(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 222675, 7267]*) (*NotebookOutlinePosition[ 223336, 7290]*) (* CellTagsIndexPosition[ 223292, 7286]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calcolo di sollecitazioni e spostamenti in un sistema di travi rettilinee\ \>", "Title"], Cell["\<\ Anche se non sembra semplice assegnare i dati conviene leggere le istruzioni \ ed evitare adattamenti con conseguenze imprevedibili\ \>", "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["v. 2.02 (10/4/2003) \n\[Copyright] Amabile Tatone, \ Universit\[AGrave] dell'Aquila, L'Aquila, IT \ntatone@ing.univaq.it", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[TextData[StyleBox["esteso \"Basi adattate al bordo e vincoli\" al caso \ in cui \[EGrave] assegnata una rotazione o uno spostamento", FontSize->14, FontWeight->"Bold"]], "Subtitle", CellFrame->True, Evaluatable->False, CellHorizontalScrolling->False, TextAlignment->Left, FontSize->12, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell["Istruzioni", "Section", Evaluatable->False], Cell[TextData[{ "Sono da assegnare:\n- i vettori a1 e a2 della base adattata alla sezione \ [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]\n- la distribuzione di forza [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]\n- i vincoli e le basi adattate al bordo [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]\n- le forze e i momenti alle estremit\[AGrave] [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]\n- costanti (lunghezze, moduli, intensit\[AGrave] delle forze) [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da adattare:\n- la funzione di semplificazione extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- la cornice per la visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n- i fattori di scala per i diagrammi tecnici N, Q, M [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]\n\nSono da controllare:\n- alcune definizioni riguardanti \ semplificazioni" }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Viene prima calcolata la soluzione bulk delle equazioni di bilancio in \ corrispondenza di una qualsiasi distribuzione di forze (integrabile). Vengono assegnati i vincoli. Esiste il problema di compatibilita' dei vincoli \ solo in forma banale. Non esiste certamente per gli atti di moto, essendo per \ questi i vincoli delle condizioni omogenee. Vengono poi costruite le equazioni di bilancio al bordo corrispondenti agli \ atti di moto vincolati, fornendo l'elenco delle forze attive da assegnare. Sostituendo in queste equazioni la soluzione bulk si generano delle equazioni \ algebriche nelle costanti di integrazione. Viene calcolata la soluzione che, nel caso di \"vincoli eccedenti\", lascia \ indeterminate alcune delle costanti. Si puo' dire che si determina lo spazio delle soluzioni in termini di \ tensione bilanciata al bordo. In caso di \"vincoli in difetto\" occorre verificare la compatibilit\[AGrave] \ dei dati al bordo sulle forze. Si prosegue calcolando, attraverso la funzione di risposta, lo spazio degli \ spostamenti corrispondente alla tensione, introducendo altre costanti di \ integrazione. Dalle equazioni di vincolo si generano le equazioni algebriche da cui si \ calcolano infine tutte le costanti. Vincoli \"eccedenti\" => equazioni di bilancio al bordo \"in difetto\" Vincoli \"in difetto\" => equazioni di bilancio al bordo \"eccedenti\" \ (occorre verificare la compatibilita' delle forze al bordo)\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Le lunghezze dei vari tratti possono essere assegnate utilizzando una \ lunghezza base (ad esempio ", StyleBox["\[ScriptCapitalL]", FontFamily->"Courier"], " ), in modo che non compaiano in tutte le espressioni ", StyleBox["L[1], L[2]", FontFamily->"Courier"], " ecc.; cos\[IGrave] pure gli angoli. Occorre poi assegnare i valori di \ tali parametri in datiO per poter realizzare le figure." }], "SmallText", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Inizializzazione", "Section", Evaluatable->False], Cell[BoxData[ \(\(outputDir = "\";\)\ \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(SetDirectory[outputDir]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-23\\outmath"\)], "Output"] }, Open ]], Cell["\<\ In fase di modifica del notebook riattivare gli \"spelling warning\"\ \>", "SmallText"], Cell[BoxData[{ \(\(Off[General::"\"];\)\), "\[IndentingNewLine]", \(\(Off[General::"\"];\)\)}], "Input"], Cell[BoxData[{ \(\(Off[Solve::"\"];\)\), "\n", \(\(<< \ LinearAlgebra`MatrixManipulation`;\)\), "\[IndentingNewLine]", \(\(<< Graphics`Colors`;\)\), "\n", \(\(SetOptions[Plot, ImageSize \[Rule] 228];\)\), "\n", \(\(SetOptions[ParametricPlot, ImageSize \[Rule] {200, 200}];\)\), "\[IndentingNewLine]", \(\(SetOptions[Plot, PlotRange \[Rule] All];\)\), "\[IndentingNewLine]", \(\(SetOptions[ParametricPlot, PlotRange \[Rule] All];\)\)}], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Descrizione della configurazione originaria [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizione delle basi", "Subsection", CellFrame->False, Background->None], Cell["Base del sistema di coordinate (non modificare)", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(e\_1 = {1, 0};\)\), "\n", \(\(e\_2 = {0, 1};\)\)}], "Input", CellFrame->False, Background->None], Cell["\<\ Basi adattate alla sezione di ciascun tratto (non modificare)\ \>", "SmallText", CellFrame->False, Background->None], Cell[BoxData[{ \(\(a\_1[i_] := Cos[\[Alpha][i]]\ e\_1 + Sin[\[Alpha][i]]\ e\_2;\)\), "\n", \(\(a\_2[i_] := \(-Sin[\[Alpha][i]]\)\ e\_1 + Cos[\[Alpha][i]]\ e\_2;\)\)}], "Input", CellFrame->False, Background->None] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D1", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["Numero di tratti di trave", "SmallText"], Cell[BoxData[ \(\(travi = 1;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Angoli che definiscono le basi adattate (possono anche non essere \ assegnati; in tal caso se ne assegni il valore nella lista ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso di caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText", FontFamily->"Arial"], Cell[BoxData[ \(\(\[Alpha][1] = 0;\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Lunghezze (possono anche non essere assegnate; in tal caso se ne assegni \ il valore nella lista successiva ", StyleBox["datiO", FontFamily->"Courier New", FontWeight->"Bold"], ")\n", "[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[ \(\(L[1] = \[ScriptCapitalL];\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[{ \(YA[1] := \[ScriptCapitalY]\[ScriptCapitalA]\ \ \), \ "\[IndentingNewLine]", \(YJ[1] := \[ScriptCapitalY]\[ScriptCapitalJ]\)}], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Valori numerici (di angoli e lunghezze) necessari alla visualizzazione e \ utilizzati solo per questo\ \>", "SmallText"], Cell[BoxData[ \(\(datiO = {\[ScriptCapitalL] \[Rule] 1};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Altri dati EVENTUALMENTE assegnati (anche per ottenere espressioni \ pi\[UGrave] semplici). \ \>", "SmallText"], Cell[BoxData[ \(\[ScriptCapitalY]\[ScriptCapitalA] := \ \[ScriptCapitalY]\[ScriptCapitalJ]\/\(\[Kappa]\ \[ScriptCapitalL]\^2\)\)], \ "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["lunghezza caratteristica", "SmallText"], Cell[BoxData[ \(\(maxL = Max[Table[ L[i] /. \[InvisibleSpace]datiO, {i, 1, travi}]];\)\)], "Input"], Cell["definizione dell'asse", "SmallText"], Cell[BoxData[ \(\(\(\(asseO[i_]\)[\[Zeta]_] := org[i] + a\_1[i]\ \[Zeta] /. datiO;\)\(\ \)\)\)], "Input"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell["\<\ Coordinate dell'estremit\[AGrave] sinistra di ciascun tratto (utilizzate solo \ per la visualizzazione dei tratti separati). Quelle deivanti dai vincoli sono \ descritte a parte, pi\[UGrave] avanti.\ \>", "SmallText"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(org[i_] := org[i - 1] + {Max[\(\(asseO[i - \ 1]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\), \ \(\(asseO[i - 1]\)[L[i - 1]]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)], 0} + {maxL\/10, 0}\)], "Input"], Cell["definizione delle sezioni", "SmallText"], Cell[BoxData[ \(\(secO[ i_]\)[\[Zeta]_] := {\(asseO[i]\)[\[Zeta]] - maxL\/20\ a\_2[i]\ , \(asseO[i]\)[\[Zeta]] + maxL\/20\ a\_2[i]\ } /. datiO\)], "Input"], Cell["definizione della base adattata", "SmallText"], Cell[BoxData[ \(\(vecOa1[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_1[i]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + maxL\/15\ \((\(-a\_1[i]\) + a\_2[i]\/2)\), \(asseO[ i]\)[\[Zeta] + maxL\/5]}, {\(asseO[i]\)[\[Zeta] + maxL\/5] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-a\_1[i]\) - a\_2[i]\/2)\), \(asseO[i]\)[\[Zeta] + maxL\/5]}} /. datiO\)], "Input"], Cell[BoxData[ \(\(vecOa2[ i_]\)[\[Zeta]_] := {{\(asseO[i]\)[\[Zeta]], \(asseO[i]\)[\[Zeta]] + maxL\/5\ \ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((\(-\(1\/2\)\)\ a\_1[i] - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}, {\(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[ i] + \(\(\(maxL\)\(\ \)\)\/15\) \((a\_1[i]\/2 - a\_2[i])\), \(asseO[i]\)[\[Zeta]] + 1\/5\ maxL\ a\_2[i]}} /. datiO\)], "Input"], Cell["numero di suddivisioni nel disegno di ciascun tratto", "SmallText"], Cell[BoxData[ \(\(ndiv = 4;\)\)], "Input"], Cell["\<\ disegno dell'asse (la definizione delle estremit\[AGrave] sinistre cambier\ \[AGrave] pi\[UGrave] avanti)\ \>", "SmallText"], Cell[BoxData[ \(\(pltO := Table[Graphics[{AbsoluteThickness[2], Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell[BoxData[ \(\(pltOx := Table[Graphics[{Line[{\(asseO[i]\)[0], \(asseO[i]\)[L[i]]}]}], {i, 1, travi}];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltOs := Table[Table[ Graphics[{Line[\(secO[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell["disegno della base adattata", "SmallText"], Cell[BoxData[ \(\(pltOa := Graphics[ Table[{Black, AbsoluteThickness[2], Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"], Cell[BoxData[ \(\(pltOax := Graphics[ Table[{Black, Line /@ Join[\(vecOa1[i]\)[L[i]\/2], \(vecOa2[i]\)[ L[i]\/2]]}, {i, 1, travi}]];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Disegno della configurazione originaria di ciascuna trave e delle basi \ adattate\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOs, pltOa, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .25 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0535714 0.952381 [ [ 0 0 0 0 ] [ 1 .25 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .25 L 0 .25 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .05357 m .97619 .05357 L s .5 Mabswid .2619 .00595 m .2619 .10119 L s .5 .00595 m .5 .10119 L s .7381 .00595 m .7381 .10119 L s 0 0 0 r 2 Mabswid .5 .05357 m .69048 .05357 L s .62698 .08532 m .69048 .05357 L s .62698 .02183 m .69048 .05357 L s .5 .05357 m .5 .24405 L s .46825 .18056 m .5 .24405 L s .53175 .18056 m .5 .24405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 72}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2 002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo 002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo 0P00T7oo002>Ool2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091o o`00QWoo00<007ooOol01Goo0P0027oo00<007ooOol0QGoo0026Ool00`00Oomoo`05Ool20008Ool0 0`00Oomoo`25Ool008Ioo`8000Ioo`8000Moo`8008Moo`00Qgoo00<007ooOol017oo0P001goo00<0 07ooOol0QWoo0027Ool20005Ool20006Ool20028Ool008Qoo`03001oogoo00=oo`8000Ioo`03001o ogoo08Moo`00R7oo0P0017oo0P001Goo0P00RGoo0029Ool00`00Oomoo`02Ool20005Ool00`00Oomo o`28Ool008Uoo`8000=oo`8000Aoo`8008Yoo`00RWoo00@007ooOomoo`8000Aoo`03001oogoo08Uo o`00RWoo0P000Woo0P000goo0P00Rgoo002;Ool00`00Oomoo`020003Ool00`00Oomoo`2:Ool008]o o`800003Ool00000009oo`8008aoo`00S7oo00@007oo0000009oo`03001oogoo08]oo`00S7oo1000 00=oo`000000SGoo002=Ool300000goo001oo`2=Ool008eoo`D008ioo`00SWoo0`00Sgoo002>Ool3 002?Ool008ioo`80091oo`00SWoo0P00T7oo0000\ \>"], ImageRangeCache->{{{0, 287}, {71, 0}} -> {-0.0305511, -0.0562513, \ 0.00369722, 0.00369722}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Distribuzione di forza applicata [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D2", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(b[i_]\)[\[Zeta]_] := {0, 0}\)], "Input"], Cell[BoxData[ \(\(c[i_]\)[\[Zeta]_] := 0\)], "Input"], Cell[TextData[{ "Se la distribuzione \[EGrave] nulla assegnare il vettore e1 moltiplicato \ per 0 (zero)\n", "(si possono anche usare dei parametri; in tal caso se ne assegni il valore \ nella lista dei dati numerici ", StyleBox["datip(D5)", FontFamily->"Courier New", FontWeight->"Bold"], ")", "\n[ l'uso caratteri script per i parametri rende tutto molto pi\[UGrave] \ leggibile]" }], "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Propriet\[AGrave] di UnitStep nel contesto di questo calcolo (da \ controllare ogni volta)", " [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Unprotect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]], Cell[BoxData[{ \(\(UnitStep[\(-\[ScriptCapitalL]\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\(-\(\[ScriptCapitalL]\/2\)\)] = 0;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]\/2] = 1;\)\), "\[IndentingNewLine]", \(\(UnitStep[\[ScriptCapitalL]] = 1;\)\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Protect[UnitStep]\)], "Input"], Cell[BoxData[ \({"UnitStep"}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Soluzione generale delle equazioni differenziali di bilancio (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["\<\ Descrittori della tensione (forza normale, taglio e momento) e integrali \ delle equazioni di bilancio\ \>", "Subsection"], Cell[BoxData[ \(\(s[ i_]\)[\[Zeta]_] := \(sN[i]\)[\[Zeta]]\ a\_1[ i] + \(sQ[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[BoxData[ \(\(m[i_]\)[\[Zeta]_] := \(sM[i]\)[\[Zeta]]\)], "Input"], Cell[BoxData[ RowBox[{\(eqbilt[i_]\), ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_1[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[\(s[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(b[i]\)[\[Zeta]]\)}], ")"}], ".", \(a\_2[i]\)}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[\(sM[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "+", \(\(sQ[i]\)[\[Zeta]]\), "+", \(\(c[i]\)[\[Zeta]]\)}], "==", "0"}]}], "}"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(svar = Flatten[Table[{sN[i], sQ[i], sM[i]}, {i, 1, travi}]]\)], "Input"], Cell[BoxData[ \({sN[1], sQ[1], sM[1]}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(eqbil = Flatten[Simplify[Table[eqbilt[i], {i, 1, travi}]]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(bulksolC = \(DSolve[eqbil, svar, \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalC]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket]\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][1]], sQ[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalC][2]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\[Zeta]\)\ \[ScriptCapitalC][ 2] + \[ScriptCapitalC][3]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista cNQMO delle costanti di integrazione delle equazioni \ di bilancio. La lista cNQM delle costanti di integrazione presenti nelle condizioni al \ bordo, costruita pi\[UGrave] avanti, \[EGrave] in generale contenuta in \ questa.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cClist = Table[\[ScriptCapitalC][i], {i, 1, 3 travi}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1], \[ScriptCapitalC][2], \[ScriptCapitalC][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM = Table[{sNo[i], sQo[i], sMo[i]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] == sNo[1], \[ScriptCapitalC][2] == sQo[1], \[ScriptCapitalC][3] == sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromCtoNQM = \(Solve[\(Table[{\(sN[i]\)[0] == sNo[i], \(sQ[i]\)[0] == \ sQo[i], \(sM[i]\)[0] == sMo[i]} /. bulksolC, {i, 1, travi}] // Simplify\) // \ Flatten, cClist]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\[RightDoubleBracket]\)\)\ \)], "Input"], Cell[BoxData[ \({\[ScriptCapitalC][1] \[Rule] sNo[1], \[ScriptCapitalC][2] \[Rule] sQo[1], \[ScriptCapitalC][3] \[Rule] sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(bulksol = bulksolC /. fromCtoNQM\)], "Input"], Cell[BoxData[ \({sN[1] \[Rule] Function[{\[Zeta]}, sNo[1]], sQ[1] \[Rule] Function[{\[Zeta]}, sQo[1]], sM[1] \[Rule] Function[{\[Zeta]}, \(-\[Zeta]\)\ sQo[1] + sMo[1]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Equazioni di bilancio e integrali (sintesi)", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[eqbilt[i], {i, 1, travi}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[\(sN[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{ SuperscriptBox[\(sQ[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "==", "0"}]}, { RowBox[{ RowBox[{\(\(sQ[1]\)[\[Zeta]]\), "+", RowBox[{ SuperscriptBox[\(sM[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "==", "0"}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Derivative[ 1][ sN[ 1]][ \[Zeta]], 0], Equal[ Derivative[ 1][ sQ[ 1]][ \[Zeta]], 0], Equal[ Plus[ sQ[ 1][ \[Zeta]], Derivative[ 1][ sM[ 1]][ \[Zeta]]], 0]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksolC)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == \[ScriptCapitalC][1]\)}, {\(\(sQ[1]\)[\[Zeta]] == \[ScriptCapitalC][2]\)}, {\(\[Zeta]\ \[ScriptCapitalC][2] + \(sM[ 1]\)[\[Zeta]] == \[ScriptCapitalC][3]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], \[ScriptCapitalC][ 1]], Equal[ sQ[ 1][ \[Zeta]], \[ScriptCapitalC][ 2]], Equal[ Plus[ Times[ \[Zeta], \[ScriptCapitalC][ 2]], sM[ 1][ \[Zeta]]], \[ScriptCapitalC][ 3]]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[\(svar\[LeftDoubleBracket] i\[RightDoubleBracket]\)[\[Zeta]] == \((\(svar\ \[LeftDoubleBracket]i\[RightDoubleBracket]\)[\[Zeta]] /. bulksol)\), {i, 1, Length[svar]}] // Simplify\) // Flatten\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(sN[1]\)[\[Zeta]] == sNo[1]\)}, {\(\(sQ[1]\)[\[Zeta]] == sQo[1]\)}, {\(\[Zeta]\ sQo[1] + \(sM[1]\)[\[Zeta]] == sMo[1]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ sN[ 1][ \[Zeta]], sNo[ 1]], Equal[ sQ[ 1][ \[Zeta]], sQo[ 1]], Equal[ Plus[ Times[ \[Zeta], sQo[ 1]], sM[ 1][ \[Zeta]]], sMo[ 1]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Definizioni di spostamenti e forze al bordo", "Section"], Cell[BoxData[ \(meno = "\<-\>"; pi\[UGrave] = "\<+\>";\)], "Input"], Cell["\<\ Spostamento, atti di moto e forze al bordo come combinazioni lineari dei \ vettori delle basi adattate al bordo {d,n}\ \>", "SmallText"], Cell[BoxData[{ \(\(\(ub[i_]\)[ bd_] := \(ub\_d[i]\)[bd]\ \(d[i]\)[bd] + \(ub\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(wb[i_]\)[ bd_] := \(wb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(wb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\), "\n", \(\(\(sb[i_]\)[ bd_] := \(sb\_d[i]\)[bd]\ \(d[i]\)[bd] + \(sb\_n[i]\)[bd]\ \(n[i]\)[ bd];\)\)}], "Input"], Cell["Lista delle componenti dello spostamento al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spbd = Table[\({\(ub\_d[i]\)[#], \(ub\_n[i]\)[#], \(\[Theta]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["+"], \(ub\_n[1]\)["+"], \(\[Theta]b[1]\)[ "+"], \(ub\_d[1]\)["-"], \(ub\_n[1]\)["-"], \(\[Theta]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti dell'atto di moto al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ambd = Table[\({\(wb\_d[i]\)[#], \(wb\_n[i]\)[#], \(\[Omega]b[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["+"], \(wb\_n[1]\)["+"], \(\[Omega]b[1]\)[ "+"], \(wb\_d[1]\)["-"], \(wb\_n[1]\)["-"], \(\[Omega]b[1]\)[ "-"]}\)], "Output"] }, Open ]], Cell["Lista delle componenti delle forze al bordo", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fbd = Table[\({\(sb\_d[i]\)[#], \(sb\_n[i]\)[#], \(mb[ i]\)[#]} &\)\ /@ \ {pi\[UGrave], meno}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(sb\_d[1]\)["+"], \(sb\_n[1]\)["+"], \(mb[1]\)["+"], \(sb\_d[1]\)[ "-"], \(sb\_n[1]\)["-"], \(mb[1]\)["-"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Basi adattate al bordo e vincoli [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Section"], Cell[CellGroupData[{ Cell["Descrizioni di vincoli standard", "Subsection"], Cell[BoxData[ \(\(carrelloV[trv_]\)[bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[bnd] == 0\)], "Input"], Cell[BoxData[ \(\(cernieraV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0}\)], "Input"], Cell[BoxData[ \(\(pernoV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0}\)], "Input"], Cell[BoxData[ \(\(saldaturaV[trv1_, trv2_]\)[bnd1_, bnd2_] := {\((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_1[trv2] == 0, \((\(ub[trv2]\)[bnd2] - \(ub[trv1]\)[bnd1])\) . a\_2[trv2] == 0, \(\[Theta]b[trv2]\)[bnd2] - \(\[Theta]b[trv1]\)[bnd1] \[Equal] 0}\)], "Input"], Cell[BoxData[ \(\(incastroV[trv_]\)[ bnd_] := {\(ub[trv]\)[bnd] . a\_1[trv] == 0, \(ub[trv]\)[bnd] . a\_2[trv] == 0, \(\[Theta]b[trv]\)[bnd] == 0}\)], "Input"], Cell["\<\ Per ogni nuova definizione, anche occasionale, occorre dare la corrispondente \ definizione della figura\ \>", "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati [", StyleBox["D3", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ n vettore normale al piano di scorrimento di un carrello; d vettore tangenziale; {d, n} base ortonormale orientata come {e1, e2}\ \>", "SmallText"], Cell[BoxData[ \(\(Clear[d, n];\)\)], "Input"], Cell[BoxData[{ \(\(\(d[i_]\)[bd_] := e\_1;\)\), "\n", \(\(\(n[i_]\)[bd_] := e\_2;\)\)}], "Input"], Cell["\<\ Si assume che {d,n} siano identici a {e1,e2} a meno di una esplicita diversa \ definizione\ \>", "SmallText"], Cell[BoxData[""], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Vincoli in forma scalare. Non usare esplicitamente le componenti ! Si \ pregiudicherebbe il meccanismo di sostituzione utilizzato nel calcolo della \ soluzione in termini di spostamento dalle equazioni di vincolo, oltre che \ incorrere pi\[UGrave] facilmente in errore. Utilizzare SEMPRE vincoli \ definiti secondo il modello dei vincoli standard, anche per definizioni \ occasionali. Ricordare di dare una definizione anche della figura del vincolo \ per la visualizzazione.