", "\<\"figN\"\>", "\<\"figNb\"\>", "\<\"figNs\"\>", \ "\<\"figQ\"\>", "\<\"figQb\"\>"}, {"\<\"figQs\"\>", "\<\"forze\"\>", "\<\"frame\"\>", \ "\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>"}, {"\<\"g\"\>", "\<\"grad\"\>", "\<\"grNQM\"\>", \ "\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"i\"\>"}, {"\<\"imageH\"\>", "\<\"imageW\"\>", "\<\"incastro\"\>", \ "\<\"incastroFig\"\>", "\<\"incastroV\"\>", "\<\"it\"\>"}, {"\<\"ix\"\>", "\<\"j\"\>", "\<\"jx\"\>", "\<\"ker\"\>", \ "\<\"ker0\"\>", "\<\"L\"\>"}, {"\<\"Li\"\>", "\<\"Lo\"\>", "\<\"m\"\>", "\<\"M\"\>", \ "\<\"matbilbd\"\>", "\<\"matvin\"\>"}, {"\<\"maxL\"\>", "\<\"mb\"\>", "\<\"meno\"\>", "\<\"mU\"\>", \ "\<\"myTeXForm\"\>", "\<\"n\"\>"}, {"\<\"nc\"\>", "\<\"ndiv\"\>", "\<\"newsym\"\>", \ "\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", "\<\"newsymlist2\"\>"}, {"\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>", \ "\<\"newsymlist5\"\>", "\<\"newsymlist6\"\>", "\<\"nf\"\>", "\<\"no\"\>"}, {"\<\"nv\"\>", "\<\"org\"\>", "\<\"outputDir\"\>", "\<\"p\"\>", "\<\ \"perno\"\>", "\<\"pernoFig\"\>"}, {"\<\"pernoV\"\>", "\<\"phframe\"\>", "\<\"pi\[UGrave]\"\>", \ "\<\"pltD\"\>", "\<\"pltDbv\"\>", "\<\"pltDs\"\>"}, {"\<\"pltDv\"\>", "\<\"pltM\"\>", "\<\"pltN\"\>", "\<\"pltO\"\>", "\ \<\"pltOa\"\>", "\<\"pltOax\"\>"}, {"\<\"pltObv\"\>", "\<\"pltOs\"\>", "\<\"pltOv\"\>", \ "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>"}, {"\<\"potbdv\"\>", "\<\"pote\"\>", "\<\"pt1\"\>", "\<\"pt2\"\>", \ "\<\"rango\"\>", "\<\"risp\"\>"}, {"\<\"s\"\>", "\<\"saldatura\"\>", "\<\"saldaturaFig\"\>", \ "\<\"saldaturaV\"\>", "\<\"sb\"\>", "\<\"sc\"\>"}, {"\<\"scM\"\>", "\<\"scN\"\>", "\<\"scQ\"\>", "\<\"secD\"\>", \ "\<\"secO\"\>", "\<\"simplifyDirac\"\>"}, {"\<\"sM\"\>", "\<\"sMf\"\>", "\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\ \"\>", "\<\"sNo\"\>"}, {"\<\"sNQM\"\>", "\<\"spbd\"\>", "\<\"splist\"\>", \ "\<\"splistV\"\>", "\<\"spro\"\>", "\<\"spsol\"\>"}, {"\<\"spsolD\"\>", "\<\"spsolDO\"\>", "\<\"spsolO\"\>", "\<\"spuv\ \[Theta]\"\>", "\<\"sQ\"\>", "\<\"sQo\"\>"}, {"\<\"stFile\"\>", "\<\"svar\"\>", "\<\"texBil1\"\>", \ "\<\"texBil2\"\>", "\<\"texBil3\"\>", "\<\"texCDval\"\>"}, {"\<\"texCname\"\>", "\<\"texCval\"\>", "\<\"texDname\"\>", \ "\<\"texDval\"\>", "\<\"texeqbd\"\>", "\<\"texeqbdO\"\>"}, {"\<\"texm\"\>", "\<\"texM\"\>", "\<\"texMin\"\>", "\<\"texMn\"\>", \ "\<\"texN\"\>", "\<\"texNin\"\>"}, {"\<\"texNn\"\>", "\<\"texQ\"\>", "\<\"texQin\"\>", \ "\<\"texQn\"\>", "\<\"texs\"\>", "\<\"texsm\"\>"}, {"\<\"texsn\"\>", "\<\"texu1\"\>", "\<\"texu1in\"\>", "\<\"texu1inO\ \"\>", "\<\"texu1n\"\>", "\<\"texu2\"\>"}, {"\<\"texu2in\"\>", "\<\"texu2inO\"\>", "\<\"texu2n\"\>", \ "\<\"texvinc\"\>", "\<\"texvincO\"\>", "\<\"tex\[Theta]\"\>"}, {"\<\"tex\[Theta]in\"\>", "\<\"tex\[Theta]inO\"\>", \ "\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", "\<\"thetao\"\>", "\<\"ticksOption\"\ \>"}, {"\<\"travi\"\>", "\<\"trv\"\>", "\<\"trv1\"\>", "\<\"trv2\"\>", \ "\<\"u\"\>", "\<\"u1\"\>"}, {"\<\"u1o\"\>", "\<\"u2\"\>", "\<\"u2o\"\>", "\<\"ub\"\>", \ "\<\"uo\"\>", "\<\"vam\"\>"}, {"\<\"var\"\>", "\<\"vecOa1\"\>", "\<\"vecOa2\"\>", \ "\<\"vinBer\"\>", "\<\"vincoli\"\>", "\<\"vincolibFig\"\>"}, {"\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>", "\<\"vsp\"\>", "\<\"wb\ \"\>", "\<\"xC\"\>", "\<\"xCshift\"\>"}, {"\<\"xDiag\"\>", "\<\"xLowerL\"\>", "\<\"xMax\"\>", \ "\<\"xMin\"\>", "\<\"xUpperR\"\>", "\<\"y1\"\>"}, {"\<\"y2\"\>", "\<\"YA\"\>", "\<\"YJ\"\>", "\<\"\[ScriptA]\"\>", \ "\<\"\[ScriptB]\"\>", "\<\"\[ScriptC]\"\>"}, {"\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\"\>", "\<\"\ \[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\[ScriptCapitalL]\"\>", \ "\<\"\[ScriptCapitalM]\"\>"}, {"\<\"\[ScriptCapitalY]\[ScriptCapitalA]\"\>", "\<\"\ \[ScriptCapitalY]\[ScriptCapitalJ]\"\>", "\<\"\[Alpha]\"\>", \ "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>", "\<\"\[Zeta]\"\>"}, {"\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>", "\<\"\[Theta]b\"\>", "\<\"\ \[Theta]o\"\>", "\<\"\[Kappa]\"\>", "\<\"\[Xi]\"\>"}, {"\<\"\[Chi]\"\>", "\<\"\[Omega]b\"\>", "\<\"\"\>", "\<\"\"\>", "\<\ \"\"\>", "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cerniera", "cernieraFig", "cernieraV", "cNQM"}, {"cNQMb", "cNQMsol", "cNQMval", "col", "coll", "cRlist"}, {"cRnull", "crosshairFig", "cRsol", "cRsol0", "cRsol1", "cRval"}, {"d", "datinum", "datiO", "datip", "diaM", "diaMb"}, { "diaN", "diaNb", "diaNs", "diaQ", "diaQb", "diaQs"}, {"dsh", "e", "eqbil", "eqbilbd", "eqbilt", "eqnsp"}, {"eqnspO", "eqvin", "eqvinO", "exp", "expr1", "extraSimplify"}, {"f", "fabd", "fabdp", "fabdp1", "fbd", "figM"}, {"figMb", "figN", "figNb", "figNs", "figQ", "figQb"}, {"figQs", "forze", "frame", "frameb", "fromCtoNQM", "fromDtoU"}, {"g", "grad", "grNQM", "gruv\[Theta]", "g$", "i"}, { "imageH", "imageW", "incastro", "incastroFig", "incastroV", "it"}, { "ix", "j", "jx", "ker", "ker0", "L"}, {"Li", "Lo", "m", "M", "matbilbd", "matvin"}, {"maxL", "mb", "meno", "mU", "myTeXForm", "n"}, {"nc", "ndiv", "newsym", "newsymlist", "newsymlist1", "newsymlist2"}, {"newsymlist3", "newsymlist4", "newsymlist5", "newsymlist6", "nf", "no"}, {"nv", "org", "outputDir", "p", "perno", "pernoFig"}, {"pernoV", "phframe", "pi\[UGrave]", "pltD", "pltDbv", "pltDs"}, {"pltDv", "pltM", "pltN", "pltO", "pltOa", "pltOax"}, { "pltObv", "pltOs", "pltOv", "pltOx", "pltQ", "potbd"}, {"potbdv", "pote", "pt1", "pt2", "rango", "risp"}, {"s", "saldatura", "saldaturaFig", "saldaturaV", "sb", "sc"}, {"scM", "scN", "scQ", "secD", "secO", "simplifyDirac"}, {"sM", "sMf", "sMo", "sN", "sNf", "sNo"}, {"sNQM", "spbd", "splist", "splistV", "spro", "spsol"}, { "spsolD", "spsolDO", "spsolO", "spuv\[Theta]", "sQ", "sQo"}, { "stFile", "svar", "texBil1", "texBil2", "texBil3", "texCDval"}, { "texCname", "texCval", "texDname", "texDval", "texeqbd", "texeqbdO"}, {"texm", "texM", "texMin", "texMn", "texN", "texNin"}, { "texNn", "texQ", "texQin", "texQn", "texs", "texsm"}, {"texsn", "texu1", "texu1in", "texu1inO", "texu1n", "texu2"}, {"texu2in", "texu2inO", "texu2n", "texvinc", "texvincO", "tex\[Theta]"}, { "tex\[Theta]in", "tex\[Theta]inO", "tex\[Theta]n", "theta", "thetao", "ticksOption"}, {"travi", "trv", "trv1", "trv2", "u", "u1"}, {"u1o", "u2", "u2o", "ub", "uo", "vam"}, {"var", "vecOa1", "vecOa2", "vinBer", "vincoli", "vincolibFig"}, {"vincoliDef", "vincoliFig", "vsp", "wb", "xC", "xCshift"}, {"xDiag", "xLowerL", "xMax", "xMin", "xUpperR", "y1"}, {"y2", "YA", "YJ", "\[ScriptA]", "\[ScriptB]", "\[ScriptC]"}, { "\[ScriptCapitalC]", "\[ScriptD]", "\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]", "\[ScriptCapitalM]"}, { "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]", "\[Alpha]", "\[Gamma]", "\[Epsilon]", "\[Zeta]"}, {"\[Zeta]$", "\[Theta]", "\[Theta]b", "\[Theta]o", "\[Kappa]", "\[Xi]"}, {"\[Chi]", "\[Omega]b"}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{644, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 280, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2522, 81, 51, 1, 59, "Section", Evaluatable->False], Cell[2576, 84, 1127, 30, 252, "SmallText"], Cell[3706, 116, 1520, 27, 236, "SmallText"], Cell[5229, 145, 498, 12, 60, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[5764, 162, 57, 1, 39, "Section", Evaluatable->False], Cell[5824, 165, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[5955, 171, 56, 1, 30, "Input"], Cell[6014, 174, 91, 1, 29, "Output"] }, Open ]], Cell[6120, 178, 97, 2, 28, "SmallText"], Cell[6220, 182, 130, 2, 50, "Input"], Cell[6353, 186, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[6885, 199, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7071, 209, 84, 2, 47, "Subsection"], Cell[7158, 213, 109, 2, 28, "SmallText"], Cell[7270, 217, 128, 4, 50, "Input"], Cell[7401, 223, 131, 4, 28, "SmallText"], Cell[7535, 229, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7817, 240, 103, 5, 31, "Subsection"], Cell[7923, 247, 46, 0, 28, "SmallText"], Cell[7972, 249, 101, 3, 46, "Input"], Cell[8076, 254, 364, 10, 60, "SmallText"], Cell[8443, 266, 107, 3, 46, "Input"], Cell[8553, 271, 319, 9, 60, "SmallText"], Cell[8875, 282, 116, 3, 46, "Input"], Cell[8994, 287, 215, 5, 66, "Input"], Cell[9212, 294, 130, 3, 28, "SmallText"], Cell[9345, 299, 129, 3, 46, "Input"], Cell[9477, 304, 121, 3, 28, "SmallText"], Cell[9601, 309, 199, 5, 58, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[9837, 319, 56, 0, 47, "Subsection"], Cell[9896, 321, 45, 0, 28, "SmallText"], Cell[9944, 323, 124, 3, 30, "Input"], Cell[10071, 328, 42, 0, 28, "SmallText"], Cell[10116, 330, 118, 2, 30, "Input"], Cell[10237, 334, 43, 1, 30, "Input"], Cell[10283, 337, 227, 4, 28, "SmallText"], Cell[10513, 343, 53, 1, 30, "Input"], Cell[10569, 346, 271, 5, 42, "Input"], Cell[10843, 353, 46, 0, 28, "SmallText"], Cell[10892, 355, 195, 4, 42, "Input"], Cell[11090, 361, 52, 0, 28, "SmallText"], Cell[11145, 363, 504, 9, 131, "Input"], Cell[11652, 374, 613, 11, 131, "Input"], Cell[12268, 387, 73, 0, 28, "SmallText"], Cell[12344, 389, 46, 1, 30, "Input"], Cell[12393, 392, 134, 3, 28, "SmallText"], Cell[12530, 397, 182, 4, 30, "Input"], Cell[12715, 403, 146, 3, 30, "Input"], Cell[12864, 408, 42, 0, 28, "SmallText"], Cell[12909, 410, 203, 4, 42, "Input"], Cell[13115, 416, 48, 0, 28, "SmallText"], Cell[13166, 418, 226, 5, 85, "Input"], Cell[13395, 425, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13637, 435, 111, 3, 50, "Subsection"], Cell[CellGroupData[{ Cell[13773, 442, 144, 2, 70, "Input"], Cell[13920, 446, 3821, 112, 80, 951, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17802, 565, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[17977, 575, 103, 5, 47, "Subsection"], Cell[18083, 582, 62, 1, 30, "Input"], Cell[18148, 585, 57, 1, 30, "Input"], Cell[18208, 588, 417, 11, 76, "SmallText"], Cell[18628, 601, 130, 3, 46, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[18795, 609, 210, 7, 66, "Subsection"], Cell[CellGroupData[{ Cell[19030, 620, 52, 1, 30, "Input"], Cell[19085, 623, 46, 1, 70, "Output"] }, Open ]], Cell[19146, 627, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[19481, 636, 50, 1, 30, "Input"], Cell[19534, 639, 46, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[19641, 647, 116, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[19782, 654, 132, 3, 47, "Subsection"], Cell[19917, 659, 137, 3, 30, "Input"], Cell[20057, 664, 74, 1, 30, "Input"], Cell[20134, 667, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[21261, 699, 92, 1, 30, "Input"], Cell[21356, 702, 55, 1, 70, "Output"] }, Open ]], Cell[21426, 706, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[21556, 712, 174, 3, 30, "Input"], Cell[21733, 717, 334, 6, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[22116, 729, 64, 0, 31, "Subsection"], Cell[22183, 731, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[22488, 741, 87, 1, 30, "Input"], Cell[22578, 744, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22724, 751, 104, 2, 30, "Input"], Cell[22831, 755, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22926, 761, 190, 3, 50, "Input"], Cell[23119, 766, 139, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23295, 773, 264, 4, 71, "Input"], Cell[23562, 779, 154, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23753, 786, 65, 1, 30, "Input"], Cell[23821, 789, 269, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[24139, 800, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[24230, 804, 116, 2, 30, "Input"], Cell[24349, 808, 1176, 36, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25562, 849, 290, 5, 50, "Input"], Cell[25855, 856, 986, 28, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26878, 889, 289, 5, 50, "Input"], Cell[27170, 896, 855, 27, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[28086, 930, 62, 0, 39, "Section"], Cell[28151, 932, 71, 1, 30, "Input"], Cell[28225, 935, 146, 3, 28, "SmallText"], Cell[28374, 940, 408, 9, 70, "Input"], Cell[28785, 951, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[28880, 955, 198, 4, 30, "Input"], Cell[29081, 961, 174, 3, 70, "Output"] }, Open ]], Cell[29270, 967, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29365, 971, 198, 4, 30, "Input"], Cell[29566, 977, 174, 3, 70, "Output"] }, Open ]], Cell[29755, 983, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29844, 987, 190, 4, 30, "Input"], Cell[30037, 993, 151, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[30237, 1001, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[30390, 1010, 53, 0, 47, "Subsection"], Cell[30446, 1012, 110, 2, 30, "Input"], Cell[30559, 1016, 152, 3, 30, "Input"], Cell[30714, 1021, 249, 5, 50, "Input"], Cell[30966, 1028, 330, 6, 70, "Input"], Cell[31299, 1036, 193, 4, 30, "Input"], Cell[31495, 1042, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[31665, 1050, 103, 5, 31, "Subsection"], Cell[31771, 1057, 160, 4, 60, "SmallText"], Cell[31934, 1063, 49, 1, 30, "Input"], Cell[31986, 1066, 106, 2, 50, "Input"], Cell[32095, 1070, 119, 3, 28, "SmallText"], Cell[32217, 1075, 80, 2, 46, "Input"], Cell[32300, 1079, 505, 8, 92, "SmallText"], Cell[32808, 1089, 165, 4, 46, "Input"], Cell[32976, 1095, 224, 3, 110, "Input"], Cell[CellGroupData[{ Cell[33225, 1102, 40, 1, 30, "Input"], Cell[33268, 1105, 204, 3, 70, "Output"] }, Open ]], Cell[33487, 1111, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[33582, 1115, 137, 3, 30, "Input"], Cell[33722, 1120, 243, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[34014, 1130, 56, 0, 31, "Subsection"], Cell[34073, 1132, 72, 0, 28, "SmallText"], Cell[34148, 1134, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[34217, 1139, 43, 1, 30, "Input"], Cell[34263, 1142, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34378, 1148, 280, 5, 90, "Input"], Cell[34661, 1155, 36, 1, 70, "Output"] }, Open ]], Cell[34712, 1159, 150, 3, 44, "SmallText"], Cell[34865, 1164, 43, 1, 30, "Input"], Cell[34911, 1167, 53, 1, 30, "Input"], Cell[34967, 1170, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[36269, 1200, 240, 4, 70, "Input"], Cell[36512, 1206, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[36585, 1212, 48, 1, 30, "Input"], Cell[36636, 1215, 396, 12, 70, "Output"] }, Open ]], Cell[37047, 1230, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[37162, 1236, 43, 1, 30, "Input"], Cell[37208, 1239, 78, 1, 70, "Output"] }, Open ]], Cell[37301, 1243, 222, 4, 90, "Input"], Cell[37526, 1249, 219, 4, 90, "Input"], Cell[37748, 1255, 67, 0, 28, "SmallText"], Cell[37818, 1257, 72, 1, 30, "Input"], Cell[37893, 1260, 82, 1, 30, "Input"], Cell[37978, 1263, 393, 7, 208, "Input"], Cell[38374, 1272, 403, 7, 208, "Input"], Cell[38780, 1281, 214, 4, 118, "Input"], Cell[38997, 1287, 717, 13, 338, "Input"], Cell[39717, 1302, 452, 8, 202, "Input"], Cell[40172, 1312, 213, 4, 90, "Input"], Cell[40388, 1318, 155, 3, 70, "Input"], Cell[40546, 1323, 57, 1, 30, "Input"], Cell[40606, 1326, 59, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[40702, 1332, 75, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[40802, 1336, 145, 2, 70, "Input"], Cell[40950, 1340, 5567, 141, 70, 1089, 81, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[46554, 1486, 144, 2, 70, "Input"], Cell[46701, 1490, 3756, 108, 70, 907, 68, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[50506, 1604, 78, 0, 31, "Subsection"], Cell[50587, 1606, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[50843, 1614, 213, 4, 50, "Input"], Cell[51059, 1620, 760, 25, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[51856, 1650, 70, 1, 30, "Input"], Cell[51929, 1653, 782, 24, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[52772, 