\ \>", "SmallText"], Cell[BoxData[ \(vincoliDef := {\(incastro[1]\)[meno], \(\(cedimento[\[ScriptD]]\)[1]\)[ pi\[UGrave]]}\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(\(rotazioneV[\[CurlyPhi]_]\)[trv_]\)[ bnd_] := \(\[Theta]b[trv]\)[bnd] \[Equal] \[CurlyPhi]\)], "Input", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(cedimentoV[\[ScriptD]_]\)[trv_]\)[ bnd_] := \(ub[trv]\)[bnd] . \(n[trv]\)[ bnd] \[Equal] \[ScriptD]\)], "Input", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ RowBox[{"vincoli", ":=", RowBox[{ RowBox[{ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{\(carrello = carrelloV\), ",", \(cerniera = cernieraV\), ",", \(perno = pernoV\), ",", \(incastro = incastroV\), ",", \(saldatura = saldaturaV\), ",", StyleBox[\(rotazione = rotazioneV\), FontColor->RGBColor[1, 0, 0]], StyleBox[",", FontColor->RGBColor[1, 0, 0]], StyleBox[\(cedimento = cedimentoV\), FontColor->RGBColor[1, 0, 0]]}], "}"}], ",", "vincoliDef"}], "]"}], "//", "Flatten"}], "//", "Simplify"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoli\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == \[ScriptD]}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo come regole di sostituzione", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vsp = \(Solve[\ vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Theta]b[1]\)["-"] \[Rule] 0, \(ub\_d[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["-"] \[Rule] 0, \(ub\_n[1]\)["+"] \[Rule] \[ScriptD]}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Definizioni per la visualizzazione [", StyleBox["** esteso al caso in cui si assegni una rotazione o uno \ spostamento**", FontColor->RGBColor[1, 0, 0]], "]" }], "Subsection"], Cell["Condizioni di vincolo sui collegamenti tra le travi", "SmallText"], Cell[BoxData[ \(Clear[coll]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(\(cedimento[\[ScriptD]]\)[1]\)[ "+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Complement[ vincoliDef /. {carrello \[Rule] \((\((Null\ &)\)\ &)\), incastro \[Rule] \((\((Null\ &)\)\ &)\), cerniera \[Rule] \((\((Null\ &)\)\ &)\), perno \[Rule] coll, saldatura \[Rule] coll}, {Null}]\)], "Input"], Cell[BoxData[ \({\(\(cedimento[\[ScriptD]]\)[1]\)["+"]}\)], "Output"] }, Open ]], Cell["\<\ Calcolo della posizione della estremit\[AGrave] sinistra indotta dalla \ presenza di vincoli di collegamento tra le tarvi\ \>", "SmallText"], Cell[BoxData[ \(Clear[org]\)], "Input"], Cell[BoxData[ \(\(org[1] = {0, 0};\)\)], "Input"], Cell[BoxData[ \(\(coll[i_, j_]\)[bi_, bj_] := Block[{p = Sort[{{i, bi}, {j, bj}}, #1\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) < #2\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\ &]}, Block[{ix = p\_\(\(\[LeftDoubleBracket]\)\(1, \ 1\)\(\[RightDoubleBracket]\)\), jx = p\_\(\(\[LeftDoubleBracket]\)\(2, 1\)\(\[RightDoubleBracket]\ \)\), bix = p\_\(\(\[LeftDoubleBracket]\)\(1, 2\)\(\[RightDoubleBracket]\)\), bjx = p\_\(\(\[LeftDoubleBracket]\)\(2, \ 2\)\(\[RightDoubleBracket]\)\)}, \[IndentingNewLine]Switch[{bix, bjx}, \[IndentingNewLine]{pi\[UGrave], meno}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] /. datiO]}, \[IndentingNewLine]{pi\[UGrave], pi\[UGrave]}, {org[jx] = Evaluate[ org[ix] + a\_1[ix] L[ix] - a\_1[jx] L[jx] /. datiO]}, \[IndentingNewLine]{meno, meno}, {org[jx] = Evaluate[org[ix] /. datiO]}, \[IndentingNewLine]{meno, pi\[UGrave]}, {org[jx] = Evaluate[org[ix] - a\_1[jx] L[jx] /. datiO]}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ StyleBox[\(rotazione = \((\((\((Null\ &)\)\ &)\)\ &)\)\), FontColor->RGBColor[1, 0, 0]], ",", StyleBox[\(cedimento = \((\((\((Null\ &)\)\ &)\)\ &)\)\), FontColor->RGBColor[1, 0, 0]], ",", \(carrello = \((\((Null\ &)\)\ &)\)\), ",", \(incastro = \((\((Null\ &)\)\ &)\)\), ",", \(cerniera = \((\((Null\ &)\)\ &)\)\), ",", \(perno = coll\), ",", \(saldatura = coll\)}], "}"}], ",", \(Complement[vincoliDef, {Null}]\)}], "]"}]], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[org]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(org[1] = {0, 0}\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ org], Editable->False]], "Output"] }, Open ]], Cell["\<\ Definizione delle funzioni che generano le figure dei vincoli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vincoliDef\)], "Input"], Cell[BoxData[ \({\(incastro[1]\)["-"], \(\(cedimento[\[ScriptD]]\)[1]\)[ "+"]}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"vincoliFig", ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ StyleBox[\(rotazione = rotazioneFig\), FontColor->RGBColor[1, 0, 0]], StyleBox[",", FontColor->RGBColor[1, 0, 0]], StyleBox[\(cedimento = cedimentoFig\), FontColor->RGBColor[1, 0, 0]], ",", \(carrello = carrelloFig\), ",", \(cerniera = cernieraFig\), ",", \(perno = pernoFig\), ",", \(saldatura = saldaturaFig\), ",", \(incastro = incastroFig\)}], "}"}], ",", "vincoliDef"}], "]"}]}], ";"}]], "Input"], Cell[BoxData[ RowBox[{"vincolibFig", ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ StyleBox[\(rotazione = crosshairFig\ &\), FontColor->RGBColor[1, 0, 0]], StyleBox[",", FontColor->RGBColor[1, 0, 0]], StyleBox[\(cedimento = crosshairFig\ &\), FontColor->RGBColor[1, 0, 0]], ",", \(carrello = crosshairFig\), ",", \(cerniera = crosshairFig\), ",", \(perno = crosshairFig\), ",", \(saldatura = crosshairFig\), ",", \(incastro = crosshairFig\)}], "}"}], ",", "vincoliDef"}], "]"}]}]], "Input"], Cell["definizione delle estrremit\[AGrave] dell'asse", "SmallText"], Cell[BoxData[ \(\(asseOb[i_]\)[meno] := \(asseO[i]\)[0]\)], "Input"], Cell[BoxData[ \(\(asseOb[i_]\)[pi\[UGrave]] := \(asseO[i]\)[L[i]]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(crosshairFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[1], Line[{\(asseOb[i]\)[bd] - \(d[i]\)[bd] maxL\/12, \(asseOb[i]\)[ bd] + \(d[i]\)[bd] maxL\/12}], Line[{\(asseOb[i]\)[bd] - \(n[i]\)[bd] maxL\/8, \(asseOb[i]\)[ bd] + \(n[i]\)[bd] maxL\/8}], Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(incastroFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[bd] - a\_2[i] maxL\/10, \(asseOb[i]\)[bd] + a\_2[i] maxL\/10}]}]\)], "Input"], Cell[BoxData[ \(\(carrelloFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], Line[{\(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10 - \(n[i]\)[bd] maxL\/50}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(cernieraFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[2], Line[{\(asseOb[i]\)[ bd], \(asseOb[i]\)[bd] - \((\(d[i]\)[bd] + \(n[i]\)[bd])\) maxL\/10, \(asseOb[i]\)[ bd] + \((\(d[i]\)[bd] - \(n[i]\)[bd])\) maxL\/10, \(asseOb[ i]\)[bd]}], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(pernoFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], {GrayLevel[1], Disk[\(asseOb[i]\)[bd], 0.04]}, Circle[\(asseOb[i]\)[bd], 0.04]}]\)], "Input"], Cell[BoxData[ \(\(saldaturaFig[i_, j_]\)\ [bd_, bdj_] := Graphics[{AbsoluteThickness[2], Disk[\(asseOb[i]\)[bd], 0.02]}]\)], "Input"], Cell[BoxData[ \(\(nullFig[i_]\)\ [bd_] := Graphics[{AbsoluteThickness[1], Disk[\(asseOb[i]\)[bd], 0]}]\)], "Input",\ FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(rotazioneFig[\[CurlyPhi]_]\)[i_]\)[bd_] := \(cernieraFig[i]\)[ bd]\)], "Input", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(cedimentoFig[\[CurlyPhi]_]\)[i_]\)[bd_] := \(nullFig[i]\)[ bd]\)], "Input", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(pltOv := vincoliFig;\)\)], "Input"], Cell[BoxData[ \(\(pltObv := vincolibFig;\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Disegno della configurazione originaria con i vincoli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltObv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .27857 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0918367 0.816327 0.108673 0.816327 [ [ 0 0 0 0 ] [ 1 .27857 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .27857 L 0 .27857 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .09184 .10867 m .90816 .10867 L s 0 0 0 r .5 .10867 m .66327 .10867 L s .60884 .13588 m .66327 .10867 L s .60884 .08146 m .66327 .10867 L s .5 .10867 m .5 .27194 L s .47279 .21752 m .5 .27194 L s .52721 .21752 m .5 .27194 L s 0 g 1 Mabswid .02381 .10867 m .15986 .10867 L s .09184 .00663 m .09184 .21071 L s newpath .09184 .10867 .03265 0 365.73 arc s .84014 .10867 m .97619 .10867 L s .90816 .00663 m .90816 .21071 L s newpath .90816 .10867 .03265 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 80.1875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgEoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo 000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`00 6goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]o o`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol0 0`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<0 07ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001o ogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000KOol00`00Oomo o`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eoo`03001oogoo01Yoo`006goo00<007ooOol0 iGoo00<007ooOol06Woo000KOol00`00Oomoo`3UOol00`00Oomoo`0JOol001]oo`03001oogoo0>Eo o`03001oogoo01Yoo`006goo00<007ooOol0iGoo00<007ooOol06Woo000HOol6002@Ool00`00Oomo o`1?Ool7000IOol001Ioo`8000=oo`03001oogoo008008eoo`@004eoo`8000=oo`05001oogooOol0 000HOol001Eoo`03001oogoo00=oo`03001oogoo009oo`8008aoo`D004Yoo`03001oogoo00=oo`03 001oogoo009oo`8001Ioo`0057oo00<007ooOol017oo00<007ooOol017oo00<007ooOol0Rgoo1@00 Agoo00<007ooOol017oo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomoo`04Ool00`00 Oomoo`04Ool00`00Oomoo`2=Ool40016Ool00`00Oomoo`04Ool00`00Oomoo`04Ool00`00Oomoo`0C Ool001=oo`03001oogoo00Eoo`03001oogoo00Eoo`03001oogoo08ioo`@004=oo`03001oogoo00Eo o`03001oogoo00Eoo`03001oogoo019oo`004Woo00<007ooOol01Woo00<007ooOol01Woo00<007oo Ool0SWoo1@00@7oo00<007ooOol01Woo00<007ooOol01Woo00<007ooOol04Goo000BOol00`00Oomo o`06Ool00`00Oomoo`06Ool00`00Oomoo`2@Ool5000nOol00`00Oomoo`06Ool00`00Oomoo`06Ool0 0`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo099oo`D003aoo`03 001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`0027ooo`0040002Goo000BOol00`00Oomo o`05OooZ0008Ool00`00Oomoo`0AOol0019oo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo 06Moo`8002Moo`D003ioo`03001oogoo00Ioo`03001oogoo00Ioo`03001oogoo015oo`004Woo00<0 07ooOol01Woo00<007ooOol01Woo00<007ooOol0Igoo0P009Goo1@00@7oo00<007ooOol01Woo00<0 07ooOol01Woo00<007ooOol04Goo000BOol00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`1W Ool2000TOol40012Ool00`00Oomoo`06Ool00`00Oomoo`06Ool00`00Oomoo`0AOol001=oo`03001o ogoo00Eoo`03001oogoo00Eoo`03001oogoo06Qoo`80029oo`@004Eoo`03001oogoo00Eoo`03001o ogoo00Eoo`03001oogoo019oo`004goo00<007ooOol01Goo00<007ooOol017oo00<007ooOol0JGoo 0P0087oo1@00AWoo00<007ooOol01Goo00<007ooOol017oo00<007ooOol04goo000DOol00`00Oomo o`04Ool00`00Oomoo`03Ool00`00Oomoo`1ZOol2000NOol50019Ool00`00Oomoo`04Ool00`00Oomo o`04Ool00`00Oomoo`0COol001Eoo`8000Aoo`03001oogoo009oo`03001oogoo06]oo`8001eoo`@0 04aoo`8000Aoo`03001oogoo009oo`8001Ioo`005goo2@00KWoo0P007Woo00<007ooOol0CWoo2@00 67oo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo 0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03 001oogoo071oo`8007=oo`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol0 6Woo000KOol00`00Oomoo`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=o o`03001oogoo01Yoo`006goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomo o`1`Ool2001cOol00`00Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00 6goo00<007ooOol0L7oo0P00Lgoo00<007ooOol06Woo000KOol00`00Oomoo`1`Ool2001cOol00`00 Oomoo`0JOol001]oo`03001oogoo071oo`8007=oo`03001oogoo01Yoo`00Qgoo00<007ooOol017oo 0P001goo00<007ooOol0QWoo0027Ool00`00Oomoo`04Ool20007Ool00`00Oomoo`26Ool008Moo`80 00Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P001Woo00<007ooOol0Qgoo0028Ool20004 Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eoo`03001oogoo08Qoo`00RGoo0P000goo 0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<007ooOol0RGoo002:Ool20002Ool20003 Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo08Yoo`00Rgoo0P0000=oo`0000000Woo 0P00S7oo002Ool3002?Ool008ioo`<008moo`00SWoo0P00T7oo 002>Ool2002@Ool00001\ \>"], ImageRangeCache->{{{0, 287}, {79.1875, 0}} -> {-0.118401, -0.133126, \ 0.00430941, 0.00430941}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[pltO, pltOa, pltOv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .3 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.102381 0.952381 [ [ 0 0 0 0 ] [ 1 .3 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .3 L 0 .3 L closepath clip newpath 0 g 2 Mabswid [ ] 0 setdash .02381 .10238 m .97619 .10238 L s 0 0 0 r .5 .10238 m .69048 .10238 L s .62698 .13413 m .69048 .10238 L s .62698 .07063 m .69048 .10238 L s .5 .10238 m .5 .29286 L s .46825 .22937 m .5 .29286 L s .53175 .22937 m .5 .29286 L s 0 g .02381 .00714 m .02381 .19762 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 86.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol2002@Ool008ioo`80091oo`00SWoo0P00T7oo002>Ool2002@Ool008ioo`80091oo`00 SWoo0P00T7oo0026Ool00`00Oomoo`05Ool20008Ool00`00Oomoo`25Ool008Ioo`03001oogoo00Eo o`8000Qoo`03001oogoo08Eoo`00QWoo0P001Woo0P001goo0P00Qgoo0027Ool00`00Oomoo`04Ool2 0007Ool00`00Oomoo`26Ool008Moo`8000Eoo`8000Ioo`8008Qoo`00R7oo00<007ooOol00goo0P00 1Woo00<007ooOol0Qgoo0028Ool20004Ool20005Ool20029Ool008Uoo`03001oogoo009oo`8000Eo o`03001oogoo08Qoo`00RGoo0P000goo0P0017oo0P00RWoo002:Ool01000Oomoogoo0P0017oo00<0 07ooOol0RGoo002:Ool20002Ool20003Ool2002;Ool008]oo`03001oogoo008000=oo`03001oogoo 08Yoo`00Rgoo0P0000=oo`0000000Woo0P00S7oo002Ool3002? Ool008ioo`<008moo`00SWoo0P00T7oo002>Ool2002@Ool00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {85.375, 0}} -> {-0.0294635, -0.107502, \ 0.00368964, 0.00368964}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Elenco dei vincoli per ciascuna trave (sinistra, destra)", "Subsection"], Cell["\<\ Gli spostamenti al bordo ub sono descritti nella base {e1, e2}, non nelle \ basi adattate ai vincoli, utilizzando le componenti nelle basi adattate ai \ vincoli {d,n} (vedi la definizione di ub, sopra).\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\((Append[\(ub[i]\)[#], \(\[Theta]b[i]\)[#]] /. vsp)\) &\)\ \ /@ \ {meno, pi\[UGrave]}, {i, 1, travi}], TableSpacing -> {4, 2, 2}]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {"0"}, {"0"}, {"0"} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}], GridBox[{ {\(\(ub\_d[1]\)["+"]\)}, {"\[ScriptD]"}, {\(\(\[Theta]b[1]\)["+"]\)} }, RowSpacings->2, ColumnSpacings->1, RowAlignments->Baseline, ColumnAlignments->{Left}]} }, RowSpacings->4, ColumnSpacings->2, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{{0, 0, 0}, { Subscript[ ub, d][ 1][ "+"], \[ScriptD], \[Theta]b[ 1][ "+"]}}}, TableSpacing -> {4, 2, 2}]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(vincoli // Simplify\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(ub\_d[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["-"] == 0\)}, {\(\(\[Theta]b[1]\)["-"] == 0\)}, {\(\(ub\_n[1]\)["+"] == \[ScriptD]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Equal[ Subscript[ ub, d][ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "-"], 0], Equal[ \[Theta]b[ 1][ "-"], 0], Equal[ Subscript[ ub, n][ 1][ "+"], \[ScriptD]]}], Editable->False]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Generazione delle equazioni di bilancio al bordo", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Potenza residua al bordo", "Subsection", Evaluatable->False], Cell["\<\ Le forze al bordo sono da definire dopo la separazione tra forze attive e \ forze reattive\ \>", "SmallText"], Cell["\<\ Espressione della potenza totale residua per la soluzione bulk (soluzione \ generale delle equazioni differenziali di bilancio)\ \>", "SmallText"], Cell[BoxData[ \(pote := \[Sum]\+\(i = 1\)\%travi\((\((\(sb[i]\)[ pi\[UGrave]] . \(wb[i]\)[pi\[UGrave]])\) + \((\(sb[i]\)[ meno] . \(wb[i]\)[meno])\) + \(mb[i]\)[ pi\[UGrave]]\ \(\[Omega]b[i]\)[pi\[UGrave]] + \(mb[i]\)[ meno]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[BoxData[ \(potbd := pote - \[Sum]\+\(i = 1\)\%travi\((\((\(s[i]\)[L[i]] . \(wb[i]\)[ pi\[UGrave]])\) - \((\(s[i]\)[0] . \(wb[i]\)[ meno])\) + \(m[i]\)[L[i]]\ \(\[Omega]b[i]\)[ pi\[UGrave]] - \(m[i]\)[0]\ \(\[Omega]b[i]\)[meno])\) // Simplify\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pote\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["-"]\ \(\[Omega]b[1]\)["-"] + \(mb[1]\)[ "+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["-"]\ \(wb\_d[1]\)[ "-"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)["+"] + \(sb\_n[1]\)[ "-"]\ \(wb\_n[1]\)["-"] + \(sb\_n[1]\)["+"]\ \(wb\_n[1]\)[ "+"]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, Collect[potbd, ambd], {2}]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["-"] + \(sM[1]\)[0])\)\ \(\[Omega]b[1]\)[ "-"] + \((\(mb[1]\)[ "+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(sN[1]\)[0] + \(sb\_d[1]\)["-"])\)\ \(wb\_d[1]\)[ "-"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)[ "+"] + \((\(sQ[1]\)[0] + \(sb\_n[1]\)["-"])\)\ \(wb\_n[1]\)[ "-"] + \((\(-\(sQ[1]\)[\[ScriptCapitalL]]\) + \(sb\_n[1]\)[ "+"])\)\ \(wb\_n[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vincoli sugli atti di moto al bordo", "Subsection"], Cell["\<\ Si generano le equazioni di vincolo omogenee per gli atti di moto\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[\((# == 0)\) &, \(LinearEquationsToMatrices[vincoli, spbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . spbd]\)], "Input"], Cell[BoxData[ \({\(ub\_d[1]\)["-"] == 0, \(ub\_n[1]\)["-"] == 0, \(\[Theta]b[1]\)["-"] == 0, \(ub\_n[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(wb\_d[1]\)["-"] == 0, \(wb\_n[1]\)["-"] == 0, \(\[Omega]b[1]\)["-"] == 0, \(wb\_n[1]\)["+"] == \[ScriptD]}\)], "Output"] }, Open ]], Cell["Condizioni di vincolo sugli atti di moto", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(vam = \(Solve[\ Map[\((# == 0)\) &, \(LinearEquationsToMatrices[ Block[{ub = wb, \[Theta]b = \[Omega]b}, vincoli], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] . ambd], ambd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["-"] \[Rule] 0, \(wb\_d[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["-"] \[Rule] 0, \(wb\_n[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ambdv = Complement[ambd /. vam, {0}]\)], "Input"], Cell[BoxData[ \({\(\[Omega]b[1]\)["+"], \(wb\_d[1]\)["+"]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Potenza al bordo per atti di moto vincolati", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(potbdv = Collect[potbd /. vam, ambdv]\)], "Input"], Cell[BoxData[ \(\((\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]])\)\ \(\[Omega]b[1]\)[ "+"] + \((\(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)[ "+"])\)\ \(wb\_d[1]\)["+"]\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Equazioni di bilancio al bordo (corrispondenti agli atti di moto vincolati)\ \>", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd = \((#1 == 0 &)\) /@ Table[Coefficient[potbdv, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] - \(sM[1]\)[\[ScriptCapitalL]] == 0, \(-\(sN[1]\)[\[ScriptCapitalL]]\) + \(sb\_d[1]\)["+"] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(eqbilbd /. bulksol // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL]\ sQo[1] + \(mb[1]\)["+"] == sMo[1], \(sb\_d[1]\)["+"] == sNo[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di bilancio al bordo", "Subsection", Evaluatable->False], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate (per sicurezza vengono utilizzate le espressioni con le costanti C)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cNQM\)], "Input"], Cell[BoxData[ \({sNo[1], sQo[1], sMo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMb = Complement[ Map[If[FreeQ[eqbilbd /. bulksol, #], 0, #]\ &, cNQM], {0}]\)], "Input"], Cell[BoxData[ \({sMo[1], sNo[1], sQo[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(matbilbd = LinearEquationsToMatrices[eqbilbd /. bulksol, cNQMb]\)], "Input"], Cell[BoxData[ \({{{\(-1\), 0, \[ScriptCapitalL]}, {0, \(-1\), 0}}, {\(-\(mb[1]\)["+"]\), \(-\(sb\_d[1]\)["+"]\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, MatrixForm[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {\(-1\), "0", "\[ScriptCapitalL]"}, {"0", \(-1\), "0"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[cNQMb] > 0, ColumnForm[ matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(-\(mb[1]\)["+"]\)}, {\(-\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { Times[ -1, mb[ 1][ "+"]], Times[ -1, Subscript[ sb, d][ 1][ "+"]]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Rango della matrice delle equazioni di bilancio al bordo", "Subsection"], Cell["ordine del sistema delle equazioni differenziali di bilancio", \ "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(no = 3*travi\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di costanti nelle equazioni di bilancio al bordo per atti di moto \ vincolati (parametri dei descrittori della tensione da determinare) tale numero potrebbe risultare inferiore a no\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nc = Length[cNQMb]\)], "Input"], Cell[BoxData[ \(3\)], "Output"] }, Open ]], Cell["\<\ numero di condizioni scalari di vincolo (o numero descrittori delle forze al \ bordo reattive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nv = Length[vincoli]\)], "Input"], Cell[BoxData[ \(4\)], "Output"] }, Open ]], Cell["\<\ numero di descrittori degli atti di moto vincolati (o numero descrittori \ delle forze al bordo attive)\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(nf = Length[ambdv]\)], "Input"], Cell[BoxData[ \(2\)], "Output"] }, Open ]], Cell["controlli", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \({nf == Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], nc == no, nf == 2 no - nv}\)], "Input"], Cell[BoxData[ \({True, True, True}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(rango = nc - Length[ If[Length[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]] > 0, NullSpace[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]], 0]]\)], "Input"], Cell[BoxData[ \(2\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] dei vincoli e delle forze attive", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(StylePrint[\n\t\ \ \ \ \ "\< no \[Rule] \>"\ <> \ ToString[no]\ <> \ \n\t"\<\n nc \[Rule] \>"\ <> \ ToString[nc]\ <> \ \n\t"\<\n nv \[Rule] \>"\ <> \ ToString[nv]\ <> \n\t"\<\n nf \[Rule] \>"\ <> \ ToString[nf]\ <> \n\t"\<\n rango \[Rule] \>" <> ToString[rango], \n\t FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]\)], "Input", CellOpen->False], Cell[BoxData[ \(" no \[Rule] 3\n nc \[Rule] 3\n nv \[Rule] 4\n nf \[Rule] 2\n rango \ \[Rule] 2"\)], "Output", CellFrame->True, FontSlant->"Plain", Background->RGBColor[0.979995, 1, 0]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(\(If[\((nf \[NotEqual] \((2 no - nv)\))\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\(\n\) \)\), "\n", \(\(If[\((nv < no)\) && \((rango == no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv < no)\) && \((rango < no)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv == no)\) && \((rango < nf)\), StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango == nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\), "\n", \(\(If[\((nv > no)\) && \((rango < nf)\), \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)}], "Input", CellOpen->False], Cell[BoxData[ \("Vincoli eccedenti (le forze attive al bordo possono essere qualsiasi)"\ \)], "Output", CellFrame->True, FontSlant->"Italic", Background->RGBColor[0.979995, 1, 0]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Elenco delle forze attive al bordo", "Subsection"], Cell["Potenza delle forze al bordo in atti di moto vincolati", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Together, Collect[pote /. vam, ambdv], {2}] // Simplify\)], "Input"], Cell[BoxData[ \(\(mb[1]\)["+"]\ \(\[Omega]b[1]\)["+"] + \(sb\_d[1]\)["+"]\ \(wb\_d[1]\)[ "+"]\)], "Output"] }, Open ]], Cell["\<\ Forze attive al bordo (dalla espressione della potenza esterna si estraggono \ le forze corrispondenti a ciascun descrittore dell'atto di moto vincolato)\ \>", "SmallText"], Cell[BoxData[ \(\(fabd = Factor[Table[ Coefficient[pote /. vam, ambdv\[LeftDoubleBracket]j\[RightDoubleBracket]], {j, 1, Length[ambdv]}]];\)\)], "Input", CellFrame->False, Background->None], Cell[CellGroupData[{ Cell[BoxData[ \(If[Length[fabd] > 0, ColumnForm[fabd]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\(mb[1]\)["+"]\)}, {\(\(sb\_d[1]\)["+"]\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ { mb[ 1][ "+"], Subscript[ sb, d][ 1][ "+"]}], Editable->False]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati sulle forze assegnate al bordo [", StyleBox["D4", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell["\<\ Condizioni assegnate alle forze al bordo. Si tratta in genere della selezione \ di un sottoinsieme descritto da alcuni parametri, come f ad esempio, il cui \ valore verr\[AGrave] assegnato tra i dati numerici [ l'uso caratteri script \ per i parametri rende tutto molto pi\[UGrave] leggibile]. I DATI VANNO \ ASSEGNATI IN FORMA DI EQUAZIONI (per via delle condizioni di continuit\ \[AGrave])\ \>", "SmallText"], Cell[BoxData[ \(\(forze = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[TextData[{ "Una assegnazione esplicita dei dati sulle forze \[EGrave] la lista \ seguente, data qui come esempio e non assegnata a ", StyleBox["forze", FontFamily->"Courier New"], ". Con ", StyleBox["sb", FontFamily->"Courier New"], " si intende il vettore forza al bordo." }], "SmallText"], Cell[BoxData[ \(\({\((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_1 == 0, \((\(sb[1]\)[pi\[UGrave]] + \(sb[2]\)[meno])\) . e\_2 == 0, \(mb[1]\)[meno] == 0, \(mb[1]\)[pi\[UGrave]] == 0, \(mb[2]\)[meno] == 0, \(mb[2]\)[pi\[UGrave]] == 0, \(sb[2]\)[pi\[UGrave]] . \(d[2]\)[pi\[UGrave]] == 0};\)\)], "Input", CellFrame->True, Background->None], Cell["\<\ I dati sulle forze sono tradotti in una lista di sostituzioni\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp1 = \(Solve[forze, fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket] // Sort\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Si controlla che tutti i valori siano stati assegnati e si assegna il valore \ nullo ai rimanenti\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(Select[ fabd /. fabdp1, \((Length[Intersection[Variables[# /. fabdp1], fbd]] > 0)\)\ &]\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"], \(sb\_d[1]\)["+"]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fabdp = Join[fabdp1, \(Solve[Map[\((# \[Equal] 0)\)\ &, %], fbd]\)\[LeftDoubleBracket]1\[RightDoubleBracket]] // Sort\)], "Input"], Cell[BoxData[ \({\(mb[1]\)["+"] \[Rule] 0, \(sb\_d[1]\)["+"] \[Rule] 0}\)], "Output"] }, Open ]], Cell["Si fa un controllo finale", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(fabd /. fabdp\)], "Input"], Cell[BoxData[ \({0, 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Test di compatibilit\[AGrave] dei dati sulle forze", "Subsection"], Cell["\<\ Il termine noto deve appartenere all'immagine, ovvero deve essere ortogonale \ allo spazio nullo della trasposta\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(ker = Block[{ker0 = If[nc > 0, NullSpace[ Transpose[ matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket]]], {}]}, If[Length[ker0] > 0, ker0, {Array[0\ &, nf]}]]\)], "Input"], Cell[BoxData[ \({{0, 0}}\)], "Output"] }, Open ]], Cell["\<\ prodotto scalare dei vettori base del nucleo della trasposta per il termine \ noto; ciascun prodotto deve essere nullo; si selezionano i prodotti non nulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spro = Complement[ ker . matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp // Flatten, {0}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[BoxData[ \(If[\((nf > rango)\), If[\((Length[spro] > 0)\), \n\t StylePrint["\", FontWeight \[Rule] "\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[1]]; Interrupt[], \n\t StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]]]\)], "Input"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di bilancio al bordo", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(eqbilbd /. bulksol\) /. fabdp // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL]\ sQo[1] == sMo[1], sNo[1] == 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di bilancio al bordo ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(If[\((nf == nc)\) && \((rango == nf)\) && \((nc > 0)\), cNQMsol = LinearSolve[matbilbd\[LeftDoubleBracket]1\[RightDoubleBracket], matbilbd\[LeftDoubleBracket]2\[RightDoubleBracket] /. fabdp]; \n\t cNQMval = Table[cNQMb\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cNQMsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cNQMb]}], \n\t cNQMval = \(Solve[\(eqbilbd /. bulksol\) /. fabdp, cNQMb]\)\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \[ScriptCapitalL]\ sQo[1], sNo[1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Table[{\(sN[i]\)[\[Zeta]], \(sQ[i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol, {i, 1, travi}] // Simplify\)], "Input"], Cell[BoxData[ \({{sNo[1], sQo[1], sMo[1] - \[Zeta]\ sQo[1]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cNQMval\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \[ScriptCapitalL]\ sQo[1], sNo[1] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Funzioni di risposta e soluzione generale per lo spostamento (bulk)\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Spostamento e gradiente", "Subsection"], Cell[BoxData[ \(\(u[ i_]\)[\[Zeta]_] := \(u\_1[i]\)[\[Zeta]]\ a\_1[ i] + \(u\_2[i]\)[\[Zeta]]\ a\_2[i]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grad", "=", RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(\[Epsilon][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_1[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], ",", RowBox[{\(\[Gamma][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "-", \(\(\[Theta][i]\)[\[Zeta]]\)}]}], "]"}]}], ",", RowBox[{\(\[Chi][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(\[Theta][i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni di risposta e vincolo di Bernoulli", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(risp = {sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], \n\t\tsMf[ i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Input"], Cell[BoxData[ \({sNf[i_] \[Rule] Function[\[Zeta], YA[i]\ \(\[Epsilon][i]\)[\[Zeta]]], sMf[i_] \[Rule] Function[\[Zeta], YJ[i]\ \(\[Chi][i]\)[\[Zeta]]]}\)], "Output"] }, Open ]], Cell["Vincolo di scorrimento nullo (Modello di Eulero-Bernoulli)", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vinBer", "=", RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\[Theta][i_]\), "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ SuperscriptBox[\(u\_2[i]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "]"}]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione generale", "Subsection"], Cell["\<\ Prima della sostisuzione delle soluzioni delle equazioni di bilancio al bordo \ e del vincolo di Eulero-Bernoulli\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ \({sNo[ 1] == \(\[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Epsilon][1]\)[\ \[Zeta]]\)\/\(\[ScriptCapitalL]\^2\ \[Kappa]\), sMo[1] == \[Zeta]\ sQo[ 1] + \[ScriptCapitalY]\[ScriptCapitalJ]\ \(\[Chi][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnspO = \(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[i]\)[\[Zeta]], \(sM[ i]\)[\[Zeta]] == \(sMf[i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{\(sNo[1]\), "==", FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)]}], ",", RowBox[{\(sMo[1]\), "==", RowBox[{\(\[Zeta]\ sQo[1]\), "+", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolDO = \(DSolve[eqnspO, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[Zeta]\^2\ sMo[1] + 1\/6\ \[Zeta]\^3\ sQo[ 1]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + \ \[ScriptCapitalD][2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqnsp = \(\(\(\(\(Table[{\(sN[i]\)[\[Zeta]] == \(sNf[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]] == \(sMf[ i]\)[\[Zeta]]}, {i, 1, travi}] /. bulksol\) /. cNQMval\) /. risp\) /. grad\) /. vinBer // Flatten\) // Simplify\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_1[1]\), "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], \(\[ScriptCapitalL]\^2\ \[Kappa]\)], "==", "0"}], ",", RowBox[{\(\((\[ScriptCapitalL] - \[Zeta])\)\ sQo[1]\), "==", RowBox[{"\[ScriptCapitalY]\[ScriptCapitalJ]", " ", RowBox[{ SuperscriptBox[\(u\_2[1]\), "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(spsolD = \(DSolve[eqnsp, Flatten[Table[{u\_1[i], u\_2[i]}, {i, 1, travi}]], \[Zeta], DSolveConstants \[Rule] \[ScriptCapitalD]]\)\[LeftDoubleBracket]1\ \[RightDoubleBracket] // Simplify\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \[ScriptCapitalD][1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[ScriptCapitalL]\ \ \[Zeta]\^2\ sQo[1] + 1\/6\ \[Zeta]\^3\ sQo[ 1]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + \ \[ScriptCapitalD][2] + \[Zeta]\ \[ScriptCapitalD][3]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(splist = Table[{\(u\_1[i]\)[\[Zeta]], \(u\_2[i]\)[\[Zeta]], \(\[Theta][ i]\)[\[Zeta]]}, {i, 1, travi}] // Flatten\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[\[Zeta]], \(u\_2[1]\)[\[Zeta]], \(\[Theta][ 1]\)[\[Zeta]]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolDO // Simplify\)], "Input"], Cell[BoxData[ \({\(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] + \[ScriptCapitalD][ 1], \(-\(\(\[Zeta]\^2\ \((\(-3\)\ sMo[1] + \[Zeta]\ sQo[ 1])\)\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\)\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(\[Zeta]\ sMo[1] - 1\/2\ \[Zeta]\^2\ sQo[1]\)\/\ \[ScriptCapitalY]\[ScriptCapitalJ] + \[ScriptCapitalD][3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(splist /. vinBer\) /. spsolD // Simplify\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][ 1], \(\((3\ \[ScriptCapitalL] - \[Zeta])\)\ \[Zeta]\^2\ sQo[1]\)\/\(6\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\) + \[ScriptCapitalD][ 2] + \[Zeta]\ \[ScriptCapitalD][ 3], \(\[ScriptCapitalL]\ \[Zeta]\ sQo[1]\)\/\[ScriptCapitalY]\ \[ScriptCapitalJ] - \(\[Zeta]\^2\ sQo[1]\)\/\(2\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalD][3]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Cambiamento delle costanti di integrazione", "Subsection"], Cell["\<\ Viene costruita la lista delle costanti di integrazione delle funzioni di \ risposta. La lista delle costanti di integrazione presenti nelle condizioni di vincolo \ in generale contiene la prima.