1684, 89, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[52886, 1689, 68, 1, 47, "Subsection", Evaluatable->False], Cell[52957, 1692, 119, 3, 28, "SmallText"], Cell[53079, 1697, 156, 3, 28, "SmallText"], Cell[53238, 1702, 356, 5, 95, "Input"], Cell[53597, 1709, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[53965, 1719, 37, 1, 30, "Input"], Cell[54005, 1722, 311, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[54353, 1732, 71, 1, 30, "Input"], Cell[54427, 1735, 551, 9, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[55027, 1750, 57, 0, 31, "Subsection"], Cell[55087, 1752, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[55206, 1758, 169, 3, 30, "Input"], Cell[55378, 1763, 204, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[55619, 1771, 93, 1, 30, "Input"], Cell[55715, 1774, 204, 3, 70, "Output"] }, Open ]], Cell[55934, 1780, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[56020, 1784, 344, 6, 90, "Input"], Cell[56367, 1792, 243, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56647, 1801, 69, 1, 30, "Input"], Cell[56719, 1804, 36, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[56804, 1811, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[56894, 1815, 70, 1, 30, "Input"], Cell[56967, 1818, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[57051, 1825, 105, 2, 31, "Subsection"], Cell[CellGroupData[{ Cell[57181, 1831, 195, 4, 30, "Input"], Cell[57379, 1837, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57452, 1843, 63, 1, 30, "Input"], Cell[57518, 1846, 36, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[57603, 1853, 88, 1, 31, "Subsection", Evaluatable->False], Cell[57694, 1856, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[57899, 1864, 37, 1, 30, "Input"], Cell[57939, 1867, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58034, 1873, 138, 4, 30, "Input"], Cell[58175, 1879, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58248, 1885, 103, 2, 30, "Input"], Cell[58354, 1889, 42, 1, 70, "Output"] }, Open ]], Cell[58411, 1893, 134, 3, 30, "Input"], Cell[58548, 1898, 134, 3, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[58719, 1906, 78, 0, 31, "Subsection"], Cell[58800, 1908, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[58908, 1913, 45, 1, 30, "Input"], Cell[58956, 1916, 35, 1, 70, "Output"] }, Open ]], Cell[59006, 1920, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[59249, 1928, 51, 1, 30, "Input"], Cell[59303, 1931, 35, 1, 70, "Output"] }, Open ]], Cell[59353, 1935, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[59501, 1942, 53, 1, 30, "Input"], Cell[59557, 1945, 35, 1, 70, "Output"] }, Open ]], Cell[59607, 1949, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[59764, 1956, 51, 1, 30, "Input"], Cell[59818, 1959, 35, 1, 70, "Output"] }, Open ]], Cell[59868, 1963, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[59923, 1967, 134, 2, 30, "Input"], Cell[60060, 1971, 53, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[60150, 1977, 230, 5, 30, "Input"], Cell[60383, 1984, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[60467, 1991, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[60564, 1995, 461, 8, 19, "Input", CellOpen->False], Cell[61028, 2005, 195, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61260, 2015, 1993, 32, 19, "Input", CellOpen->False], Cell[63256, 2049, 189, 5, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[63506, 2061, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[63673, 2071, 56, 0, 47, "Subsection"], Cell[63732, 2073, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[63832, 2077, 92, 1, 30, "Input"], Cell[63927, 2080, 35, 1, 70, "Output"] }, Open ]], Cell[63977, 2084, 182, 3, 28, "SmallText"], Cell[64162, 2089, 248, 7, 30, "Input"], Cell[64413, 2098, 71, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[64521, 2104, 134, 5, 31, "Subsection"], Cell[64658, 2111, 420, 7, 76, "SmallText"], Cell[65081, 2120, 104, 3, 46, "Input"], Cell[65188, 2125, 313, 9, 44, "SmallText"], Cell[65504, 2136, 407, 8, 106, "Input"], Cell[65914, 2146, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[66029, 2152, 135, 3, 30, "Input"], Cell[66167, 2157, 36, 1, 29, "Output"] }, Open ]], Cell[66218, 2161, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[66370, 2168, 140, 3, 70, "Input"], Cell[66513, 2173, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[66586, 2179, 182, 4, 50, "Input"], Cell[66771, 2185, 36, 1, 29, "Output"] }, Open ]], Cell[66822, 2189, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[66893, 2193, 46, 1, 30, "Input"], Cell[66942, 2196, 36, 1, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[67027, 2203, 72, 0, 31, "Subsection"], Cell[67102, 2205, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[67268, 2212, 271, 7, 50, "Input"], Cell[67542, 2221, 38, 1, 70, "Output"] }, Open ]], Cell[67595, 2225, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[67805, 2233, 160, 4, 30, "Input"], Cell[67968, 2239, 36, 1, 70, "Output"] }, Open ]], Cell[68019, 2243, 524, 9, 110, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[68592, 2258, 88, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[68705, 2263, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[68782, 