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlistO = Complement[ Map[If[FreeQ[\(splist /. vinBer\) /. spsolD, #], 0, #]\ &, Table[\[ScriptCapitalD][i], {i, 3\ travi}]], {0}]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell["\<\ Vengono elencate le costanti di integrazione presenti nelle espressioni \ calcolate\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(cDlist = Block[{splistV = \(splist /. vinBer\) /. spsolD}, Join[\n\tComplement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cNQM], {0}], \n\t Complement[ Map[If[FreeQ[splistV, #], 0, #]\ &, cDlistO], {0}]\n]] // Union\)], "Input"], Cell[BoxData[ \({sQo[1], \[ScriptCapitalD][1], \[ScriptCapitalD][2], \[ScriptCapitalD][ 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Table[\({\(u\_1[i]\)[0] \[Equal] uo\_1[i], \(u\_2[i]\)[0] \[Equal] uo\_2[i], \(\[Theta][i]\)[0] \[Equal] \[Theta]o[i]} /. vinBer\) /. spsolD, {i, 1, travi}] // Simplify\) // Flatten\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] == uo\_1[1], \[ScriptCapitalD][2] == uo\_2[1], \[ScriptCapitalD][3] == \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(fromDtoU = \(Solve[%, cDlistO]\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\)\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalD][1] \[Rule] uo\_1[1], \[ScriptCapitalD][2] \[Rule] uo\_2[1], \[ScriptCapitalD][3] \[Rule] \[Theta]o[1]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist = cDlist /. fromDtoU\)], "Input"], Cell[BoxData[ \({sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsolO = spsolDO /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, \(\[ScriptCapitalL]\^2\ \[Zeta]\ \[Kappa]\ sNo[1]\ \)\/\[ScriptCapitalY]\[ScriptCapitalJ] + uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[Zeta]\^2\ sMo[1] + 1\/6\ \[Zeta]\^3\ sQo[ 1]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]], Cell["\<\ Dopo la sostisuzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(spsol = spsolD /. fromDtoU\)], "Input"], Cell[BoxData[ \({u\_1[1] \[Rule] Function[{\[Zeta]}, uo\_1[1]], u\_2[1] \[Rule] Function[{\[Zeta]}, \(-\(\(\(-\(1\/2\)\)\ \[ScriptCapitalL]\ \ \[Zeta]\^2\ sQo[1] + 1\/6\ \[Zeta]\^3\ sQo[ 1]\)\/\[ScriptCapitalY]\[ScriptCapitalJ]\)\) + uo\_2[1] + \[Zeta]\ \[Theta]o[1]]}\)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo ", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Equazioni di vincolo", "Subsection", Evaluatable->False], Cell["\<\ Le variabili che hanno il significato di spostamenti al bordo vengono \ sostituite con i valori al bordo dello spostamento\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvinO = Block[{\n\t\tub = \((Function[ j, \((Switch[j, meno, \(u[#]\)[0], pi\[UGrave], \(u[#]\)[ L[#]]])\)] &)\), \[Theta]b = \((Function[ j, \((Switch[j, meno, \(\[Theta][#]\)[0], pi\[UGrave], \(\[Theta][#]\)[L[#]]])\)] &)\)\n\t\t}, vincoli] // Simplify\)], "Input"], Cell[BoxData[ \({\(u\_1[1]\)[0] == 0, \(u\_2[1]\)[0] == 0, \(\[Theta][1]\)[0] == 0, \(u\_2[1]\)[\[ScriptCapitalL]] == \[ScriptD]}\)], "Output"] }, Open ]], Cell["\<\ Qui \[EGrave] essenziale che \"vincoli\" sia stata definita con \":=\" e \ utilizzando il prodotto scalare invece che i nomi delle componenti dello \ spostamento.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(eqvin = \(eqvinO /. vinBer\) /. spsol // Simplify\)], "Input"], Cell[BoxData[ \({uo\_1[1] == 0, uo\_2[1] == 0, \[Theta]o[1] == 0, \(\[ScriptCapitalL]\^3\ sQo[1]\)\/\(3\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\) + \[ScriptCapitalL]\ \[Theta]o[1] + uo\_2[1] == \[ScriptD]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matrice delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[BoxData[ \(\(matvin = LinearEquationsToMatrices[eqvin, cRlist] // Simplify;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"}, {\(\[ScriptCapitalL]\^3\/\(3\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\), "0", "1", "\[ScriptCapitalL]"} }], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ColumnForm[matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {"0"}, {"0"}, {"\[ScriptD]"} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, 0, 0, \[ScriptD]}], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Length[ Transpose[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]]\)], "Input"], Cell[BoxData[ \(4\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRnull = NullSpace[matvin\[LeftDoubleBracket]1\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRlist\)], "Input"], Cell[BoxData[ \({sQo[1], uo\_1[1], uo\_2[1], \[Theta]o[1]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Propriet\[AGrave] della soluzione", "Subsection"], Cell[BoxData[ \(\(If[Length[cRnull] > 0, StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"], Cell[BoxData[ \(\(If[nv > Length[cRlist], StylePrint["\", FontSlant \[Rule] "\", CellFrame \[Rule] True, Background \[Rule] Hue[0.17]]];\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Soluzione delle equazioni di vincolo", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol0 = LinearSolve[matvin\[LeftDoubleBracket]1\[RightDoubleBracket], matvin\[LeftDoubleBracket]2\[RightDoubleBracket]]\)], "Input"], Cell[BoxData[ \({\(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, 0, 0, 0}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[cA]\)], "Input"], Cell[BoxData[ \(\(cRsol1 = Array[cA[#] &, Length[cRnull]] . cRnull;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(cRsol = If[Length[cRnull] > 0, cRsol0 + cRsol1, cRsol0]\)], "Input"], Cell[BoxData[ \({\(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, 0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(cRval = Table[cRlist\[LeftDoubleBracket]i\[RightDoubleBracket] \[Rule] cRsol\[LeftDoubleBracket]i\[RightDoubleBracket], {i, 1, Length[cRlist]}] // Simplify\)], "Input"], Cell[BoxData[ \({sQo[ 1] \[Rule] \(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(\(\(splist /. vinBer\) /. spsol\) /. cRval // Simplify\) // Factor\) // ColumnForm\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {"0"}, {\(\(\[ScriptD]\ \((3\ \[ScriptCapitalL] - \[Zeta])\)\ \[Zeta]\^2\)\ \/\(2\ \[ScriptCapitalL]\^3\)\)}, {\(\(3\ \[ScriptD]\ \((2\ \[ScriptCapitalL] - \[Zeta])\)\ \[Zeta]\)\ \/\(2\ \[ScriptCapitalL]\^3\)\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], ColumnForm[ {0, Times[ Rational[ 1, 2], \[ScriptD], Power[ \[ScriptCapitalL], -3], Plus[ Times[ 3, \[ScriptCapitalL]], Times[ -1, \[Zeta]]], Power[ \[Zeta], 2]], Times[ Rational[ 3, 2], \[ScriptD], Power[ \[ScriptCapitalL], -3], Plus[ Times[ 2, \[ScriptCapitalL]], Times[ -1, \[Zeta]]], \[Zeta]]}], Editable->False]], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Espressioni delle soluzioni (N, Q, M), (u, v, \[Theta]), (forze al bordo) \ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[TextData[{ "Definizione di extraSimplify [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Cancel[TrigExpand[#]]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Expand[N[#]]\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = Apart;\)\)], "Input"], Cell[BoxData[ \(\(simplifyDirac[\[Zeta]_, Lo_, Li_]\)[expr1__] := Module[{g}, Simplify[\(Distribute[\[Integral]\_Lo\%Li\((Distribute[\ Factor[ expr1]\ g[\[Zeta]]])\) \[DifferentialD]\[Zeta]] /. \ \[Integral]\_Lo\%Li g[\[Zeta]] anyexpr_ \[DifferentialD]\[Zeta] \[Rule] anyexpr\) /. \[Integral]\_Lo\%Li g[\[Zeta]] \[DifferentialD]\[Zeta] \[Rule] 1]]\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((#\ &)\);\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = simplifyDirac[\[Zeta], 0, L[i]];\)\)], "Input"], Cell[BoxData[ \(\(extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\);\)\)], "Input"], Cell["\<\ Selezione automatica della funzione di semplificazione extraSimplify, basata \ sulla verifica della presenza di UnitStep o DiracDelta nella espressione di \ N, Q, M\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(If[FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, UnitStep] && FreeQ[\((#[\[Zeta]]\ &)\) /@ svar /. bulksolC, DiracDelta], extraSimplify = \((#\ &)\), extraSimplify = \((Simplify[ Collect[#, {DiracDelta[__], UnitStep[__]}]]\ &)\)]\)], "Input"], Cell[BoxData[ \(#1 &\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Espressioni delle costanti di integrazione", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cNQMval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sMo[1] \[Rule] \[ScriptCapitalL]\ sQo[1], sNo[1] \[Rule] 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Map[Factor, \(cRval // Simplify\) // extraSimplify, {2}]\)], "Input"], Cell[BoxData[ \({sQo[ 1] \[Rule] \(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, uo\_1[1] \[Rule] 0, uo\_2[1] \[Rule] 0, \[Theta]o[1] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Sollecitazioni", "Subsection"], Cell[CellGroupData[{ Cell["Forza normale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Forza di taglio", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(3\ \[ScriptD]\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\/\[ScriptCapitalL]\^3\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momento", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(3\ \[ScriptD]\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\ \((\[ScriptCapitalL] - \ \[Zeta])\)\)\/\[ScriptCapitalL]\^3\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Spostamenti", "Subsection"], Cell[CellGroupData[{ Cell["Spostamento assiale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Spostamento trasversale", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(\[ScriptD]\ \((3\ \[ScriptCapitalL] - \ \[Zeta])\)\ \[Zeta]\^2\)\/\(2\ \[ScriptCapitalL]\^3\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rotazione", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[{"\" <> ToString[ i], \(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify}, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(\(3\ \[ScriptD]\ \((2\ \[ScriptCapitalL] - \ \[Zeta])\)\ \[Zeta]\)\/\(2\ \[ScriptCapitalL]\^3\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Forze e momenti al bordo calcolati (parte attiva e parte reattiva)\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Forze (bordo sinistro e bordo destro)", "Subsubsection"], Cell["Le componenti sono nella base {e1, e2}", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\), \(s[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, \(-\(\(3\ \[ScriptD]\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\/\[ScriptCapitalL]\^3\)\)}\), \({0, \(3\ \[ScriptD]\ \ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\[ScriptCapitalL]\^3}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Momenti (bordo sinistro e bordo destro)", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\), \(m[i]\)[ L[i]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments \[Rule] Left]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \(-\(\(3\ \[ScriptD]\ \[ScriptCapitalY]\ \[ScriptCapitalJ]\)\/\[ScriptCapitalL]\^2\)\), "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Left]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: forza risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[\(\(\({"\" <> ToString[i], \(-\(s[i]\)[0]\) + \(s[i]\)[ L[i]] + \[Integral]\_0\%\(L[i]\)Evaluate[\(b[ i]\)[\[Zeta]]] \[DifferentialD]\[Zeta]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify, \n\t{i, 1, travi}], TableDepth -> 2, TableAlignments -> Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", \({0, 0}\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Verifiche: momento risultante", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Table[extraSimplify[ Simplify[\(\({"\" <> ToString[i], \(-\(m[i]\)[0]\) + \(m[i]\)[ L[i]] + \(s[i]\)[L[i]] . a\_2[i]\ L[ i] + \[Integral]\_0\%\(L[i]\)\(\(b[i]\)[\[Zeta]] . a\_2[i]\ \[Zeta]\) \[DifferentialD]\[Zeta] + \ \[Integral]\_0\%\(L[i]\)\(c[ i]\)[\[Zeta]] \[DifferentialD]\[Zeta]} \ /. \[InvisibleSpace]bulksol\) /. cNQMval\) /. cRval]], {i, 1, travi}], TableDepth \[Rule] 2, TableAlignments \[Rule] Center]\)], "Input"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"trave 1\"\>", "0"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Center}], Function[ BoxForm`e$, TableForm[ BoxForm`e$, TableDepth -> 2, TableAlignments -> Center]]]], "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Dati numerici [", StyleBox["D5", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell["\<\ Sono assegnati valori numerici alle rigidezze e ai parametri che descrivono \ le forse attive.\ \>", "Text"], Cell[BoxData[ \(\(datip = {\[ScriptD] \[Rule] 0.1, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell["\<\ Potrebbe essere necessario assegnare dei valori (arbitrari) ai coefficienti \ cA[i] per selezionare una delle molteplici soluzioni Sono assegnati automaticamente dei valori nulli ai coefficienti A[i] \ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cAval0 = If[Length[cRnull] > 0, Table[cA[i] \[Rule] 0, {i, 1, Length[cRnull]}], {}]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell["\<\ Se si vogliono assegnare altri valori, farlo qui. Altrimenti assegnare una \ lista vuota: iAval={}\ \>", "Text"], Cell[BoxData[ \(\(cAval = {};\)\)], "Input", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(cAval1 = If[\((Length[cRnull] > 0)\) && \((Length[cAval] == Length[cRnull])\), cAval, cAval0]\)], "Input"], Cell[BoxData[ \({}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(datinum = Join[datiO, datip, cAval1]\)], "Input"], Cell[BoxData[ \({\[ScriptCapitalL] \[Rule] 1, \[ScriptD] \[Rule] 0.1`, \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] 10, \[Kappa] \[Rule] 0}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Visualizzazione delle soluzioni (N, Q, M) (u, v, \[Theta])\ \>", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni", "Subsection"], Cell[BoxData[ \(\(sNQM[ i_]\)[\[Zeta]_] := \(\({\(sN[i]\)[\[Zeta]], \(sQ[ i]\)[\[Zeta]], \(sM[i]\)[\[Zeta]]} /. bulksol\) /. cNQMval\) /. cRval // Simplify\)], "Input"], Cell[BoxData[ \(\(spuv\[Theta][ i_]\)[\[Zeta]_] := \(\({\(u\_1[i]\)[\[Zeta]], \(u\_2[ i]\)[\[Zeta]], \(\[Theta][i]\)[\[Zeta]]} /. vinBer\) /. spsol\) /. cRval\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Eventuali valutazioni ", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[0] // Simplify\)], "Input"], Cell[BoxData[ \({0, 0, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(spuv\[Theta][1]\)[L[1]] // Factor\)], "Input"], Cell[BoxData[ \({0, \[ScriptD], \(3\ \[ScriptD]\)\/\(2\ \[ScriptCapitalL]\)}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[0]\), ",", \(\(u\_2[2]\)[0]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", "0", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(spuv\[Theta][2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(\(u\_1[2]\)[L[2]]\), ",", \(\(u\_2[2]\)[L[2]]\), ",", RowBox[{ SuperscriptBox[\(u\_2[2]\), "\[Prime]", MultilineFunction->None], "[", \(L[2]\), "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, \(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[1]\)[L[1]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({0, \(3\ \[ScriptD]\ \[ScriptCapitalY]\[ScriptCapitalJ]\)\/\ \[ScriptCapitalL]\^3, 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[0] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[0], \(sQ[2]\)[0], \(sM[2]\)[0]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(sNQM[2]\)[L[2]] // Simplify\) // Factor\)], "Input"], Cell[BoxData[ \({\(sN[2]\)[L[2]], \(sQ[2]\)[L[2]], \(sM[2]\)[L[2]]}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Funzioni per la visualizzazione", "Subsection", Evaluatable->False], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "SmallText", CellFrame->False, Background->None], Cell[TextData[{ "Adattare ", StyleBox["PlotRange ", FontFamily->"Courier", FontWeight->"Bold"], "o lasciare ", StyleBox["All", FontFamily->"Courier", FontWeight->"Bold"], " " }], "SmallText", CellFrame->False, Background->None], Cell[BoxData[ RowBox[{\(grNQM[it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(sNQM[ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{\(Hue[0.5]\), ",", \(Hue[0.6]\), ",", FormBox[\(Hue[0.85]\), "TraditionalForm"]}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.4\)}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(gruv\[Theta][it_]\), ":=", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{\(Evaluate[{0, \(\(spuv\[Theta][ it]\)[\[Zeta]]\)\[LeftDoubleBracket] i\[RightDoubleBracket] /. datinum // Simplify}]\), ",", \(Evaluate[{\[Zeta], 0, L[it]} /. datinum]\), ",", \(DisplayFunction \[Rule] Identity\), ",", \(Ticks \[Rule] ticksOption\), ",", \(PlotRange \[Rule] {All, All, All}\_\(\(\ \[LeftDoubleBracket]\)\(i\)\(\[RightDoubleBracket]\)\)\), ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"{", RowBox[{\(Thickness[0.004]\), ",", SubscriptBox[ RowBox[{"{", RowBox[{ FormBox[\(Hue[0.15]\), "TraditionalForm"], ",", \(Hue[0.10]\), ",", \(Hue[0.22]\)}], "}"}], \(\(\[LeftDoubleBracket]\)\(i\)\(\ \[RightDoubleBracket]\)\)]}], "}"}]}], "}"}]}]}], "]"}], ",", \({i, 1, 3}\)}], "]"}], "}"}], ",", \(GraphicsSpacing \[Rule] 0.3\)}], "]"}]}]], "Input"], Cell[TextData[{ "Assegnare a ", StyleBox["ticksOption ", FontFamily->"Courier", FontWeight->"Bold"], " ", StyleBox["Automatic", FontFamily->"Courier", FontWeight->"Bold"], " per avere gli assi graduati, ", StyleBox["None;", FontFamily->"Courier", FontWeight->"Bold"], " altrimenti" }], "Text", CellFrame->True, Background->GrayLevel[0.849989]], Cell[BoxData[ \(\(ticksOption = {None, None};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell["Grafici dei descrittori della tensione (N, Q, M)", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(Do[Show[grNQM[it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}]\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .16264 %%ImageSize: 420 68.309 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00387239 0.31746 [ [ 0 0 0 0 ] [ 1 .16264 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .16264 L 0 .16264 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00387239 0.274436 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 1 1 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.374687 0.00387239 0.625313 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.196201 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 0 .4 1 r .004 w .02381 .60332 m .06244 .60332 L .10458 .60332 L .14415 .60332 L .18221 .60332 L .22272 .60332 L .26171 .60332 L .30316 .60332 L .34309 .60332 L .3815 .60332 L .42237 .60332 L .46172 .60332 L .49955 .60332 L .53984 .60332 L .57861 .60332 L .61984 .60332 L .65954 .60332 L .69774 .60332 L .73838 .60332 L .77751 .60332 L .81909 .60332 L .85916 .60332 L .89771 .60332 L .93871 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.725564 0.00387239 0.97619 0.158768 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.196201 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 1 0 .9 r .004 w .02381 .60332 m .06244 .57944 L .10458 .5534 L .14415 .52894 L .18221 .50542 L .22272 .48039 L .26171 .45629 L .30316 .43067 L .34309 .406 L .3815 .38225 L .42237 .357 L .46172 .33268 L .49955 .30929 L .53984 .2844 L .57861 .26043 L .61984 .23495 L .65954 .21041 L .69774 .18681 L .73838 .16169 L .77751 .13751 L .81909 .11181 L .85916 .08704 L .89771 .06322 L .93871 .03788 L .97619 .01472 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 68.25}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgOol00`00Oomoo`2>Ool00`00Oomoo`1MOol00g`L Oomoo`0@Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo05]oo`9l71=oo`003goo 00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0FGoo0W`L5Goo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`2>Ool00`00Oomoo`1GOol2O1`GOol000moo`03001oogoo08ioo`03001oogoo08ioo`03 001oogoo05Ioo`03O1aoogoo01Moo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0 E7oo0W`L6Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1COol00g`LOomoo`0J Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo055oo`9l71eoo`003goo00<007oo Ool0SWoo00<007ooOol0SWoo00<007ooOol0Cgoo0W`L7goo000?Ool00`00Oomoo`2>Ool00`00Oomo o`2>Ool00`00Oomoo`1>Ool00g`LOomoo`0OOol000moo`03001oogoo08ioo`03001oogoo08ioo`03 001oogoo04aoo`9l729oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0Bgoo00=l 77ooOol08Woo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`1:Ool00g`LOomoo`0S Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo04Qoo`9l72Ioo`003goo00<007oo Ool0SWoo00<007ooOol0SWoo00<007ooOol0Agoo00=l77ooOol09Woo000?Ool00`00Oomoo`2>Ool0 0`00Oomoo`2>Ool00`00Oomoo`15Ool2O1`YOol000moo`03001oogoo08ioo`03001oogoo08ioo`03 001oogoo04=oo`9l72]oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0@Woo00=l 77ooOol0:goo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`10Ool2O1`^Ool000mo o`03001oogoo08ioo`03001oogoo08ioo`03001oogoo03ioo`9l731oo`003goo00<007ooOol0SWoo 00<007ooOol0SWoo00<007ooOol0?7oo0W`LOol00`00Oomoo`2>Ool0 0`00Oomoo`0jOol2O1`dOol000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo03Uoo`03 O1aoogoo03Aoo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol0=goo0W`L=goo000? Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0fOol00g`LOomoo`0gOol000moo`03001o ogoo08ioo`03001oogoo08ioo`03001oogoo03Aoo`9l73Yoo`003goo00<007ooOol0SWoo00<007oo Ool0SWoo00<007ooOol0Ool00`00Oomoo`2>Ool00`00Oomo o`0aOol00g`LOomoo`0lOol000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo02moo`9l 73moo`0037oo0`00H`?o0`00:goo00<007ooOol0SWoo00<007ooOol0;Woo00=l77ooOol0?goo000? Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0/Ool2O1a2Ool000moo`03001oogoo08io o`03001oogoo08ioo`03001oogoo02Yoo`9l74Aoo`003goo00<007ooOol0SWoo00<007ooOol0SWoo 00<007ooOol0:Goo00=l77ooOol0A7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomo o`0WOol2O1a7Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo02Ioo`03O1aoogoo 04Moo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol097oo0W`LBWoo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0ROol2O1aOol00`00Oomoo`2>Ool00`00Oomoo`0NOol0 0g`LOomoo`1?Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo01eoo`03O1aoogoo 051oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol06goo0W`LDgoo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0IOol2O1aEOol000moo`03001oogoo08ioo`03001o ogoo08ioo`03001oogoo01Moo`9l75Moo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007oo Ool05Goo0W`LFGoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0DOol00g`LOomo o`1IOol000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo019oo`9l75aoo`003goo00<0 07ooOol0SWoo00<007ooOol0SWoo00<007ooOol04Goo00=l77ooOol0G7oo000?Ool00`00Oomoo`2> Ool00`00Oomoo`2>Ool00`00Oomoo`0?Ool2O1aOOol000moo`03001oogoo08ioo`03001oogoo08io o`03001oogoo00eoo`9l765oo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol037oo 00=l77ooOol0HGoo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool00`00Oomoo`0:Ool2O1aTOol0 00moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo00Uoo`03O1aoogoo06Aoo`003goo00<0 07ooOol0SWoo00<007ooOol0SWoo00<007ooOol01goo0W`LIgoo000?Ool00`00Oomoo`2>Ool00`00 Oomoo`2>Ool00`00Oomoo`05Ool2O1aYOol000moo`03001oogoo08ioo`03001oogoo08ioo`03001o ogoo00Aoo`03O1aoogoo06Uoo`003goo00<007ooOol0SWoo00<007ooOol0SWoo00<007ooOol00Woo 0W`LK7oo000?Ool00`00Oomoo`2>Ool00`00Oomoo`2>Ool01@00OomoogooO1`0KWoo000?Ool00`00 Oomoo`2>Ool00`00Oomoo`2>Ool01000Ooml77`LKgoo000?Ool00`00Oomoo`2>OomS0Il^Ool2O1aa Ool000moo`03001oogoo08ioo`03001oogoo08ioo`03001oogoo071oo`003goo00<007ooOol0SWoo 00<007ooOol0SWoo00<007ooOol0L7oo003oOonUOol00001\ \>"], ImageRangeCache->{{{0, 419}, {67.25, 0}} -> {-0.0960041, -0.0122006, \ 0.00761817, 0.00761817}, {{12.5625, 116.188}, {65.625, 1.5625}} -> \ {-0.152298, -1.10361, 0.0101328, 0.0327904}, {{157.625, 261.313}, {65.625, \ 1.5625}} -> {-1.62187, -0.154919, 0.0101298, 0.049171}, {{302.75, 406.375}, \ {65.625, 1.5625}} -> {-3.09271, -0.155413, 0.0101328, 0.0491857}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Grafici dello spostamento (u, v, \[Theta])\ \>", "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(\(Do[ Show[gruv\[Theta][it], ImageSize \[Rule] {420, Automatic}], {it, 1, travi}];\)\)], "Input", CellOpen->False], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .17168 %%ImageSize: 420 72.104 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.31746 0.00408753 0.31746 [ [ 0 0 0 0 ] [ 1 .17168 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .17168 L 0 .17168 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00408753 0.28836 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.309017 0.294302 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .30902 m 1 .30902 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 1 .9 0 r .004 w .02381 .30902 m .06244 .30902 L .10458 .30902 L .14415 .30902 L .18221 .30902 L .22272 .30902 L .26171 .30902 L .30316 .30902 L .34309 .30902 L .3815 .30902 L .42237 .30902 L .46172 .30902 L .49955 .30902 L .53984 .30902 L .57861 .30902 L .61984 .30902 L .65954 .30902 L .69774 .30902 L .73838 .30902 L .77751 .30902 L .81909 .30902 L .85916 .30902 L .89771 .30902 L .93871 .30902 L .97619 .30902 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.367725 0.00408753 0.632275 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 5.88604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s 1 .6 0 r .004 w .02381 .01472 m .02499 .01472 L .02605 .01472 L .02729 .01473 L .02846 .01474 L .03053 .01476 L .03279 .01479 L .03527 .01484 L .0379 .01491 L .04262 .01506 L .04749 .01526 L .05205 .01548 L .06244 .01615 L .07305 .01703 L .08274 .01803 L .10458 .02089 L .14429 .02825 L .18248 .03786 L .22313 .05069 L .26226 .06544 L .30384 .08356 L .34391 .10328 L .38246 .1242 L .42346 .14844 L .46295 .17358 L .50092 .19929 L .54134 .22821 L .58025 .25741 L .62161 .28979 L .66146 .32217 L .69979 .35427 L .74057 .38934 L .77984 .42387 L .81759 .45764 L .85779 .49412 L .89648 .52959 L .93762 .56758 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.71164 0.00408753 0.97619 0.167589 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 3.92403 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash 0 .01472 m 1 .01472 L s .02381 0 m .02381 .61803 L s 0 0 0 r .5 Mabswid .02381 .01472 m .06244 .01472 L .10458 .01472 L .14415 .01472 L .18221 .01472 L .22272 .01472 L .26171 .01472 L .30316 .01472 L .34309 .01472 L .3815 .01472 L .42237 .01472 L .46172 .01472 L .49955 .01472 L .53984 .01472 L .57861 .01472 L .61984 .01472 L .65954 .01472 L .69774 .01472 L .73838 .01472 L .77751 .01472 L .81909 .01472 L .85916 .01472 L .89771 .01472 L .93871 .01472 L .97619 .01472 L s .68 1 0 r .004 w .02381 .01472 m .06244 .0615 L .10458 .11032 L .14415 .15407 L .18221 .19422 L .22272 .2349 L .26171 .27205 L .30316 .30937 L .34309 .34321 L .3815 .37382 L .42237 .40428 L .46172 .43156 L .49955 .45589 L .53984 .47976 L .57861 .50074 L .61984 .52091 L .65954 .53825 L .69774 .553 L .73838 .56662 L .77751 .5777 L .81909 .5873 L .85916 .59443 L .87754 .597 L .89771 .59932 L .91765 .6011 L .92854 .60185 L .93871 .60241 L .94354 .60263 L .94878 .60283 L .95341 .60298 L .95832 .60311 L .96273 .6032 L .96524 .60324 L .9676 .60327 L .96976 .60329 L .97173 .60331 L .97277 .60331 L .97391 .60332 L .97509 .60332 L .97619 .60332 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{420, 72.0625}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg7oo0WiP DGoo00<007ooOol057oo00=Gh7ooOol0Ggoo000?Ool00`00Oomoo`2;Ool00`00Oomoo`0jOol00giP Oomoo`1>Ool00`00Oomoo`0EOol00eOPOomoo`1NOol000moo`03001oogoo08]oo`03001oogoo03]o o`03OV1oogoo04eoo`03001oogoo01Ioo`03En1oogoo05eoo`003goo00<007ooOol0Rgoo00<007oo Ool0?7oo00=nH7ooOol0C7oo00<007ooOol05goo00=Gh7ooOol0G7oo000?Ool00`00Oomoo`2;Ool0 0`00Oomoo`0mOol00giPOomoo`1;Ool00`00Oomoo`0HOol00eOPOomoo`1KOol000moo`03001oogoo 08]oo`03001oogoo03ioo`03OV1oogoo04Yoo`03001oogoo01Uoo`9Gh5]oo`003goo00<007ooOol0 Rgoo00<007ooOol0?goo0WiPBWoo00<007ooOol06goo00=Gh7ooOol0F7oo000"], ImageRangeCache->{{{0, 419}, {71.0625, 0}} -> {-0.0943298, -0.0128784, \ 0.00761017, 0.00761017}, {{12.375, 121.875}, {69.3125, 1.6875}} -> {-0.14414, \ -1.10435, 0.00959613, 0.0310537}, {{154.75, 264.25}, {69.3125, 1.6875}} -> \ {-1.51039, -0.00521772, 0.00959613, 0.00155269}, {{297.063, 406.563}, \ {69.3125, 1.6875}} -> {-2.87604, -0.00782658, 0.00959613, 0.00232903}}] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Visualizzazione della deformazione [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni per la visualizzazione", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(asseD[ i_]\)[\[Zeta]_] := \(\(org[i] + a\_1[i] \[Zeta] + \(u[ i]\)[\[Zeta]] /. \[InvisibleSpace]spsol\) \ /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell[BoxData[ \(\(secD[ i_]\)[\[Zeta]_] := \(\(\({\(asseD[i]\)[\[Zeta]] - maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ , \(asseD[i]\)[\[Zeta]] + maxL\/20\ \((\(-\(\[Theta][i]\)[\[Zeta]]\)\ a\_1[i] + a\_2[i])\)\ } /. \[InvisibleSpace]vinBer\) \ /. \[InvisibleSpace]spsol\) /. \[InvisibleSpace]cRval\) /. datinum\)], "Input"], Cell["disegno dell'asse", "SmallText"], Cell[BoxData[ \(\(pltD = ParametricPlot[ Evaluate[ Flatten[Table[{\(asseD[i]\)[L[i]\ \[Xi]]}, {i, 1, travi}], 1]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] Hue[1]];\)\)], "Input"], Cell["disegno delle sezioni", "SmallText"], Cell[BoxData[ \(\(pltDs = Table[Table[ Graphics[{Hue[1], Line[\(secD[i]\)[j \(\(\ \)\(L[i]\)\)\/ndiv]]}], {j, 1, ndiv - 1}], {i, 1, travi}] // Flatten;\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(pltDv = Block[{asseO = asseD}, vincoliFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(pltDbv = Block[{asseO = asseD}, vincolibFig /. datinum]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False], ",", TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]}], "}"}]], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Definizione cornice ", "Subsection"], Cell["\<\ Serve per ottenere figure confrontabili. Scegliere i parametri in modo che la \ figura sia contenuta nel rettangolo di sfondo. Verificare che anche i \ diagrammi N Q M risultino contenuti nel rettangolo.\ \>", "SmallText"], Cell[CellGroupData[{ Cell[BoxData[ \(xMax = Max /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({1.`, 0.1`}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(xMin = Min /@ N[Transpose[ Flatten[Table[{\(asseO[i]\)[0], \(asseO[i]\)[ L[i]], \(asseD[i]\)[0], \(asseD[i]\)[L[i]]}, {i, 1, travi}], 1]] /. \[InvisibleSpace]datinum]\)], "Input"], Cell[BoxData[ \({0.`, 0.`}\)], "Output"] }, Open ]], Cell[BoxData[ \(xDiag := \((xMax - xMin)\) + \((e\_1 + e\_2)\)\ 0.001\)], "Input"], Cell[BoxData[{ \(\(xLowerL := xC - mU . \(xDiag\/2\);\)\), "\n", \(\(xUpperR := xC + mU . \(xDiag\/2\);\)\)}], "Input"], Cell[BoxData[ \(\(frameb := Graphics[{GrayLevel[0.9], Rectangle[xLowerL, xUpperR]}];\)\)], "Input"], Cell[BoxData[ \(\(frame := Graphics[{GrayLevel[0], {Point[xLowerL], Point[xUpperR]}}];\)\)], "Input"], Cell[BoxData[ \(xC := \(xMax + xMin\)\/2 + xCshift\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Adattamento cornice [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "] " }], "Subsection"], Cell["\<\ Il rettangolo di sfondo risulta definito dalla posizione del centro e dalla \ dilatazione dei lati\ \>", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(xCshift = \(-0.1\) \(\@\(xDiag . xDiag\)\) \((e\_2)\)\)], "Input"], Cell[BoxData[ \({0, \(-0.10060825015872206`\)}\)], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mU", "=", RowBox[{"(", GridBox[{ {"1.4", "0"}, {"0", "6"} }], ")"}]}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \({\((xUpperR - xLowerL)\), xC}\)], "Input"], Cell[BoxData[ \({{1.4013999999999998`, 0.6060000000000001`}, {0.5`, \(-0.05060825015872206`\)}}\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Figura", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltObv, pltD, pltDs, pltDbv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .43242 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.250605 0.679593 [ [ 0 0 0 0 ] [ 1 .43242 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0103 m .02381 .42213 L .97619 .42213 L .97619 .0103 L F 0 g .008 w .02381 .0103 Mdot .97619 .42213 Mdot 2 Mabswid [ ] 0 setdash .1602 .25061 m .8398 .25061 L s .5 Mabswid .3301 .21663 m .3301 .28458 L s .5 .21663 m .5 .28458 L s .6699 .21663 m .6699 .28458 L s 0 0 0 r .5 .25061 m .63592 .25061 L s .59061 .27326 m .63592 .25061 L s .59061 .22795 m .63592 .25061 L s .5 .25061 m .5 .38652 L s .47735 .34122 m .5 .38652 L s .52265 .34122 m .5 .38652 L s 0 g 1 Mabswid .10357 .25061 m .21684 .25061 L s .1602 .16566 m .1602 .33555 L s newpath .1602 .25061 .02718 0 365.73 arc s .78316 .25061 m .89643 .25061 L s .8398 .16566 m .8398 .33555 L s newpath .8398 .25061 .02718 0 365.73 arc s 1 0 0 r .5 Mabswid .1602 .25061 m .16104 .25061 L .16181 .25061 L .16269 .25061 L .16352 .25061 L .165 .25061 L .16661 .25061 L .16838 .25062 L .17026 .25063 L .17362 .25064 L .1771 .25067 L .18036 .25069 L .18777 .25077 L .19534 .25087 L .20226 .25099 L .21784 .25132 L .24617 .25217 L .27343 .25328 L .30243 .25476 L .33035 .25646 L .36002 .25855 L .38862 .26083 L .41612 .26325 L .44538 .26604 L .47356 .26895 L .50066 .27192 L .5295 .27525 L .55726 .27863 L .58678 .28237 L .61521 .2861 L .64256 .28981 L .67166 .29386 L .69968 .29785 L .72662 .30175 L .75531 .30596 L .78291 .31005 L .81227 .31444 L .8398 .31856 L s .33233 .22247 m .32787 .29043 L s .50382 .23786 m .49618 .30582 L s .67468 .25963 m .66512 .32759 L s 0 g 1 Mabswid .10357 .25061 m .21684 .25061 L s .1602 .16566 m .1602 .33555 L s newpath .1602 .25061 .02718 0 365.73 arc s .78316 .31856 m .89643 .31856 L s .8398 .23362 m .8398 .40351 L s newpath .8398 .31856 .02718 0 365.73 arc s 0 0 m 1 0 L 1 .43242 L 0 .43242 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 124.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MoobMcW003001cW7>L0;mc W003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0_g>L00<007>LLi`097>L2Goo0007OolWLi`0 0`00LiacW02oLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L0;mcW003001cW7>L02AcW0Uo o`001goo9g>L00<007>LLi`0_g>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW02oLi`00`00 LiacW00TLi`9Ool000MoobMcW003001cW7>L0;mcW003001cW7>L02AcW0Uoo`001goo9g>L00<007>L Li`0_g>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW02oLi`00`00LiacW00TLi`9Ool000Mo obMcW003001cW7>L0;mcW003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0_g>L00<007>LLi`0 97>L2Goo0007OolWLi`00`00LiacW02oLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L0;mc W003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0_g>L00<007>LLi`097>L2Goo0007OolWLi`0 0`00LiacW02oLi`00`00LiacW00TLi`9Ool000MoobMcW003001cW7>L02ecW003001cW7>L02icW003 001cW7>L02icW003001cW7>L02ecW003001cW7>L02AcW0Uoo`001goo9g>L00<007>LLi`0;G>L00<0 07>LLi`0;W>L00<007>LLi`0;W>L00<007>LLi`0;G>L00<007>LLi`097>L2Goo0007OolTLi`5000^ Li`00`00O01cW00^Li`00`00LiacW00^Li`00`00LiacW00[Li`5000TLi`9Ool000Moob=cW006001c W7>LLi`007>L0P00;7>L00<007`0Li`0;W>L00<007>LLi`05g>L00<007>LLi`057>L00<007>LLi`0 :G>L0P000W>L00<007>LLi`00P008W>L2Goo0007OolRLi`00`00LiacW002Li`01000LiacW7>L0P00 :W>L00<007`0Li`0;W>L00<007>LLi`067>L0P0057>L00<007>LLi`0:7>L00<007>LLi`00W>L00<0 07>LLi`00W>L00<007>LLi`07g>L2Goo0007OolQLi`00`00LiacW003Li`00`00LiacW003Li`00`00 LiacW00WLi`00`00O01cW00^Li`00`00LiacW00JLi`2000BLi`00`00LiacW00WLi`00`00LiacW003 Li`00`00LiacW003Li`00`00LiacW00NLi`9Ool000Moob1cW003001cW7>L00AcW003001cW7>L00=c W003001cW7>L02McW003001l07>L02icW003001l07>L01acW080011cW003001cW7>L02IcW003001c W7>L00AcW003001cW7>L00=cW003001cW7>L01icW0Uoo`001goo87>L00<007>LLi`017>L00<007>L Li`017>L00<007>LLi`09W>L00<007`0Li`0;W>L00<007`0Li`07W>L0P003W>L00<007>LLi`09W>L 00<007>LLi`017>L00<007>LLi`017>L00<007>LLi`07G>L2Goo0007OolOLi`00`00LiacW005Li`0 0`00LiacW004Li`00`00LiacW00VLi`00`00O01cW00^Li`00`00O01cW00PLi`2000L 00EcW003001cW7>L00EcW003001cW7>L02EcW003001l07>L02icW003001l07>L029cW08000YcW003 001cW7>L02EcW003001cW7>L00EcW003001cW7>L00EcW003001cW7>L01acW0Uoo`001goo5g>L8@00 57`0300000=l00000000;P0000=l00000000KP005W>L2Goo0007OolOLi`00`00LiacW004Li`V000@ O00/00000g`00000001O0007Li`00`00LiacW00LLi`9Ool000Moob1cW003001cW7>L00AcW003001c W7>L00AcW003001cW7>L02IcW003O01cW7>L009cW11l01acW003O01cW7>L01mcW08000ecW003001l 07>L02IcW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L01ecW0Uoo`001goo87>L00<007>L Li`017>L00<007>LLi`017>L00<007>LLi`09W>L00=l07>LLi`04W>L27`057>L00=l07>LLi`07G>L 0P003g>L00<007`0Li`09W>L00<007>LLi`017>L00<007>LLi`017>L00<007>LLi`07G>L2Goo0007 OolQLi`00`00LiacW003Li`00`00LiacW003Li`00`00LiacW00WLi`00g`0LiacW00JLi`8O00L00=cW003001cW7>L009cW003001cW7>L02QcW003O01cW7>L 029cW0Ql00AcW003O01cW7>L01UcW08001=cW003001l07>L02McW003001cW7>L00=cW003001cW7>L 009cW003001cW7>L01mcW0Uoo`001goo8W>L0P000g>L00D007>LLiacW00002]cW003O01cW7>L02Yc W0Ql01IcW08001EcW003O01cW7>L02QcW08000=cW005001cW7>LLi`0000RLi`9Ool000MoobAcW0L0 02acW003O01cW7>L02icW004O01cW7>LLi`8O00ULi`00g`0LiacW00ZLi`7000SLi`9Ool000MoobMc W003001cW7>L02ecW003O01cW7>L02icW003O01cW7>L00UcW0Ul01acW003O01cW7>L02ecW003001c W7>L02AcW0Uoo`001goo9g>L00<007>LLi`0;G>L00=l07>LLi`0;W>L00=l07>LLi`04W>L27`057>L 00=l07>LLi`0;G>L00<007>LLi`097>L2Goo0007OolWLi`00`00LiacW00]Li`00g`0LiacW00^Li`0 0g`0LiacW00JLi`8O00L 02ecW003O01cW7>L02ecW003O00007>L02=cW0Ql00AcW003O01cW7>L02ecW0<002AcW0Uoo`001goo 9g>L00<007>LLi`0GG>L00=l0000Li`0:g>L27`0:G>L10000W>L0P008W>L2Goo0007OolWLi`00`00 LiacW01MLi`00g`0001cW00^Li`00g`0LiacW002Li`8O00OLi`20003Li`00`00LiacW002Li`00`00 LiacW00OLi`9Ool000MoobMcW003001cW7>L05ecW003O00007>L02icW003O01cW7>L00YcW0Ql01Ic W003001cW7>L00=cW003001cW7>L00=cW003001cW7>L01icW0Uoo`001goo9g>L00<007>LLi`0GG>L 00=l0000Li`0;W>L00=l07>LLi`04W>L1W`047>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>L Li`07W>L2Goo0007OolWLi`00`00LiacW01NLi`00`00LiacW00]Li`00g`0LiacW00HLi`4O00;Li`0 0`00LiacW004Li`00`00LiacW004Li`00`00LiacW00MLi`9Ool000MoobMcW003001cW7>L05icW003 001cW7>L02ecW003O01cW7>L01acW0Il00EcW003001cW7>L00AcW003001cW7>L00AcW003001cW7>L 01ecW0Uoo`001goo9g>L00<007>LLi`0GW>L00<007>LLi`0;G>L00=l07>LLi`08W>L17`000@007`0 O01l00AcW003001cW7>L00EcW003001cW7>L01acW0Uoo`001goo9g>L00<007>LLi`0GW>L00<007>L Li`0;7>L00=l07>LLi`07g>L8@005W>L2Goo0007OolWLi`00`00LiacW01NLi`00`00LiacW00/Li`0 0g`0LiacW00WLi`00`00LiacW005Li`00`00LiacW005Li`00`00LiacW00LLi`9Ool000MoobMcW003 001cW7>L05icW003001cW7>L02acW003O01cW7>L02McW003001cW7>L00EcW003001cW7>L00EcW003 001cW7>L01acW0Uoo`001goo9g>L00<007>LLi`0GW>L00<007>LLi`0;7>L00=l07>LLi`0:7>L00<0 07>LLi`017>L00<007>LLi`017>L00<007>LLi`07G>L2Goo0007OolWLi`00`00LiacW01NLi`00`00 LiacW01GLi`00`00LiacW004Li`00`00LiacW003Li`00`00LiacW00NLi`9Ool000MoobMcW003001c W7>L05icW003001cW7>L05QcW003001cW7>L00=cW003001cW7>L00=cW003001cW7>L01icW0Uoo`00 1gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L00<007>LLi`0Dg>L0P000g>L00<007>LLi`00W>L 00<007>LLi`07g>L2Goo0007Oon2Li`00`00LiacW003Li`00`00LiacW003Li`00`00LiacW01ELi`2 00000g>L001cW003000RLi`9Ool000Mooh=cW003001cW7>L009cW003001cW7>L009cW003001cW7>L 05QcW0<002EcW0Uoo`001gooPg>L00<007>LLi`00W>L00<007>LLi`00W>L00<007>LLi`0FG>L00<0 07>LLi`097>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0FW>L00<007>LLi`097>L 2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0FW>L00<007>LLi`097>L2Goo0007Oon5 Li`01000LiacW0000W>L00<007>LLi`0Fg>L00<007>LLi`097>L2Goo0007Oon5Li`01000LiacW000 0W>L00<007>LLi`0Fg>L00<007>LLi`097>L2Goo0007Oon6Li`01@00Li`007>L0000GW>L00<007>L Li`097>L2Goo0007Oon6Li`01@00Li`007>L0000GW>L00<007>LLi`097>L2Goo0007Oon7Li`3001O Li`00`00LiacW00TLi`9Ool000MoohMcW0<005mcW003001cW7>L02AcW0Uoo`001gooR7>L00<007>L Li`0GW>L00<007>LLi`097>L2Goo0007Oon8Li`00`00LiacW01NLi`00`00LiacW00TLi`9Ool000Mo onUcW003001cW7>L02AcW0Uoo`001goojG>L00<007>LLi`097>L2Goo0007OooYLi`00`00LiacW00T Li`9Ool000MoonUcW003001cW7>L02AcW0Uoo`001goojG>L00<007>LLi`097>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW11cW003 001oogoo00Moo`001gooog>L47>L00<007ooOol01goo003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {123.5, 0}} -> {-0.239337, -0.368757, \ 0.00515217, 0.00515217}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, frame, pltO, pltOs, pltOax, pltOv, pltD, pltDs, pltDv, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .43242 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.250605 0.679593 [ [ 0 0 0 0 ] [ 1 .43242 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0103 m .02381 .42213 L .97619 .42213 L .97619 .0103 L F 0 g .008 w .02381 .0103 Mdot .97619 .42213 Mdot 2 Mabswid [ ] 0 setdash .1602 .25061 m .8398 .25061 L s .5 Mabswid .3301 .21663 m .3301 .28458 L s .5 .21663 m .5 .28458 L s .6699 .21663 m .6699 .28458 L s 0 0 0 r .5 .25061 m .63592 .25061 L s .59061 .27326 m .63592 .25061 L s .59061 .22795 m .63592 .25061 L s .5 .25061 m .5 .38652 L s .47735 .34122 m .5 .38652 L s .52265 .34122 m .5 .38652 L s 0 g 2 Mabswid .1602 .18265 m .1602 .31856 L s 1 0 0 r .5 Mabswid .1602 .25061 m .16104 .25061 L .16181 .25061 L .16269 .25061 L .16352 .25061 L .165 .25061 L .16661 .25061 L .16838 .25062 L .17026 .25063 L .17362 .25064 L .1771 .25067 L .18036 .25069 L .18777 .25077 L .19534 .25087 L .20226 .25099 L .21784 .25132 L .24617 .25217 L .27343 .25328 L .30243 .25476 L .33035 .25646 L .36002 .25855 L .38862 .26083 L .41612 .26325 L .44538 .26604 L .47356 .26895 L .50066 .27192 L .5295 .27525 L .55726 .27863 L .58678 .28237 L .61521 .2861 L .64256 .28981 L .67166 .29386 L .69968 .29785 L .72662 .30175 L .75531 .30596 L .78291 .31005 L .81227 .31444 L .8398 .31856 L s .33233 .22247 m .32787 .29043 L s .50382 .23786 m .49618 .30582 L s .67468 .25963 m .66512 .32759 L s 0 g 2 Mabswid .1602 .18265 m .1602 .31856 L s 0 0 m 1 0 L 1 .43242 L 0 .43242 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 124.