2267, 76, 1, 30, "Input"], Cell[68861, 2270, 36, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[68946, 2277, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[69062, 2282, 571, 10, 70, "Input"], Cell[69636, 2294, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[69709, 2300, 149, 2, 30, "Input"], Cell[69861, 2304, 163, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70061, 2312, 40, 1, 30, "Input"], Cell[70104, 2315, 36, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[70201, 2323, 116, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[70342, 2330, 45, 0, 47, "Subsection"], Cell[70390, 2332, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[70556, 2339, 1094, 25, 50, "Input"], Cell[71653, 2366, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[72717, 2396, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[72807, 2400, 217, 4, 50, "Input"], Cell[73027, 2406, 186, 3, 70, "Output"] }, Open ]], Cell[73228, 2412, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[73332, 2416, 365, 9, 30, "Input"], Cell[73700, 2427, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[74069, 2441, 40, 0, 31, "Subsection"], Cell[74112, 2443, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[74279, 2450, 227, 3, 50, "Input"], Cell[74509, 2455, 320, 6, 70, "Output"] }, Open ]], Cell[74844, 2464, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[74977, 2471, 289, 4, 70, "Input"], Cell[75269, 2477, 773, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[76079, 2500, 246, 4, 70, "Input"], Cell[76328, 2506, 457, 8, 70, "Output"] }, Open ]], Cell[76800, 2517, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[76927, 2523, 330, 5, 70, "Input"], Cell[77260, 2530, 773, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[78070, 2553, 244, 4, 70, "Input"], Cell[78317, 2559, 457, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[78811, 2572, 169, 3, 30, "Input"], Cell[78983, 2577, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[79135, 2584, 76, 1, 30, "Input"], Cell[79214, 2587, 657, 12, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[79908, 2604, 75, 1, 30, "Input"], Cell[79986, 2607, 657, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[80692, 2625, 64, 0, 31, "Subsection"], Cell[80759, 2627, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[81009, 2636, 190, 4, 50, "Input"], Cell[81202, 2642, 109, 2, 70, "Output"] }, Open ]], Cell[81326, 2647, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[81463, 2654, 311, 7, 90, "Input"], Cell[81777, 2663, 140, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[81954, 2671, 257, 4, 50, "Input"], Cell[82214, 2677, 149, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82400, 2684, 127, 2, 31, "Input"], Cell[82530, 2688, 164, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82731, 2695, 60, 1, 30, "Input"], Cell[82794, 2698, 92, 1, 70, "Output"] }, Open ]], Cell[82901, 2702, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[83034, 2709, 61, 1, 30, "Input"], Cell[83098, 2712, 410, 7, 70, "Output"] }, Open ]], Cell[83523, 2722, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[83650, 2728, 59, 1, 30, "Input"], Cell[83712, 2731, 410, 7, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[84183, 2745, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[84286, 2750, 64, 1, 47, "Subsection", Evaluatable->False], Cell[84353, 2753, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[84529, 2760, 422, 8, 90, "Input"], Cell[84954, 2770, 243, 4, 70, "Output"] }, Open ]], Cell[85212, 2777, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[85428, 2785, 82, 1, 30, "Input"], Cell[85513, 2788, 632, 11, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[86194, 2805, 78, 1, 31, "Subsection", Evaluatable->False], Cell[86275, 2808, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[86408, 2814, 93, 1, 30, "Input"], Cell[86504, 2817, 842, 18, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[87383, 2840, 93, 1, 30, "Input"], Cell[87479, 2843, 790, 22, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88306, 2870, 107, 2, 30, "Input"], Cell[88416, 2874, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88488, 2880, 108, 2, 30, "Input"], Cell[88599, 2884, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88672, 2890, 39, 1, 30, "Input"], Cell[88714, 2893, 92, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[88855, 2900, 55, 0, 31, "Subsection"], Cell[88913, 2902, 246, 4, 110, "Input"], Cell[89162, 2908, 244, 4, 110, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[89443, 2917, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[89548, 2922, 169, 3, 30, "Input"], Cell[89720, 2927, 151, 2, 70, "Output"] }, Open ]], Cell[89886, 2932, 42, 1, 30, "Input"], Cell[89931, 2935, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[90042, 2940, 88, 1, 30, "Input"], Cell[90133, 2943, 151, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90321, 2950, 221, 4, 30, "Input"], Cell[90545, 2956, 272, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90854, 2966, 128, 2, 30, "Input"], Cell[90985, 2970, 1084, 28, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[92130, 3005, 123, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[92278, 3012, 140, 5, 47, "Subsection"], Cell[92421, 3019, 110, 2, 30, "Input"], Cell[92534, 3023, 78, 1, 30, "Input"], Cell[92615, 3026, 76, 1, 30, "Input"], Cell[92694, 3029, 59, 1, 30, "Input"], Cell[92756, 3032, 471, 8, 118, "Input"], Cell[93230, 3042, 65, 1, 30, "Input"], Cell[93298, 3045, 85, 1, 30, "Input"], Cell[93386, 3048, 150, 3, 30, "Input"], Cell[93539, 3053, 193, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[93757, 3061, 304, 5, 50, "Input"], Cell[94064, 3068, 38, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[94151, 3075, 64, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[94240, 3079, 91, 1, 30, "Input"], Cell[94334, 3082, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[94407, 3088, 89, 1, 30, "Input"], Cell[94499, 3091, 272, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[94820, 3102, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[94881, 3106, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[94944, 3110, 297, 6, 130, "Input"], Cell[95244, 3118, 326, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[95619, 3134, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[95684, 3138, 292, 6, 130, "Input"], Cell[95979, 3146, 386, 11, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[96414, 3163, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[96471, 3167, 292, 6, 130, "Input"], Cell[96766, 3175, 431, 11, 47, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[97258, 3193, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[97316, 3197, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[97385, 3201, 289, 6, 70, "Input"], Cell[97677, 3209, 326, 10, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[98052, 3225, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[98125, 3229, 289, 6, 70, "Input"], Cell[98417, 3237, 442, 11, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[98908, 3254, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[98967, 3258, 295, 6, 70, "Input"], Cell[99265, 3266, 504, 13, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[99830, 3286, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[99973, 3293, 58, 1, 30, "Input"], Cell[100034, 3296, 411, 12, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[100482, 3313, 62, 0, 43, "Subsubsection"], Cell[100547, 3315, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[100631, 3319, 302, 5, 150, "Input"], Cell[100936, 3326, 417, 11, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[101402, 3343, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[101491, 3347, 302, 5, 150, "Input"], Cell[101796, 3354, 420, 11, 51, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[102265, 3371, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[102342, 3375, 453, 8, 189, "Input"], Cell[102798, 3385, 337, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[103184, 3401, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[103263, 3405, 623, 11, 191, "Input"], Cell[103889, 3418, 330, 10, 43, "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[104292, 3436, 131, 6, 39, "Section", Evaluatable->False], Cell[104426, 3444, 118, 3, 33, "Text"], Cell[104547, 3449, 217, 5, 46, "Input"], Cell[104767, 3456, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[105017, 3464, 132, 3, 50, "Input"], Cell[105152, 3469, 36, 1, 29, "Output"] }, Open ]], Cell[105203, 3473, 123, 3, 33, "Text"], Cell[105329, 3478, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[105456, 3485, 142, 3, 70, "Input"], Cell[105601, 3490, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[105674, 3496, 69, 1, 30, "Input"], Cell[105746, 3499, 172, 3, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[105967, 3508, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[106099, 3515, 33, 0, 47, "Subsection"], Cell[106135, 3517, 215, 4, 50, "Input"], Cell[106353, 3523, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[106604, 3532, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[106695, 3537, 67, 1, 30, "Input"], Cell[106765, 3540, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106845, 3546, 68, 1, 30, "Input"], Cell[106916, 3549, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[106996, 3555, 81, 1, 30, "Input"], Cell[107080, 3558, 238, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107355, 3568, 84, 1, 30, "Input"], Cell[107442, 3571, 249, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107728, 3581, 73, 1, 30, "Input"], Cell[107804, 3584, 137, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107978, 3591, 76, 1, 30, "Input"], Cell[108057, 3594, 128, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108222, 3601, 73, 1, 30, "Input"], Cell[108298, 3604, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108411, 3610, 76, 1, 30, "Input"], Cell[108490, 3613, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[108624, 3620, 75, 1, 31, "Subsection", Evaluatable->False], Cell[108702, 3623, 384, 16, 28, "SmallText"], Cell[109089, 3641, 261, 12, 28, "SmallText"], Cell[109353, 3655, 1652, 33, 152, "Input"], Cell[111008, 3690, 1634, 32, 152, "Input"], Cell[112645, 3724, 393, 16, 50, "Text"], Cell[113041, 3742, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[113142, 