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolVLi`2 003XLi`9Ool000MoobIcW0800>QcW0Uoo`001goo9W>L0P00j7>L2Goo0007OolVLi`2003XLi`9Ool0 00MoobIcW0800>QcW0Uoo`001goo9W>L0P00j7>L2Goo0007OolVLi`2003XLi`9Ool000MoobIcW080 0>QcW0Uoo`001goo9W>L0P00j7>L2Goo0007OolVLi`2003XLi`9Ool000MoobIcW08002mcW003001c W7>L02icW003001cW7>L02icW003001cW7>L05AcW0Uoo`001goo9W>L0P00;g>L00<007>LLi`0;W>L 00<007>LLi`0;W>L00<007>LLi`0E7>L2Goo0007OolVLi`2000_Li`00`00O01cW00^Li`00`00Liac W00^Li`00`00LiacW01DLi`9Ool000MoobIcW08002mcW003001l07>L02icW003001cW7>L01McW003 001cW7>L01AcW003001cW7>L05AcW0Uoo`001goo9W>L0P00;g>L00<007`0Li`0;W>L00<007>LLi`0 67>L0P0057>L00<007>LLi`0E7>L2Goo0007OolVLi`2000_Li`00`00O01cW00^Li`00`00LiacW00J Li`2000BLi`00`00LiacW01DLi`9Ool000MoobIcW08002mcW003001l07>L02icW003001l07>L01ac W080011cW003001cW7>L05AcW0Uoo`001goo9W>L0P00;g>L00<007`0Li`0;W>L00<007`0Li`07W>L 0P003W>L00<007>LLi`0E7>L2Goo0007OolVLi`2000_Li`00`00O01cW00^Li`00`00O01cW00PLi`2 000L02icW003001l07>L029cW080 00YcW003001cW7>L05AcW0Uoo`001goo9W>L0P0097`0300000=l00000000;P0000=l00000000GP00 9W>L2Goo0007OolVLi`V000@O00/00000g`00000001O000VLi`9Ool000MoobIcW08002mcW003O01c W7>L009cW11l01acW003O01cW7>L01mcW08000ecW003001l07>L05AcW0Uoo`001goo9W>L0P00;g>L 00=l07>LLi`04W>L27`057>L00=l07>LLi`07G>L0P003g>L00<007`0Li`0E7>L2Goo0007OolVLi`2 000_Li`00g`0LiacW00JLi`8O00L029cW0Ql00AcW003O01cW7>L01UcW08001=cW003001l07>L05AcW0Uo o`001goo9W>L0P00;g>L00=l07>LLi`0:W>L27`05W>L0P005G>L00=l07>LLi`0E7>L2Goo0007OolV Li`2000_Li`00g`0LiacW00^Li`017`0LiacW7>L27`09G>L00=l07>LLi`0E7>L2Goo0007OolVLi`2 000_Li`00g`0LiacW00^Li`00g`0LiacW009Li`9O00LLi`00g`0LiacW01DLi`9Ool000MoobIcW080 02mcW003O01cW7>L02icW003O01cW7>L019cW0Ql01AcW003O01cW7>L05AcW0Uoo`001goo9W>L0P00 ;g>L00=l07>LLi`0;W>L00=l07>LLi`06W>L27`037>L00=l07>LLi`0E7>L2Goo0007OolVLi`2000_ Li`00g`0LiacW00]Li`00g`0001cW00SLi`8O004Li`00g`0LiacW01DLi`9Ool000MoobIcW08005mc W003O00007>L02]cW0Ql05=cW0Uoo`001goo9W>L0P00Gg>L00=l0000Li`0;W>L00=l07>LLi`00W>L 27`0Bg>L2Goo0007OolVLi`2001OLi`00g`0001cW00^Li`00g`0LiacW00:Li`8O013Li`9Ool000Mo obIcW08005mcW003O00007>L02icW003O01cW7>L019cW0Il03ecW0Uoo`001goo9W>L0P00H7>L00<0 07>LLi`0;G>L00=l07>LLi`067>L17`0>G>L2Goo0007OolVLi`2001PLi`00`00LiacW00]Li`00g`0 LiacW00LLi`6O00cLi`9Ool000MoobIcW080061cW003001cW7>L02ecW003O01cW7>L029cW0Ql02]c W0Uoo`001goo9W>L0P00H7>L00<007>LLi`0;7>L00=l07>LLi`0:g>L1G`09W>L2Goo0007OolVLi`2 001PLi`00`00LiacW00/Li`00g`0LiacW01FLi`9Ool000MoohQcW003001cW7>L02acW003O01cW7>L 05IcW0Uoo`001gooR7>L00<007>LLi`0;7>L00=l07>LLi`0EW>L2Goo0007Oon8Li`00`00LiacW025 Li`9Ool000MoohQcW003001cW7>L08EcW0Uoo`001gooPW>L00<007>LLi`00g>L00<007>LLi`00g>L 00<007>LLi`0Og>L2Goo0007Oon2Li`00`00LiacW003Li`00`00LiacW003Li`00`00LiacW01oLi`9 Ool000Mooh=cW003001cW7>L009cW003001cW7>L009cW003001cW7>L081cW0Uoo`001gooPg>L00<0 07>LLi`00W>L00<007>LLi`00W>L00<007>LLi`0P7>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L 00<007>LLi`0PG>L2Goo0007Oon4Li`01@00LiacW7>L00000g>L00<007>LLi`0PG>L2Goo0007Oon5 Li`01000LiacW0000W>L00<007>LLi`0PW>L2Goo0007Oon5Li`01000LiacW0000W>L00<007>LLi`0 PW>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo0007Oon6Li`01@00Li`007>L0000QG>L2Goo 0007Oon7Li`30026Li`9Ool000MoohMcW0<008IcW0Uoo`001gooR7>L00<007>LLi`0QG>L2Goo0007 Oon8Li`00`00LiacW025Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW11cW003001oogoo00Moo`001gooog>L47>L 00<007ooOol01goo003oOolQOol00?moob5oo`00\ \>"], ImageRangeCache->{{{0, 287}, {123.5, 0}} -> {-0.239337, -0.368757, \ 0.00515217, 0.00515217}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Diagrammi tecnici (N, Q, M) [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Section", Evaluatable->False], Cell[CellGroupData[{ Cell["Definizioni ", "Subsection"], Cell["\<\ Si vedano anche le definizioni gi\[AGrave] date per realizzare il disegno \ della configurazione originaria\ \>", "SmallText"], Cell[BoxData[ \(\(diaN[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] + scN\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell["Valori al bordo", "SmallText"], Cell[BoxData[ \(diaNb[ i_] := {\(asseO[i]\)[0] + scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] + scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell["Segni dei valori al bordo", "SmallText"], Cell[BoxData[ \(diaNs[i_] := Block[{y1 = scN\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scN\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]1\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] + 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] + 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figN := Table[\(diaN[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNb := Flatten[Table[diaNb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figNs := Flatten[Table[diaNs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltN := ParametricPlot[Evaluate[Join[figN, figNb, figNs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.4]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaQ[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scQ\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaQb[ i_] := {\(asseO[i]\)[0] - scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(diaQs[i_] := Block[{y1 = scQ\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, y2 = scQ\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]2\[RightDoubleBracket] \ /. \[InvisibleSpace]datinum, pt1 = \(asseO[i]\)[0] - 0.5\ y1\ a\_2[i] + 0.04\ a\_1[i], pt2 = \(asseO[i]\)[L[i]] - 0.5\ y2\ a\_2[i] - 0.04\ a\_1[i], dsh = 0.04}, Complement[{If[y1 \[NotEqual] 0, pt1 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y1 > 0, pt1 + dsh\ a\_2[i]\ \((\[Xi] - 0.5)\)], If[y2 \[NotEqual] 0, pt2 + dsh\ a\_1[i]\ \((\[Xi] - 0.5)\)], If[y2 > 0, pt2 + dsh\ a\_2[ i]\ \((\[Xi] - 0.5)\)]}, {Null}]] /. \[InvisibleSpace]datinum\)], \ "Input"], Cell[BoxData[ \(\(figQ := Table[\(diaQ[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQb := Flatten[Table[diaQb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figQs := Flatten[Table[diaQs[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltQ := ParametricPlot[Evaluate[Join[figQ, figQb, figQs]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.6]}}];\)\)], "Input"], Cell[BoxData[ \(\(diaM[i_]\)[\[Zeta]_] := \(asseO[i]\)[\[Zeta]] - scM\ \(\(sNQM[ i]\)[\[Zeta]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ \ a\_2[i]\)], "Input"], Cell[BoxData[ \(diaMb[ i_] := {\(asseO[i]\)[0] - scM\ \(\(sNQM[i]\)[ 0]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi], \(asseO[i]\)[L[i]] - scM\ \(\(sNQM[i]\)[ L[i]]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\ a\_2[ i]\ \[Xi]}\)], "Input"], Cell[BoxData[ \(\(figM := Table[\(diaM[i]\)[L[i] \[Xi]], {i, 1, travi}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(figMb := Flatten[Table[diaMb[i], {i, 1, travi}], 1] /. datinum;\)\)], "Input"], Cell[BoxData[ \(\(pltM := ParametricPlot[Evaluate[Join[figM, figMb]], {\[Xi], 0, 1}, Axes \[Rule] False, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotStyle \[Rule] {{Hue[0.8]}}];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Fattori di scala [", StyleBox["\[FilledCircle]", FontColor->RGBColor[0, 0, 1]], "]" }], "Subsection"], Cell[BoxData[ \(\(scN := scQ;\)\)], "Input"], Cell[BoxData[ \(\(scQ = 0.08;\)\)], "Input"], Cell[BoxData[ \(\(scM = 0.1;\)\)], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma della forza normale", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltN, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .43242 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.250605 0.679593 [ [ 0 0 0 0 ] [ 1 .43242 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0103 m .02381 .42213 L .97619 .42213 L .97619 .0103 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .25061 m .8398 .25061 L s 0 1 .4 r .5 Mabswid .1602 .25061 m .18777 .25061 L .21784 .25061 L .24608 .25061 L .27323 .25061 L .30214 .25061 L .32996 .25061 L .35954 .25061 L .38803 .25061 L .41544 .25061 L .4446 .25061 L .47268 .25061 L .49968 .25061 L .52843 .25061 L .55609 .25061 L .58551 .25061 L .61385 .25061 L .6411 .25061 L .6701 .25061 L .69802 .25061 L .7277 .25061 L .75629 .25061 L .7838 .25061 L .81305 .25061 L .8398 .25061 L s .1602 .25061 m .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L .1602 .25061 L s .8398 .25061 m .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L s 0 0 m 1 0 L 1 .43242 L 0 .43242 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 124.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo obMcW0030nacW7>L0;mcW0030nacW7>L02AcW0Uoo`001goo9W>L00<000?/0n`0`@?/9W>L2Goo0007 OolVLic4000VLi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007Oooo Li`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15c W0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OoooLi`ALi`9Ool00?moob5oo`00ogoo8Goo0000\ \>"], ImageRangeCache->{{{0, 287}, {123.5, 0}} -> {-0.239337, -0.368757, \ 0.00515217, 0.00515217}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del taglio", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltQ, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .43242 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.250605 0.679593 [ [ 0 0 0 0 ] [ 1 .43242 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0103 m .02381 .42213 L .97619 .42213 L .97619 .0103 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .25061 m .8398 .25061 L s 0 .4 1 r .5 Mabswid .1602 .0875 m .18777 .0875 L .21784 .0875 L .24608 .0875 L .27323 .0875 L .30214 .0875 L .32996 .0875 L .35954 .0875 L .38803 .0875 L .41544 .0875 L .4446 .0875 L .47268 .0875 L .49968 .0875 L .52843 .0875 L .55609 .0875 L .58551 .0875 L .61385 .0875 L .6411 .0875 L .6701 .0875 L .69802 .0875 L .7277 .0875 L .75629 .0875 L .7838 .0875 L .81305 .0875 L .8398 .0875 L s .1602 .25061 m .1602 .24399 L .1602 .23677 L .1602 .23 L .1602 .22348 L .1602 .21654 L .1602 .20986 L .1602 .20277 L .1602 .19593 L .1602 .18935 L .1602 .18235 L .1602 .17561 L .1602 .16913 L .1602 .16223 L .1602 .15559 L .1602 .14853 L .1602 .14173 L .1602 .13519 L .1602 .12823 L .1602 .12153 L .1602 .11441 L .1602 .10755 L .1602 .10094 L .1602 .09392 L .1602 .0875 L s .8398 .25061 m .8398 .24399 L .8398 .23677 L .8398 .23 L .8398 .22348 L .8398 .21654 L .8398 .20986 L .8398 .20277 L .8398 .19593 L .8398 .18935 L .8398 .18235 L .8398 .17561 L .8398 .16913 L .8398 .16223 L .8398 .15559 L .8398 .14853 L .8398 .14173 L .8398 .13519 L .8398 .12823 L .8398 .12153 L .8398 .11441 L .8398 .10755 L .8398 .10094 L .8398 .09392 L .8398 .0875 L s .18739 .15546 m .18739 .15657 L .18739 .15777 L .18739 .1589 L .18739 .15998 L .18739 .16114 L .18739 .16225 L .18739 .16344 L .18739 .16458 L .18739 .16567 L .18739 .16684 L .18739 .16796 L .18739 .16904 L .18739 .17019 L .18739 .1713 L .18739 .17247 L .18739 .17361 L .18739 .1747 L .18739 .17586 L .18739 .17698 L .18739 .17816 L .18739 .17931 L .18739 .18041 L .18739 .18158 L .18739 .18265 L s .81261 .15546 m .81261 .15657 L .81261 .15777 L .81261 .1589 L .81261 .15998 L .81261 .16114 L .81261 .16225 L .81261 .16344 L .81261 .16458 L .81261 .16567 L .81261 .16684 L .81261 .16796 L .81261 .16904 L .81261 .17019 L .81261 .1713 L .81261 .17247 L .81261 .17361 L .81261 .1747 L .81261 .17586 L .81261 .17698 L .81261 .17816 L .81261 .17931 L .81261 .18041 L .81261 .18158 L .81261 .18265 L s .1738 .16905 m .1749 .16905 L .1761 .16905 L .17723 .16905 L .17832 .16905 L .17947 .16905 L .18059 .16905 L .18177 .16905 L .18291 .16905 L .18401 .16905 L .18517 .16905 L .18629 .16905 L .18737 .16905 L .18852 .16905 L .18963 .16905 L .19081 .16905 L .19194 .16905 L .19303 .16905 L .19419 .16905 L .19531 .16905 L .1965 .16905 L .19764 .16905 L .19874 .16905 L .19991 .16905 L .20098 .16905 L s .79902 .16905 m .80012 .16905 L .80133 .16905 L .80246 .16905 L .80354 .16905 L .8047 .16905 L .80581 .16905 L .80699 .16905 L .80813 .16905 L .80923 .16905 L .8104 .16905 L .81152 .16905 L .8126 .16905 L .81375 .16905 L .81486 .16905 L .81603 .16905 L .81717 .16905 L .81826 .16905 L .81942 .16905 L .82053 .16905 L .82172 .16905 L .82286 .16905 L .82396 .16905 L .82513 .16905 L .8262 .16905 L s 0 0 m 1 0 L 1 .43242 L 0 .43242 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 124.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L 4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9 Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00 1gooog>L4G>L2Goo0007OolWLic30IlVLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02Ac W0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`0 0`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1 Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool0 00MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>L Li`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L 0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolW Li`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02Ac W0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`0 0`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1 Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool0 00MoobMcW0030ImcW7>L00EcW0030ImcW7>L0:mcW0030ImcW7>L00EcW0030ImcW7>L02AcW0Uoo`00 1goo9g>L00<1Wg>LLi`01G>L00<1Wg>LLi`0[g>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007 OolWLi`00`6OLiacW005Li`00`6OLiacW02_Li`00`6OLiacW005Li`00`6OLiacW00TLi`9Ool000Mo obMcW0030ImcW7>L00EcW0030ImcW7>L0:mcW0030ImcW7>L00EcW0030ImcW7>L02AcW0Uoo`001goo 9g>L00@1Wg>LLiacW0T1WjUcW0T1W`=cW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`01G>L 00<1Wg>LLi`0[g>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW005Li`0 0`6OLiacW02_Li`00`6OLiacW005Li`00`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L00EcW003 0ImcW7>L0:mcW0030ImcW7>L00EcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`01G>L00<1 Wg>LLi`0[g>L00<1Wg>LLi`01G>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6O LiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>L Li`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000Mo obMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`0 97>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mc W0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`0 0`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uo o`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6O LiacW00TLi`9Ool000MoobMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>L Li`0_g>L00<1Wg>LLi`097>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000Mo obMcW0030ImcW7>L0;mcW0030ImcW7>L02AcW0Uoo`001goo9g>L00<1Wg>LLi`0_g>L00<1Wg>LLi`0 97>L2Goo0007OolWLi`00`6OLiacW02oLi`00`6OLiacW00TLi`9Ool000MoobIcW0030001W`000<00 00030ImcW7>L02AcW0Uoo`001goo9W>La0009W>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo003oOolQOol00?moob5o o`00\ \>"], ImageRangeCache->{{{0, 287}, {123.5, 0}} -> {-0.239337, -0.368757, \ 0.00515217, 0.00515217}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Diagramma del momento", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Show[frameb, pltO, pltM, DisplayFunction \[Rule] $DisplayFunction, AspectRatio \[Rule] Automatic, PlotRange \[Rule] All];\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .43242 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.160204 0.679593 0.250605 0.679593 [ [ 0 0 0 0 ] [ 1 .43242 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath .9 g .02381 .0103 m .02381 .42213 L .97619 .42213 L .97619 .0103 L F 0 g 2 Mabswid [ ] 0 setdash .1602 .25061 m .8398 .25061 L s .8 0 1 r .5 Mabswid .1602 .04673 m .18777 .055 L .21784 .06402 L .24608 .07249 L .27323 .08064 L .30214 .08931 L .32996 .09766 L .35954 .10653 L .38803 .11508 L .41544 .1233 L .4446 .13205 L .47268 .14047 L .49968 .14857 L .52843 .15719 L .55609 .16549 L .58551 .17432 L .61385 .18282 L .6411 .191 L .6701 .1997 L .69802 .20807 L .7277 .21698 L .75629 .22555 L .7838 .23381 L .81305 .24258 L .8398 .25061 L s .1602 .25061 m .1602 .24233 L .1602 .23331 L .1602 .22484 L .1602 .2167 L .1602 .20802 L .1602 .19968 L .1602 .19081 L .1602 .18226 L .1602 .17403 L .1602 .16529 L .1602 .15686 L .1602 .14876 L .1602 .14014 L .1602 .13184 L .1602 .12301 L .1602 .11451 L .1602 .10634 L .1602 .09764 L .1602 .08926 L .1602 .08036 L .1602 .07178 L .1602 .06353 L .1602 .05475 L .1602 .04673 L s .8398 .25061 m .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L .8398 .25061 L s 0 0 m 1 0 L 1 .43242 L 0 .43242 L closepath clip newpath % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 124.