3748, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[113259, 3753, 132, 3, 19, "Input", CellOpen->False], Cell[113394, 3758, 11689, 425, 77, 5167, 341, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[125132, 4189, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[125251, 4196, 155, 4, 19, "Input", CellOpen->False], Cell[125409, 4202, 14666, 529, 81, 6491, 425, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[140136, 4738, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[140326, 4748, 56, 0, 47, "Subsection"], Cell[140385, 4750, 136, 3, 28, "SmallText"], Cell[140524, 4755, 222, 5, 30, "Input"], Cell[140749, 4762, 446, 7, 84, "Input"], Cell[141198, 4771, 38, 0, 28, "SmallText"], Cell[141239, 4773, 328, 7, 50, "Input"], Cell[141570, 4782, 42, 0, 28, "SmallText"], Cell[141615, 4784, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[141869, 4793, 86, 1, 30, "Input"], Cell[141958, 4796, 308, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[142303, 4809, 88, 1, 30, "Input"], Cell[142394, 4812, 308, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[142751, 4826, 42, 0, 31, "Subsection"], Cell[142796, 4828, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[143053, 4836, 263, 5, 90, "Input"], Cell[143319, 4843, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[143400, 4849, 263, 5, 90, "Input"], Cell[143666, 4856, 44, 1, 70, "Output"] }, Open ]], Cell[143725, 4860, 86, 1, 30, "Input"], Cell[143814, 4863, 128, 2, 76, "Input"], Cell[143945, 4867, 112, 2, 30, "Input"], Cell[144060, 4871, 129, 3, 30, "Input"], Cell[144192, 4876, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[144296, 4882, 132, 5, 31, "Subsection"], Cell[144431, 4889, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[144637, 4898, 87, 1, 32, "Input"], Cell[144727, 4901, 40, 1, 29, "Output"] }, Open ]], Cell[144782, 4905, 182, 6, 41, "Input"], Cell[CellGroupData[{ Cell[144989, 4915, 62, 1, 30, "Input"], Cell[145054, 4918, 78, 1, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[145181, 4925, 28, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[145234, 4929, 221, 3, 70, "Input"], Cell[145458, 4934, 9584, 298, 114, 2879, 211, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[155079, 5237, 219, 3, 70, "Input"], Cell[155301, 5242, 7709, 255, 114, 2571, 187, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[163071, 5504, 159, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[163255, 5514, 34, 0, 47, "Subsection"], Cell[163292, 5516, 136, 3, 28, "SmallText"], Cell[163431, 5521, 191, 4, 30, "Input"], Cell[163625, 5527, 36, 0, 28, "SmallText"], Cell[163664, 5529, 349, 8, 50, "Input"], Cell[164016, 5539, 46, 0, 28, "SmallText"], Cell[164065, 5541, 925, 20, 150, "Input"], Cell[164993, 5563, 122, 3, 30, "Input"], Cell[165118, 5568, 109, 2, 30, "Input"], Cell[165230, 5572, 109, 2, 30, "Input"], Cell[165342, 5576, 270, 5, 70, "Input"], Cell[165615, 5583, 191, 4, 30, "Input"], Cell[165809, 5589, 349, 8, 50, "Input"], Cell[166161, 5599, 925, 20, 150, "Input"], Cell[167089, 5621, 122, 3, 30, "Input"], Cell[167214, 5626, 109, 2, 30, "Input"], Cell[167326, 5630, 109, 2, 30, "Input"], Cell[167438, 5634, 270, 5, 70, "Input"], Cell[167711, 5641, 191, 4, 30, "Input"], Cell[167905, 5647, 349, 8, 50, "Input"], Cell[168257, 5657, 122, 3, 30, "Input"], Cell[168382, 5662, 109, 2, 30, "Input"], Cell[168494, 5666, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[168794, 5676, 128, 5, 31, "Subsection"], Cell[168925, 5683, 48, 1, 30, "Input"], Cell[168976, 5686, 49, 1, 30, "Input"], Cell[169028, 5689, 48, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[169113, 5695, 51, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[169189, 5699, 167, 2, 70, "Input"], Cell[169359, 5703, 4160, 160, 114, 1894, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[173568, 5869, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[173635, 5873, 167, 2, 70, "Input"], Cell[173805, 5877, 6649, 255, 114, 3082, 206, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[180503, 6138, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[180571, 6142, 167, 2, 70, "Input"], Cell[180741, 6146, 7825, 231, 114, 2379, 159, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[188627, 6384, 104, 1, 39, "Section"], Cell[CellGroupData[{ Cell[188756, 6389, 44, 1, 30, "Input"], Cell[188803, 6392, 91, 1, 70, "Output"] }, Open ]], Cell[188909, 6396, 137, 3, 70, "Input"], Cell[189049, 6401, 231, 4, 70, "Input"], Cell[189283, 6407, 237, 4, 70, "Input"], Cell[189523, 6413, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[189662, 6419, 328, 5, 72, "Input"], Cell[189993, 6426, 43, 1, 70, "Output"] }, Open ]], Cell[190051, 6430, 255, 4, 90, "Input"], Cell[190309, 6436, 257, 4, 90, "Input"], Cell[190569, 6442, 281, 5, 90, "Input"], Cell[190853, 6449, 254, 4, 90, "Input"], Cell[191110, 6455, 254, 4, 90, "Input"], Cell[191367, 6461, 254, 4, 90, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[191658, 6470, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[191984, 6484, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[192051, 6488, 44, 1, 30, "Input"], Cell[192098, 6491, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[192226, 6497, 69, 1, 30, "Input"], Cell[192298, 6500, 70, 1, 70, "Output"] }, Open ]], Cell[192383, 6504, 137, 3, 28, "SmallText"], Cell[192523, 6509, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[193063, 6523, 58, 1, 30, "Input"], Cell[193124, 6526, 411, 12, 70, "Output"] }, Open ]], Cell[193550, 6541, 226, 5, 44, "SmallText"], Cell[193779, 6548, 144, 3, 50, "Input"], Cell[193926, 6553, 191, 4, 28, "SmallText"], Cell[194120, 6559, 191, 5, 70, "Input"], Cell[194314, 6566, 347, 6, 70, "Input"], Cell[194664, 6574, 219, 4, 50, "Input"], Cell[194886, 6580, 548, 10, 110, "Input"], Cell[195437, 6592, 197, 3, 50, "Input"], Cell[195637, 6597, 381, 7, 70, "Input"], Cell[196021, 6606, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[196339, 6615, 259, 9, 31, "Subsection"], Cell[196601, 6626, 122, 3, 28, "SmallText"], Cell[196726, 6631, 193, 4, 31, "Input"], Cell[196922, 6637, 193, 4, 31, "Input"], Cell[197118, 6643, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[197336, 6651, 801, 15, 130, "Input"], Cell[198140, 6668, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[198235, 6675, 275, 9, 31, "Subsection"], Cell[198513, 6686, 175, 4, 30, "Input"], Cell[198691, 6692, 175, 4, 30, "Input"], Cell[198869, 6698, 175, 4, 30, "Input"], Cell[199047, 6704, 89, 1, 30, "Input"], Cell[199139, 6707, 89, 1, 30, "Input"], Cell[199231, 6710, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[199345, 6715, 759, 14, 130, "Input"], Cell[200107, 6731, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[200204, 6738, 260, 9, 31, "Subsection"], Cell[200467, 6749, 122, 3, 28, "SmallText"], Cell[200592, 6754, 214, 4, 31, "Input"], Cell[200809, 6760, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[201046, 6768, 446, 7, 110, "Input"], Cell[201495, 6777, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[201580, 6783, 450, 7, 110, "Input"], Cell[202033, 6792, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[202129, 6799, 268, 9, 31, "Subsection"], Cell[202400, 6810, 122, 3, 28, "SmallText"], Cell[202525, 6815, 224, 4, 31, "Input"], Cell[202752, 6821, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[203006, 6829, 449, 7, 110, "Input"], Cell[203458, 6838, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[203544, 6844, 446, 7, 110, "Input"], Cell[203993, 6853, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[204090, 6860, 262, 9, 31, "Subsection"], Cell[204355, 6871, 203, 4, 30, "Input"], Cell[204561, 6877, 216, 4, 30, "Input"], Cell[204780, 6883, 230, 4, 30, "Input"], Cell[205013, 6889, 201, 4, 30, "Input"], Cell[205217, 6895, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[205456, 6903, 469, 7, 110, "Input"], Cell[205928, 6912, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[206009, 6918, 465, 7, 90, "Input"], Cell[206477, 6927, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[206558, 6933, 471, 7, 110, "Input"], Cell[207032, 6942, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[207126, 6949, 272, 9, 31, "Subsection"], Cell[207401, 6960, 203, 4, 30, "Input"], Cell[207607, 6966, 203, 4, 30, "Input"], Cell[207813, 6972, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[208041, 6980, 751, 14, 130, "Input"], Cell[208795, 6996, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[208890, 7003, 293, 9, 31, "Subsection"], Cell[209186, 7014, 108, 3, 28, "SmallText"], Cell[209297, 7019, 206, 3, 50, "Input"], Cell[209506, 7024, 194, 4, 30, "Input"], Cell[209703, 7030, 204, 4, 30, "Input"], Cell[209910, 7036, 92, 1, 30, "Input"], Cell[210005, 7039, 92, 1, 30, "Input"], Cell[210100, 7042, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[210234, 7048, 780, 14, 130, "Input"], Cell[211017, 7064, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[211114, 7071, 274, 9, 31, "Subsection"], Cell[211391, 7082, 102, 2, 28, "SmallText"], Cell[211496, 7086, 202, 3, 50, "Input"], Cell[211701, 7091, 190, 4, 30, "Input"], Cell[211894, 7097, 202, 4, 30, "Input"], Cell[212099, 7103, 92, 1, 30, "Input"], Cell[212194, 7106, 92, 1, 30, "Input"], Cell[212289, 7109, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[212423, 7115, 776, 14, 130, "Input"], Cell[213202, 7131, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[213298, 7138, 266, 9, 31, "Subsection"], Cell[213567, 7149, 203, 4, 30, "Input"], Cell[213773, 7155, 203, 4, 30, "Input"], Cell[213979, 7161, 227, 4, 30, "Input"], Cell[214209, 7167, 92, 1, 30, "Input"], Cell[214304, 7170, 92, 1, 30, "Input"], Cell[214399, 7173, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[214533, 7179, 795, 15, 150, "Input"], Cell[215331, 7196, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[215425, 7203, 280, 9, 31, "Subsection"], Cell[215708, 7214, 51, 1, 30, "Input"], Cell[215762, 7217, 275, 5, 91, "Input"], Cell[216040, 7224, 280, 5, 91, "Input"], Cell[216323, 7231, 207, 4, 90, "Input"], Cell[216533, 7237, 212, 4, 90, "Input"], Cell[216748, 7243, 91, 1, 30, "Input"], Cell[216842, 7246, 84, 1, 30, "Input"], Cell[216929, 7249, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[218402, 7283, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[218492, 7288, 346, 8, 19, "Input", CellOpen->False], Cell[218841, 7298, 9474, 154, 70, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)