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgL4G>L2Goo 0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mo oomcW15cW0Uoo`001gooog>L4G>L2Goo0007OolWLi`2I1oWLi`9Ool000MoobMcW004I1mcW6@OI1oU Li`9Ool000MoobMcW004I1mcW7>LLi`3I1oRLi`9Ool000MoobMcW003I1mcW7>L00AcW0=T7mmcW0Uo o`001goo9g>L00=T7g>LLi`01g>L16@Ofg>L2Goo0007OolWLi`00f@OLiacW00;Li`4I1oGLi`9Ool0 00MoobMcW003I1mcW7>L00mcW09T7mEcW0Uoo`001goo9g>L00=T7g>LLi`04G>L0f@OdW>L2Goo0007 OolWLi`00f@OLiacW00DLi`3I1o?Li`9Ool000MoobMcW003I1mcW7>L01McW0AT7l]cW0Uoo`001goo 9g>L00=T7g>LLi`06g>L16@Oag>L2Goo0007OolWLi`00f@OLiacW00OLi`2I1o5Li`9Ool000MoobMc W003I1mcW7>L025cW0=T7l9cW0Uoo`001goo9g>L00=T7g>LLi`097>L0f@O_g>L2Goo0007OolWLi`0 0f@OLiacW00WLi`4I1nkLi`9Ool000MoobMcW003I1mcW7>L02]cW0ET7kIcW0Uoo`001goo9g>L00=T 7g>LLi`0<7>L16@O/W>L2Goo0007OolWLi`00f@OLiacW00dLi`4I1n^Li`9Ool000MoobMcW003I1mc W7>L03QcW09T7jacW0Uoo`001goo9g>L00=T7g>LLi`0>W>L0f@OZG>L2Goo0007OolWLi`00f@OLiac W00mLi`3I1nVLi`9Ool000MoobMcW003I1mcW7>L041cW0AT7j9cW0Uoo`001goo9g>L00=T7g>LLi`0 A7>L16@OWW>L2Goo0007OolWLi`00f@OLiacW018Li`2I1nLLi`9Ool000MoobMcW003I1mcW7>L04Yc W0=T7iUcW0Uoo`001goo9g>L00=T7g>LLi`0CG>L0f@OUW>L2Goo0007OolWLi`00f@OLiacW01@Li`4 I1nBLi`9Ool000MoobMcW003I1mcW7>L05AcW0AT7hicW0Uoo`001goo9g>L00=T7g>LLi`0F7>L16@O RW>L2Goo0007OolWLi`00f@OLiacW01LLi`4I1n6Li`9Ool000MoobMcW003I1mcW7>L061cW09T7hAc W0Uoo`001goo9g>L00=T7g>LLi`0HW>L0f@OPG>L2Goo0007OolWLi`00f@OLiacW01ULi`3I1mnLi`9 Ool000MoobMcW003I1mcW7>L06QcW0AT7gYcW0Uoo`001goo9g>L00=T7g>LLi`0K7>L16@OMW>L2Goo 0007OolWLi`00f@OLiacW01`Li`2I1mdLi`9Ool000MoobMcW003I1mcW7>L079cW0=T7g5cW0Uoo`00 1goo9g>L00=T7g>LLi`0MG>L16@OKG>L2Goo0007OolWLi`00f@OLiacW01iLi`4I1mYLi`9Ool000Mo obMcW003I1mcW7>L07ecW0AT7fEcW0Uoo`001goo9g>L00=T7g>LLi`0PG>L0V@OHg>L2Goo0007OolW Li`00f@OLiacW023Li`2I1mQLi`9Ool000MoobMcW003I1mcW7>L08EcW0AT7eecW0Uoo`001goo9g>L 00=T7g>LLi`0RG>L16@OFG>L2Goo0007OolWLi`00f@OLiacW02=Li`4I1mELi`9Ool000MoobMcW003 I1mcW7>L095cW0AT7e5cW0Uoo`001goo9g>L00=T7g>LLi`0UG>L16@OCG>L2Goo0007OolWLi`00f@O LiacW02ILi`2I1m;Li`9Ool000MoobMcW003I1mcW7>L09]cW0=T7dQcW0Uoo`001goo9g>L00=T7g>L Li`0WW>L0f@OAG>L2Goo0007OolWLi`00f@OLiacW02QLi`4I1m1Li`9Ool000MoobMcW003I1mcW7>L 0:EcW0AT7cecW0Uoo`001goo9g>L00=T7g>LLi`0ZG>L0V@O>g>L2Goo0007OolWLi`00f@OLiacW02[ Li`3I1lhLi`9Ool000MoobMcW003I1mcW7>L0:icW0=T7cEcW0Uoo`001goo9g>L00=T7g>LLi`0/G>L 16@OL2Goo0007OolWLi`00f@OLiacW02eLi`4I1l]Li`9Ool000MoobMcW003I1mcW7>L0;UcW09T 7b]cW0Uoo`001goo9g>L00=T7g>LLi`0^g>L0f@O00=cW6@OLi`09G>L2Goo0007OolVLi`00`00I1l0 002o0002I1lVLi`9Ool000MoobIcW<@002IcW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007 OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000Mooomc W15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L 2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool0 00MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001goo og>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`A Li`9Ool000MooomcW15cW0Uoo`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uo o`001gooog>L4G>L2Goo0007OoooLi`ALi`9Ool000MooomcW15cW0Uoo`00ogoo8Goo003oOolQOol0 0001\ \>"], ImageRangeCache->{{{0, 287}, {123.5, 0}} -> {-0.239337, -0.368757, \ 0.00515217, 0.00515217}}] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Salvataggio figure in formato EPS", FontColor->RGBColor[1, 0, 0]]], "Section"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-23\\outmath"\)], "Output"] }, Open ]], Cell[BoxData[ \(\(phframe = Graphics[{GrayLevel[1], {Point[xLowerL], Point[xUpperR]}}] /. datinum;\)\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[grNQM[it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell[BoxData[ \(Do[Display["\" <> ToString[it] <> "\<.eps\>", Show[gruv\[Theta][it], ImageSize \[Rule] {320, Automatic}, DisplayFunction \[Rule] Identity], "\"], {it, 1, travi}]\)], "Input"], Cell["Adattare ImageSize nei comandi seguenti", "SmallText", CellFrame->True, Background->GrayLevel[0.849989]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{sc = 100}, \[IndentingNewLine]{imageW = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(1\)\(\ \[RightDoubleBracket]\)\) // Floor, \[IndentingNewLine]imageH = sc*\((xUpperR - xLowerL)\)\_\(\(\[LeftDoubleBracket]\)\(2\)\(\ \[RightDoubleBracket]\)\) // Floor}]\)], "Input"], Cell[BoxData[ \({140, 60}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOv, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltOx, pltOax, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltOs, pltD, pltDs, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltN, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltQ, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"], Cell[BoxData[ \(\(Display["\", Show[phframe, pltO, pltM, ImageSize \[Rule] {imageW, imageH}, AspectRatio \[Rule] Automatic, DisplayFunction \[Rule] Identity, PlotRange \[Rule] All], "\"];\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Salvataggio espressioni in formato", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]] }], "Section"], Cell[CellGroupData[{ Cell["Definizioni generali", "Subsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Directory[]\)], "Input"], Cell[BoxData[ \("C:\\Wrk\\Corsi\\Scost\\esercizi\\7-travi\\7-23\\outmath"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Input"], Cell[BoxData[ \({\[Alpha], b, c, d, f, L, M, YA, YJ}\)], "Output"] }, Open ]], Cell["\<\ Controllare che le variabili precedenti non abbiano un valore. Per sicurezza \ vengono utilizzati gli apici.\ \>", "SmallText"], Cell[BoxData[ \(myTeXForm[exp_] := Block[{\[Alpha]}, TeXForm[Evaluate[ exp /. {\[ScriptA] \[Rule] \[Alpha], \[ScriptB] \[Rule] b, \[ScriptC] \[Rule] c, \[ScriptD] \[Rule] d, \[ScriptF] \[Rule] f, \[ScriptCapitalL] \[Rule] L, \[ScriptCapitalM] \[Rule] M, \[ScriptCapitalY]\[ScriptCapitalA]\ \[Rule] YA\ , \ \[ScriptCapitalY]\[ScriptCapitalJ] \[Rule] YJ}]]]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Definition[extraSimplify]\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {GridBox[{ {\(extraSimplify = #1 &\)} }, GridBaseline->{Baseline, {1, 1}}, ColumnWidths->0.999, ColumnAlignments->{Left}]} }, GridBaseline->{Baseline, {1, 1}}, ColumnAlignments->{Left}], Definition[ extraSimplify], Editable->False]], "Output"] }, Open ]], Cell["\<\ Questa funzione serve ad apporre la numerazione delle travi ai simboli delle \ variabili [ATTENZIONE al fatto che tale definizione potrebbe dar luogo a LOOP senza \ fine nel caso di una sola trave]\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_]] := If[travi > 1, Superscript[var, "\<\\bn{\>" <> ToString[n] <> "\<}\>"], var]\)], "Input"], Cell["\<\ La seconda definizione di newsym \[EGrave] utilizzata per costruire le \ espressioni di forze e momenti alle estremit\[AGrave] (bd \[EGrave] pi\ \[UGrave] o meno)\ \>", "SmallText"], Cell[BoxData[ \(newsym[var_[n_, bd_]] := If[travi > 1, Superscript[ var, "\<\\bbn{\>" <> ToString[n] <> "\<}{\>" <> bd <> "\<}\>"], var^bd]\)], "Input"], Cell[BoxData[ \(\(newsymlist1 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], sN[bn_] \[RuleDelayed] newsym[sN[bn]], sQ[bn_] \[RuleDelayed] newsym[sQ[bn]], sM[bn_] \[RuleDelayed] newsym[sM[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist2 = {u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist3 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]], u\_1[bn_] \[RuleDelayed] newsym[u1[bn]], u\_2[bn_] \[RuleDelayed] newsym[u2[bn]], \[Theta][bn_] \[RuleDelayed] newsym[theta[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist4 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist5 = {sNo[bn_] \[RuleDelayed] newsym[sNo[bn]], sQo[bn_] \[RuleDelayed] newsym[sQo[bn]], sMo[bn_] \[RuleDelayed] newsym[sMo[bn]], uo\_1[bn_] \[RuleDelayed] newsym[u1o[bn]], uo\_2[bn_] \[RuleDelayed] newsym[u2o[bn]], \[Theta]o[bn_] \[RuleDelayed] newsym[thetao[bn]]};\)\)], "Input"], Cell[BoxData[ \(\(newsymlist6 = {s[bn_, bd_] \[RuleDelayed] newsym[s[bn, bd]], m[bn_, bd_] \[RuleDelayed] newsym[m[bn, bd]], s\_1[bn_, bd_] \[RuleDelayed] newsym[s\_1[bn, bd]], s\_2[bn_, bd_] \[RuleDelayed] newsym[s\_2[bn, bd]]};\)\)], "Input"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texBil1[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(1, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil2[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(2, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texBil3[i_, j_] := myTeXForm[ Evaluate[\(eqbilt[i]\)\_\(\(\[LeftDoubleBracket]\)\(3, j\)\(\ \[RightDoubleBracket]\)\) // Simplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texBil1[i, 1], "\< &= \>", texBil1[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil2[i, 1], "\< &= \>", texBil2[i, 2]]; WriteString[ stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texBil3[i, 1], "\< &= \>", texBil3[i, 2]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBil.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle equazioni di bilancio" }], "Subsection"], Cell[BoxData[ \(texNin[i_] := myTeXForm[ Evaluate[\(\(sN[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQin[i_] := myTeXForm[ Evaluate[\(\(sQ[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMin[i_] := myTeXForm[ Evaluate[\(\(sM[i]\)[\[Zeta]] /. bulksol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texNn[i_] := myTeXForm[\(sN[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQn[i_] := myTeXForm[\(sQ[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texMn[i_] := myTeXForm[\(sM[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texNin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQin[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texMin[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQMin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle condizioni di vincolo " }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texvincO[i_, j_] := myTeXForm[\(Evaluate[\(eqvinO // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texvinc[i_, j_] := myTeXForm[\(Evaluate[\(eqvin // Simplify\) // extraSimplify]\)\_\(\(\ \[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, Do[WriteString[stFile, texvincO[i, 1], "\< &= \>", texvincO[i, 2]]; \[IndentingNewLine]If[i < Length[eqvinO], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvinO]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVincO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[WriteString[stFile, "\<& \>", texvinc[i, 1], "\< = \>", texvinc[i, 2]]; \[IndentingNewLine]If[i < Length[eqvin], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqvin]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expVinc.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle equazioni di bilancio al bordo" }], "Subsection"], Cell["\<\ Notare la tecnica utilizzata per generare la forma TEX di equazioni, \ separando i due mebri.\ \>", "SmallText"], Cell[BoxData[ \(texeqbdO[i_, j_] := myTeXForm[\(Evaluate[\(eqbilbd /. fabdp // Simplify\) // extraSimplify]\ \)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texeqbd[i_, j_] := myTeXForm[\(Evaluate[\(\(eqbilbd /. bulksol\) /. fabdp // Simplify\) // \ extraSimplify]\)\_\(\(\[LeftDoubleBracket]\)\(i, j\)\(\[RightDoubleBracket]\)\ \) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbdO[i, 1], "\< &= \>", texeqbdO[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbdO.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[WriteString[stFile, texeqbd[i, 1], "\< &= \>", texeqbd[i, 2]]; \[IndentingNewLine]If[i < Length[eqbilbd], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]];, {i, 1, Length[eqbilbd]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expBilbd.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle costanti di integrazione" }], "Subsection"], Cell[BoxData[ \(texCname[i_] := myTeXForm[\((\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texCDval[i_] := myTeXForm[\((\(\(cNQMval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) /. cRval // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDname[i_] := myTeXForm[\((\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 1\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texDval[i_] := myTeXForm[\((\(\(cRval\_\(\(\[LeftDoubleBracket]\)\(i, 2\)\(\ \[RightDoubleBracket]\)\) // Simplify\) // extraSimplify\) // Factor)\) /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expC.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist5}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texDname[i]] <> "\< &= \>", texDval[i]]; \[IndentingNewLine]If[i < Length[cRval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cRval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expD.tex"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist4}, \[IndentingNewLine]Do[ WriteString[stFile, ToString[texCname[i]] <> "\< &= \>", texCDval[i]]; \[IndentingNewLine]If[i < Length[cNQMval], WriteString[stFile, "\< \\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\< \\>.\>"]], {i, 1, Length[cNQMval]}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expCD.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " dei descrittori della tensione (N, Q, M)" }], "Subsection"], Cell[BoxData[ \(texN[i_] := myTeXForm[ Evaluate[\(\(\(\(sN[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texQ[i_] := myTeXForm[ Evaluate[\(\(\(\(sQ[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texM[i_] := myTeXForm[ Evaluate[\(\(\(\(sM[i]\)[\[Zeta]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist1}, Do[\[IndentingNewLine]WriteString[stFile, texNn[i], "\< &= \>", texN[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texQn[i], "\< &= \>", texQ[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texMn[i], "\< &= \>", texM[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expNQM.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta senza sostituzioni" }], "Subsection"], Cell["\<\ Prima della sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \ \>", "SmallText"], Cell[BoxData[ \(texu1inO[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2inO[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]inO[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsolO // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2inO[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]inO[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvinO.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli integrali delle funzioni di risposta" }], "Subsection"], Cell["\<\ Dopo la sostituzione delle soluzioni delle equazioni di bilancio al bordo\ \>", "SmallText"], Cell[BoxData[ \(texu1in[i_] := \[IndentingNewLine]myTeXForm[ Evaluate[\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2in[i_] := myTeXForm[ Evaluate[\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]in[i_] := myTeXForm[ Evaluate[\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist3}, Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], "\< &= \>", texu1in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2in[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta]in[i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuvin.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " degli spostamenti (u, v, \[Theta])" }], "Subsection"], Cell[BoxData[ \(texu1[i_] := myTeXForm[\((\(\(\(\(u\_1[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2[i_] := myTeXForm[\((\(\(\(\(u\_2[i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify)\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta][i_] := myTeXForm[\((Evaluate[\(\(\(\(\[Theta][i]\)[\[Zeta]] /. vinBer\) /. spsol\) /. cRval // Simplify\) // extraSimplify])\) /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu1n[i_] := myTeXForm[\(u\_1[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texu2n[i_] := myTeXForm[\(u\_2[i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[BoxData[ \(tex\[Theta]n[i_] := myTeXForm[\(\[Theta][i]\)[\[Zeta]] /. newsymlist]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Block[{stFile = OpenWrite["\"]}, Block[{newsymlist = newsymlist2}, \ \[IndentingNewLine]Do[\[IndentingNewLine]WriteString[stFile, texu1n[i], \ "\< &= \>", texu1[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texu2n[i], "\< &= \>", texu2[i]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, tex\[Theta]n[i], "\< &= \>", tex\[Theta][i]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];, {i, 1, travi}]]; \[IndentingNewLine]Close[stFile]]\)], "Input"], Cell[BoxData[ \("expuv.tex"\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Forma ", Cell[BoxData[ StyleBox[ RowBox[{"T", AdjustmentBox["E", BoxMargins->{{-0.075, -0.085}, {0, 0}}, BoxBaselineShift->0.5], "X"}]]]], " delle forze e dei momenti alle estremit\[AGrave]" }], "Subsection"], Cell[BoxData[ \(Clear[texs, texsn]\)], "Input"], Cell[BoxData[ \(texs[i_, meno, j_] := myTeXForm[ Evaluate[\(\(\(\(-\(\(s[i]\)[0]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texs[i_, pi\[UGrave], j_] := myTeXForm[ Evaluate[\(\(\(\(\(s[i]\)[L[i]]\)\_\(\(\[LeftDoubleBracket]\)\(j\)\(\ \[RightDoubleBracket]\)\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, meno] := myTeXForm[ Evaluate[\(\(\(\(-\(m[i]\)[0]\) /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texm[i_, pi\[UGrave]] := myTeXForm[ Evaluate[\(\(\(\(m[i]\)[L[i]] /. bulksol\) /. cNQMval\) /. cRval // Simplify\) // extraSimplify] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsn[i_, bd_, j_] := myTeXForm[s\_j[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(texsm[i_, bd_] := myTeXForm[m[i, bd] /. newsymlist]\)], "Input"], Cell[BoxData[ \(Do[Block[{stFile = OpenWrite["\" <> ToString[i] <> "\<.tex\>"]}, Block[{newsymlist = newsymlist6}, WriteString[stFile, texsn[i, meno, 1], "\< &= \>", texs[i, meno, 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, meno, 2], "\< &= \>", texs[i, meno, 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, meno], "\< &= \>", texm[i, meno]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 1], "\< &= \>", texs[i, pi\[UGrave], 1]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsn[i, pi\[UGrave], 2], "\< &= \>", texs[i, pi\[UGrave], 2]]; WriteString[ stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"]; \ \[IndentingNewLine]WriteString[stFile, texsm[i, pi\[UGrave]], "\< &= \>", texm[i, pi\[UGrave]]]; \[IndentingNewLine]If[i < travi, WriteString[stFile, "\<\\>, \\\>", "\<\[2\jot]\n\>"], WriteString[stFile, "\<\\>.\>"]];]; \[IndentingNewLine]Close[ stFile]], {i, 1, travi}]\)], "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Elenco dei simboli usati", "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[BoxData[ \(TableForm[ Block[{col = 6}, Join[Partition[Names["\"], col], {Take[ Names["\"], \(-\((Length[Names["\"]] - Length[Partition[Names["\"], col] // Flatten])\)\)]}]]]\)], "Input", CellOpen->False], Cell[BoxData[ InterpretationBox[GridBox[{ {"\<\"a\"\>", "\<\"ambd\"\>", "\<\"ambdv\"\>", "\<\"anyexpr\"\>", "\ \<\"anyexpr$\"\>", "\<\"asseD\"\>"}, {"\<\"asseO\"\>", "\<\"asseOb\"\>", "\<\"b\"\>", "\<\"bd\"\>", \ "\<\"bdj\"\>", "\<\"bi\"\>"}, {"\<\"bix\"\>", "\<\"bj\"\>", "\<\"bjx\"\>", "\<\"bn\"\>", "\<\"bnd\ \"\>", "\<\"bnd1\"\>"}, {"\<\"bnd2\"\>", "\<\"bulksol\"\>", "\<\"bulksolC\"\>", \ "\<\"c\"\>", "\<\"cA\"\>", "\<\"carrello\"\>"}, {"\<\"carrelloFig\"\>", "\<\"carrelloV\"\>", "\<\"cAval\"\>", \ "\<\"cAval0\"\>", "\<\"cAval1\"\>", "\<\"cClist\"\>"}, {"\<\"cDlist\"\>", "\<\"cDlistO\"\>", "\<\"cedimento\"\>", \ "\<\"cedimentoFig\"\>", "\<\"cedimentoV\"\>", "\<\"cerniera\"\>"}, {"\<\"cernieraFig\"\>", "\<\"cernieraV\"\>", "\<\"cNQM\"\>", \ "\<\"cNQMb\"\>", "\<\"cNQMsol\"\>", "\<\"cNQMval\"\>"}, {"\<\"col\"\>", "\<\"coll\"\>", "\<\"cRlist\"\>", "\<\"cRnull\"\>", \ "\<\"crosshairFig\"\>", "\<\"cRsol\"\>"}, {"\<\"cRsol0\"\>", "\<\"cRsol1\"\>", "\<\"cRval\"\>", "\<\"d\"\>", \ "\<\"datinum\"\>", "\<\"datiO\"\>"}, {"\<\"datip\"\>", "\<\"diaM\"\>", "\<\"diaMb\"\>", "\<\"diaN\"\>", \ "\<\"diaNb\"\>", "\<\"diaNs\"\>"}, {"\<\"diaQ\"\>", "\<\"diaQb\"\>", "\<\"diaQs\"\>", "\<\"dsh\"\>", "\ \<\"e\"\>", "\<\"eqbil\"\>"}, {"\<\"eqbilbd\"\>", "\<\"eqbilt\"\>", "\<\"eqnsp\"\>", \ "\<\"eqnspO\"\>", "\<\"eqvin\"\>", "\<\"eqvinO\"\>"}, {"\<\"exp\"\>", "\<\"expr1\"\>", "\<\"extraSimplify\"\>", \ "\<\"f\"\>", "\<\"fabd\"\>", "\<\"fabdp\"\>"}, {"\<\"fabdp1\"\>", "\<\"fbd\"\>", "\<\"figM\"\>", "\<\"figMb\"\>", \ "\<\"figN\"\>", "\<\"figNb\"\>"}, {"\<\"figNs\"\>", "\<\"figQ\"\>", "\<\"figQb\"\>", "\<\"figQs\"\>", \ "\<\"forze\"\>", "\<\"frame\"\>"}, {"\<\"frameb\"\>", "\<\"fromCtoNQM\"\>", "\<\"fromDtoU\"\>", "\<\"g\ \"\>", "\<\"grad\"\>", "\<\"grNQM\"\>"}, {"\<\"gruv\[Theta]\"\>", "\<\"g$\"\>", "\<\"i\"\>", \ "\<\"imageH\"\>", "\<\"imageW\"\>", "\<\"incastro\"\>"}, {"\<\"incastroFig\"\>", "\<\"incastroV\"\>", "\<\"it\"\>", \ "\<\"ix\"\>", "\<\"j\"\>", "\<\"jx\"\>"}, {"\<\"ker\"\>", "\<\"ker0\"\>", "\<\"L\"\>", "\<\"Li\"\>", \ "\<\"Lo\"\>", "\<\"m\"\>"}, {"\<\"M\"\>", "\<\"matbilbd\"\>", "\<\"matvin\"\>", "\<\"maxL\"\>", \ "\<\"mb\"\>", "\<\"meno\"\>"}, {"\<\"mU\"\>", "\<\"myTeXForm\"\>", "\<\"n\"\>", "\<\"nc\"\>", \ "\<\"ndiv\"\>", "\<\"newsym\"\>"}, {"\<\"newsymlist\"\>", "\<\"newsymlist1\"\>", \ "\<\"newsymlist2\"\>", "\<\"newsymlist3\"\>", "\<\"newsymlist4\"\>", \ "\<\"newsymlist5\"\>"}, {"\<\"newsymlist6\"\>", "\<\"nf\"\>", "\<\"no\"\>", \ "\<\"nullFig\"\>", "\<\"nv\"\>", "\<\"org\"\>"}, {"\<\"outputDir\"\>", "\<\"p\"\>", "\<\"perno\"\>", "\<\"pernoFig\"\ \>", "\<\"pernoV\"\>", "\<\"phframe\"\>"}, {"\<\"pi\[UGrave]\"\>", "\<\"pltD\"\>", "\<\"pltDbv\"\>", \ "\<\"pltDs\"\>", "\<\"pltDv\"\>", "\<\"pltM\"\>"}, {"\<\"pltN\"\>", "\<\"pltO\"\>", "\<\"pltOa\"\>", "\<\"pltOax\"\>", \ "\<\"pltObv\"\>", "\<\"pltOs\"\>"}, {"\<\"pltOv\"\>", "\<\"pltOx\"\>", "\<\"pltQ\"\>", "\<\"potbd\"\>", \ "\<\"potbdv\"\>", "\<\"pote\"\>"}, {"\<\"pt1\"\>", "\<\"pt2\"\>", "\<\"rango\"\>", "\<\"risp\"\>", "\<\ \"rotazione\"\>", "\<\"rotazioneFig\"\>"}, {"\<\"rotazioneV\"\>", "\<\"s\"\>", "\<\"saldatura\"\>", \ "\<\"saldaturaFig\"\>", "\<\"saldaturaV\"\>", "\<\"sb\"\>"}, {"\<\"sc\"\>", "\<\"scM\"\>", "\<\"scN\"\>", "\<\"scQ\"\>", \ "\<\"secD\"\>", "\<\"secO\"\>"}, {"\<\"simplifyDirac\"\>", "\<\"sM\"\>", "\<\"sMf\"\>", \ "\<\"sMo\"\>", "\<\"sN\"\>", "\<\"sNf\"\>"}, {"\<\"sNo\"\>", "\<\"sNQM\"\>", "\<\"spbd\"\>", "\<\"splist\"\>", "\ \<\"splistV\"\>", "\<\"spro\"\>"}, {"\<\"spsol\"\>", "\<\"spsolD\"\>", "\<\"spsolDO\"\>", \ "\<\"spsolO\"\>", "\<\"spuv\[Theta]\"\>", "\<\"sQ\"\>"}, {"\<\"sQo\"\>", "\<\"stFile\"\>", "\<\"svar\"\>", \ "\<\"texBil1\"\>", "\<\"texBil2\"\>", "\<\"texBil3\"\>"}, {"\<\"texCDval\"\>", "\<\"texCname\"\>", "\<\"texCval\"\>", \ "\<\"texDname\"\>", "\<\"texDval\"\>", "\<\"texeqbd\"\>"}, {"\<\"texeqbdO\"\>", "\<\"texm\"\>", "\<\"texM\"\>", \ "\<\"texMin\"\>", "\<\"texMn\"\>", "\<\"texN\"\>"}, {"\<\"texNin\"\>", "\<\"texNn\"\>", "\<\"texQ\"\>", \ "\<\"texQin\"\>", "\<\"texQn\"\>", "\<\"texs\"\>"}, {"\<\"texsm\"\>", "\<\"texsn\"\>", "\<\"texu1\"\>", \ "\<\"texu1in\"\>", "\<\"texu1inO\"\>", "\<\"texu1n\"\>"}, {"\<\"texu2\"\>", "\<\"texu2in\"\>", "\<\"texu2inO\"\>", \ "\<\"texu2n\"\>", "\<\"texvinc\"\>", "\<\"texvincO\"\>"}, {"\<\"tex\[Theta]\"\>", "\<\"tex\[Theta]in\"\>", \ "\<\"tex\[Theta]inO\"\>", "\<\"tex\[Theta]n\"\>", "\<\"theta\"\>", \ "\<\"thetao\"\>"}, {"\<\"ticksOption\"\>", "\<\"travi\"\>", "\<\"trv\"\>", "\<\"trv1\"\ \>", "\<\"trv2\"\>", "\<\"u\"\>"}, {"\<\"u1\"\>", "\<\"u1o\"\>", "\<\"u2\"\>", "\<\"u2o\"\>", \ "\<\"ub\"\>", "\<\"uo\"\>"}, {"\<\"vam\"\>", "\<\"var\"\>", "\<\"vecOa1\"\>", "\<\"vecOa2\"\>", \ "\<\"vinBer\"\>", "\<\"vincoli\"\>"}, {"\<\"vincolibFig\"\>", "\<\"vincoliDef\"\>", "\<\"vincoliFig\"\>", \ "\<\"vsp\"\>", "\<\"wb\"\>", "\<\"xC\"\>"}, {"\<\"xCshift\"\>", "\<\"xDiag\"\>", "\<\"xLowerL\"\>", "\<\"xMax\"\ \>", "\<\"xMin\"\>", "\<\"xUpperR\"\>"}, {"\<\"y1\"\>", "\<\"y2\"\>", "\<\"YA\"\>", "\<\"YJ\"\>", "\<\"\ \[ScriptA]\"\>", "\<\"\[ScriptB]\"\>"}, {"\<\"\[ScriptC]\"\>", "\<\"\[ScriptCapitalC]\"\>", "\<\"\[ScriptD]\ \"\>", "\<\"\[ScriptCapitalD]\"\>", "\<\"\[ScriptF]\"\>", "\<\"\ \[ScriptCapitalL]\"\>"}, {"\<\"\[ScriptCapitalM]\"\>", "\<\"\[ScriptCapitalY]\ \[ScriptCapitalA]\"\>", "\<\"\[ScriptCapitalY]\[ScriptCapitalJ]\"\>", "\<\"\ \[Alpha]\"\>", "\<\"\[Gamma]\"\>", "\<\"\[Epsilon]\"\>"}, {"\<\"\[Zeta]\"\>", "\<\"\[Zeta]$\"\>", "\<\"\[Theta]\"\>", "\<\"\ \[Theta]b\"\>", "\<\"\[Theta]o\"\>", "\<\"\[Kappa]\"\>"}, {"\<\"\[Xi]\"\>", "\<\"\[CurlyPhi]\"\>", "\<\"\[Chi]\"\>", "\<\"\ \[Omega]b\"\>", "\<\"\"\>", "\<\"\"\>"} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{"a", "ambd", "ambdv", "anyexpr", "anyexpr$", "asseD"}, { "asseO", "asseOb", "b", "bd", "bdj", "bi"}, {"bix", "bj", "bjx", "bn", "bnd", "bnd1"}, {"bnd2", "bulksol", "bulksolC", "c", "cA", "carrello"}, {"carrelloFig", "carrelloV", "cAval", "cAval0", "cAval1", "cClist"}, {"cDlist", "cDlistO", "cedimento", "cedimentoFig", "cedimentoV", "cerniera"}, {"cernieraFig", "cernieraV", "cNQM", "cNQMb", "cNQMsol", "cNQMval"}, {"col", "coll", "cRlist", "cRnull", "crosshairFig", "cRsol"}, {"cRsol0", "cRsol1", "cRval", "d", "datinum", "datiO"}, {"datip", "diaM", "diaMb", "diaN", "diaNb", "diaNs"}, {"diaQ", "diaQb", "diaQs", "dsh", "e", "eqbil"}, {"eqbilbd", "eqbilt", "eqnsp", "eqnspO", "eqvin", "eqvinO"}, {"exp", "expr1", "extraSimplify", "f", "fabd", "fabdp"}, {"fabdp1", "fbd", "figM", "figMb", "figN", "figNb"}, {"figNs", "figQ", "figQb", "figQs", "forze", "frame"}, {"frameb", "fromCtoNQM", "fromDtoU", "g", "grad", "grNQM"}, {"gruv\[Theta]", "g$", "i", "imageH", "imageW", "incastro"}, {"incastroFig", "incastroV", "it", "ix", "j", "jx"}, { "ker", "ker0", "L", "Li", "Lo", "m"}, {"M", "matbilbd", "matvin", "maxL", "mb", "meno"}, {"mU", "myTeXForm", "n", "nc", "ndiv", "newsym"}, {"newsymlist", "newsymlist1", "newsymlist2", "newsymlist3", "newsymlist4", "newsymlist5"}, {"newsymlist6", "nf", "no", "nullFig", "nv", "org"}, {"outputDir", "p", "perno", "pernoFig", "pernoV", "phframe"}, {"pi\[UGrave]", "pltD", "pltDbv", "pltDs", "pltDv", "pltM"}, {"pltN", "pltO", "pltOa", "pltOax", "pltObv", "pltOs"}, { "pltOv", "pltOx", "pltQ", "potbd", "potbdv", "pote"}, {"pt1", "pt2", "rango", "risp", "rotazione", "rotazioneFig"}, {"rotazioneV", "s", "saldatura", "saldaturaFig", "saldaturaV", "sb"}, {"sc", "scM", "scN", "scQ", "secD", "secO"}, {"simplifyDirac", "sM", "sMf", "sMo", "sN", "sNf"}, {"sNo", "sNQM", "spbd", "splist", "splistV", "spro"}, { "spsol", "spsolD", "spsolDO", "spsolO", "spuv\[Theta]", "sQ"}, {"sQo", "stFile", "svar", "texBil1", "texBil2", "texBil3"}, {"texCDval", "texCname", "texCval", "texDname", "texDval", "texeqbd"}, {"texeqbdO", "texm", "texM", "texMin", "texMn", "texN"}, {"texNin", "texNn", "texQ", "texQin", "texQn", "texs"}, {"texsm", "texsn", "texu1", "texu1in", "texu1inO", "texu1n"}, {"texu2", "texu2in", "texu2inO", "texu2n", "texvinc", "texvincO"}, {"tex\[Theta]", "tex\[Theta]in", "tex\[Theta]inO", "tex\[Theta]n", "theta", "thetao"}, {"ticksOption", "travi", "trv", "trv1", "trv2", "u"}, {"u1", "u1o", "u2", "u2o", "ub", "uo"}, {"vam", "var", "vecOa1", "vecOa2", "vinBer", "vincoli"}, { "vincolibFig", "vincoliDef", "vincoliFig", "vsp", "wb", "xC"}, { "xCshift", "xDiag", "xLowerL", "xMax", "xMin", "xUpperR"}, {"y1", "y2", "YA", "YJ", "\[ScriptA]", "\[ScriptB]"}, {"\[ScriptC]", "\[ScriptCapitalC]", "\[ScriptD]", "\[ScriptCapitalD]", "\[ScriptF]", "\[ScriptCapitalL]"}, {"\[ScriptCapitalM]", "\[ScriptCapitalY]\[ScriptCapitalA]", "\[ScriptCapitalY]\[ScriptCapitalJ]", "\[Alpha]", "\[Gamma]", "\[Epsilon]"}, {"\[Zeta]", "\[Zeta]$", "\[Theta]", "\[Theta]b", "\[Theta]o", "\[Kappa]"}, {"\[Xi]", "\[CurlyPhi]", "\[Chi]", "\[Omega]b"}}]]], "Output"] }, Open ]] }, Closed]] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{717, 668}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification->1 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 98, 3, 280, "Title"], Cell[1828, 57, 308, 9, 85, "Subtitle", Evaluatable->False], Cell[2139, 68, 358, 9, 105, "Subtitle", Evaluatable->False], Cell[2500, 79, 339, 9, 87, "Subtitle", Evaluatable->False], Cell[CellGroupData[{ Cell[2864, 92, 51, 1, 59, "Section", Evaluatable->False], Cell[2918, 95, 1127, 30, 252, "SmallText"], Cell[4048, 127, 1520, 27, 252, "SmallText"], Cell[5571, 156, 498, 12, 76, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[6106, 173, 57, 1, 39, "Section", Evaluatable->False], Cell[6166, 176, 106, 2, 50, "Input"], Cell[CellGroupData[{ Cell[6297, 182, 56, 1, 30, "Input"], Cell[6356, 185, 91, 1, 70, "Output"] }, Open ]], Cell[6462, 189, 97, 2, 28, "SmallText"], Cell[6562, 193, 130, 2, 50, "Input"], Cell[6695, 197, 495, 8, 150, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[7227, 210, 161, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[7413, 220, 84, 2, 47, "Subsection"], Cell[7500, 224, 109, 2, 28, "SmallText"], Cell[7612, 228, 128, 4, 50, "Input"], Cell[7743, 234, 131, 4, 28, "SmallText"], Cell[7877, 240, 245, 6, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[8159, 251, 103, 5, 31, "Subsection"], Cell[8265, 258, 46, 0, 28, "SmallText"], Cell[8314, 260, 101, 3, 46, "Input"], Cell[8418, 265, 364, 10, 60, "SmallText"], Cell[8785, 277, 107, 3, 46, "Input"], Cell[8895, 282, 319, 9, 60, "SmallText"], Cell[9217, 293, 116, 3, 46, "Input"], Cell[9336, 298, 215, 5, 66, "Input"], Cell[9554, 305, 130, 3, 28, "SmallText"], Cell[9687, 310, 129, 3, 46, "Input"], Cell[9819, 315, 121, 3, 28, "SmallText"], Cell[9943, 320, 199, 5, 58, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[10179, 330, 56, 0, 31, "Subsection"], Cell[10238, 332, 45, 0, 28, "SmallText"], Cell[10286, 334, 124, 3, 30, "Input"], Cell[10413, 339, 42, 0, 28, "SmallText"], Cell[10458, 341, 118, 2, 30, "Input"], Cell[10579, 345, 43, 1, 30, "Input"], Cell[10625, 348, 227, 4, 28, "SmallText"], Cell[10855, 354, 53, 1, 30, "Input"], Cell[10911, 357, 271, 5, 42, "Input"], Cell[11185, 364, 46, 0, 28, "SmallText"], Cell[11234, 366, 195, 4, 42, "Input"], Cell[11432, 372, 52, 0, 28, "SmallText"], Cell[11487, 374, 504, 9, 131, "Input"], Cell[11994, 385, 613, 11, 131, "Input"], Cell[12610, 398, 73, 0, 28, "SmallText"], Cell[12686, 400, 46, 1, 30, "Input"], Cell[12735, 403, 134, 3, 28, "SmallText"], Cell[12872, 408, 182, 4, 30, "Input"], Cell[13057, 414, 146, 3, 30, "Input"], Cell[13206, 419, 42, 0, 28, "SmallText"], Cell[13251, 421, 203, 4, 42, "Input"], Cell[13457, 427, 48, 0, 28, "SmallText"], Cell[13508, 429, 226, 5, 85, "Input"], Cell[13737, 436, 205, 5, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[13979, 446, 111, 3, 50, "Subsection"], Cell[CellGroupData[{ Cell[14115, 453, 144, 2, 70, "Input"], Cell[14262, 457, 3821, 112, 80, 951, 72, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[18144, 576, 150, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[18319, 586, 103, 5, 47, "Subsection"], Cell[18425, 593, 62, 1, 30, "Input"], Cell[18490, 596, 57, 1, 30, "Input"], Cell[18550, 599, 417, 11, 76, "SmallText"], Cell[18970, 612, 80, 2, 46, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[19087, 619, 210, 7, 66, "Subsection"], Cell[CellGroupData[{ Cell[19322, 630, 52, 1, 30, "Input"], Cell[19377, 633, 46, 1, 70, "Output"] }, Open ]], Cell[19438, 637, 310, 5, 116, "Input"], Cell[CellGroupData[{ Cell[19773, 646, 50, 1, 30, "Input"], Cell[19826, 649, 46, 1, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[19933, 657, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[20074, 664, 132, 3, 66, "Subsection"], Cell[20209, 669, 137, 3, 30, "Input"], Cell[20349, 674, 74, 1, 30, "Input"], Cell[20426, 677, 1102, 28, 50, "Input"], Cell[CellGroupData[{ Cell[21553, 709, 92, 1, 30, "Input"], Cell[21648, 712, 55, 1, 70, "Output"] }, Open ]], Cell[21718, 716, 105, 2, 30, "Input"], Cell[CellGroupData[{ Cell[21848, 722, 174, 3, 30, "Input"], Cell[22025, 727, 282, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[22356, 738, 64, 0, 31, "Subsection"], Cell[22423, 740, 280, 6, 44, "SmallText"], Cell[CellGroupData[{ Cell[22728, 750, 87, 1, 30, "Input"], Cell[22818, 753, 109, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22964, 760, 104, 2, 30, "Input"], Cell[23071, 764, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23166, 770, 190, 3, 50, "Input"], Cell[23359, 775, 139, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23535, 782, 264, 4, 71, "Input"], Cell[23802, 788, 154, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23993, 795, 65, 1, 30, "Input"], Cell[24061, 798, 209, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[24319, 808, 66, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[24410, 812, 116, 2, 30, "Input"], Cell[24529, 816, 1158, 36, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25724, 857, 290, 5, 50, "Input"], Cell[26017, 864, 751, 22, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26805, 891, 289, 5, 50, "Input"], Cell[27097, 898, 618, 21, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[27776, 926, 62, 0, 39, "Section"], Cell[27841, 928, 71, 1, 30, "Input"], Cell[27915, 931, 146, 3, 44, "SmallText"], Cell[28064, 936, 408, 9, 70, "Input"], Cell[28475, 947, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[28570, 951, 198, 4, 70, "Input"], Cell[28771, 957, 174, 3, 70, "Output"] }, Open ]], Cell[28960, 963, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29055, 967, 198, 4, 70, "Input"], Cell[29256, 973, 174, 3, 70, "Output"] }, Open ]], Cell[29445, 979, 64, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[29534, 983, 190, 4, 70, "Input"], Cell[29727, 989, 151, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[29927, 997, 128, 5, 39, "Section"], Cell[CellGroupData[{ Cell[30080, 1006, 53, 0, 47, "Subsection"], Cell[30136, 1008, 110, 2, 30, "Input"], Cell[30249, 1012, 152, 3, 50, "Input"], Cell[30404, 1017, 249, 5, 70, "Input"], Cell[30656, 1024, 330, 6, 90, "Input"], Cell[30989, 1032, 193, 4, 70, "Input"], Cell[31185, 1038, 133, 3, 28, "SmallText"] }, Closed]], Cell[CellGroupData[{ Cell[31355, 1046, 103, 5, 31, "Subsection"], Cell[31461, 1053, 160, 4, 60, "SmallText"], Cell[31624, 1059, 49, 1, 30, "Input"], Cell[31676, 1062, 106, 2, 50, "Input"], Cell[31785, 1066, 119, 3, 28, "SmallText"], Cell[31907, 1071, 80, 2, 46, "Input"], Cell[31990, 1075, 505, 8, 92, "SmallText"], Cell[32498, 1085, 182, 4, 46, "Input"], Cell[32683, 1091, 166, 3, 30, "Input"], Cell[32852, 1096, 188, 4, 30, "Input"], Cell[33043, 1102, 816, 19, 130, "Input"], Cell[CellGroupData[{ Cell[33884, 1125, 40, 1, 30, "Input"], Cell[33927, 1128, 152, 2, 48, "Output"] }, Open ]], Cell[34094, 1133, 70, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[34189, 1137, 137, 3, 30, "Input"], Cell[34329, 1142, 181, 3, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[34559, 1151, 202, 6, 66, "Subsection"], Cell[34764, 1159, 72, 0, 28, "SmallText"], Cell[34839, 1161, 44, 1, 30, "Input"], Cell[CellGroupData[{ Cell[34908, 1166, 43, 1, 30, "Input"], Cell[34954, 1169, 104, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35095, 1176, 280, 5, 90, "Input"], Cell[35378, 1183, 73, 1, 29, "Output"] }, Open ]], Cell[35466, 1187, 150, 3, 44, "SmallText"], Cell[35619, 1192, 43, 1, 30, "Input"], Cell[35665, 1195, 53, 1, 30, "Input"], Cell[35721, 1198, 1277, 26, 270, "Input"], Cell[CellGroupData[{ Cell[37023, 1228, 656, 13, 110, "Input"], Cell[37682, 1243, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[37755, 1249, 48, 1, 30, "Input"], Cell[37806, 1252, 396, 12, 29, "Output"] }, Open ]], Cell[38217, 1267, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[38332, 1273, 43, 1, 30, "Input"], Cell[38378, 1276, 104, 2, 29, "Output"] }, Open ]], Cell[38497, 1281, 745, 17, 130, "Input"], Cell[39245, 1300, 709, 16, 130, "Input"], Cell[39957, 1318, 67, 0, 28, "SmallText"], Cell[40027, 1320, 72, 1, 30, "Input"], Cell[40102, 1323, 82, 1, 30, "Input"], Cell[40187, 1326, 393, 7, 208, "Input"], Cell[40583, 1335, 403, 7, 208, "Input"], Cell[40989, 1344, 214, 4, 118, "Input"], Cell[41206, 1350, 717, 13, 338, "Input"], Cell[41926, 1365, 452, 8, 202, "Input"], Cell[42381, 1375, 213, 4, 90, "Input"], Cell[42597, 1381, 155, 3, 70, "Input"], Cell[42755, 1386, 160, 4, 50, "Input"], Cell[42918, 1392, 143, 3, 30, "Input"], Cell[43064, 1397, 139, 3, 30, "Input"], Cell[43206, 1402, 57, 1, 30, "Input"], Cell[43266, 1405, 59, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[43362, 1411, 75, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[43462, 1415, 145, 2, 70, "Input"], Cell[43610, 1419, 5567, 141, 89, 1089, 81, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[49214, 1565, 144, 2, 70, "Input"], Cell[49361, 1569, 3284, 99, 95, 873, 65, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[52694, 1674, 78, 0, 47, "Subsection"], Cell[52775, 1676, 231, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[53031, 1684, 213, 4, 70, "Input"], Cell[53247, 1690, 871, 26, 83, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[54155, 1721, 70, 1, 30, "Input"], Cell[54228, 1724, 604, 18, 76, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[54893, 1749, 89, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[55007, 1754, 68, 1, 47, "Subsection", Evaluatable->False], Cell[55078, 1757, 119, 3, 28, "SmallText"], Cell[55200, 1762, 156, 3, 28, "SmallText"], Cell[55359, 1767, 356, 5, 95, "Input"], Cell[55718, 1774, 343, 6, 115, "Input"], Cell[CellGroupData[{ Cell[56086, 1784, 37, 1, 30, "Input"], Cell[56126, 1787, 311, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56474, 1797, 71, 1, 30, "Input"], Cell[56548, 1800, 551, 9, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[57148, 1815, 57, 0, 31, "Subsection"], Cell[57208, 1817, 94, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[57327, 1823, 169, 3, 30, "Input"], Cell[57499, 1828, 143, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[57679, 1835, 93, 1, 30, "Input"], Cell[57775, 1838, 152, 2, 70, "Output"] }, Open ]], Cell[57942, 1843, 61, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[58028, 1847, 344, 6, 90, "Input"], Cell[58375, 1855, 172, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[58584, 1863, 69, 1, 30, "Input"], Cell[58656, 1866, 76, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[58781, 1873, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[58871, 1877, 70, 1, 30, "Input"], Cell[58944, 1880, 215, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[59208, 1889, 105, 2, 31, "Subsection"], Cell[CellGroupData[{ Cell[59338, 1895, 195, 4, 30, "Input"], Cell[59536, 1901, 164, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59737, 1909, 63, 1, 30, "Input"], Cell[59803, 1912, 126, 2, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[59978, 1920, 88, 1, 31, "Subsection", Evaluatable->False], Cell[60069, 1923, 180, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[60274, 1931, 37, 1, 30, "Input"], Cell[60314, 1934, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[60409, 1940, 138, 4, 30, "Input"], Cell[60550, 1946, 58, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[60645, 1952, 103, 2, 30, "Input"], Cell[60751, 1956, 142, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[60930, 1963, 134, 3, 30, "Input"], Cell[61067, 1968, 259, 7, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[61363, 1980, 134, 3, 30, "Input"], Cell[61500, 1985, 366, 12, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[61915, 2003, 78, 0, 31, "Subsection"], Cell[61996, 2005, 83, 1, 28, "SmallText"], Cell[CellGroupData[{ Cell[62104, 2010, 45, 1, 30, "Input"], Cell[62152, 2013, 35, 1, 70, "Output"] }, Open ]], Cell[62202, 2017, 218, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[62445, 2025, 51, 1, 30, "Input"], Cell[62499, 2028, 35, 1, 70, "Output"] }, Open ]], Cell[62549, 2032, 123, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[62697, 2039, 53, 1, 30, "Input"], Cell[62753, 2042, 35, 1, 70, "Output"] }, Open ]], Cell[62803, 2046, 132, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[62960, 2053, 51, 1, 30, "Input"], Cell[63014, 2056, 35, 1, 70, "Output"] }, Open ]], Cell[63064, 2060, 30, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[63119, 2064, 134, 2, 30, "Input"], Cell[63256, 2068, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[63345, 2074, 230, 5, 30, "Input"], Cell[63578, 2081, 35, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[63662, 2088, 72, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[63759, 2092, 461, 8, 19, "Input", CellOpen->False], Cell[64223, 2102, 195, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[64455, 2112, 1993, 32, 19, "Input", CellOpen->False], Cell[66451, 2146, 189, 5, 70, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[66701, 2158, 142, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[66868, 2168, 56, 0, 47, "Subsection"], Cell[66927, 2170, 75, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[67027, 2174, 92, 1, 30, "Input"], Cell[67122, 2177, 121, 2, 70, "Output"] }, Open ]], Cell[67258, 2182, 182, 3, 28, "SmallText"], Cell[67443, 2187, 248, 7, 30, "Input"], Cell[CellGroupData[{ Cell[67716, 2198, 71, 1, 30, "Input"], Cell[67790, 2201, 318, 10, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[68157, 2217, 134, 5, 31, "Subsection"], Cell[68294, 2224, 420, 7, 76, "SmallText"], Cell[68717, 2233, 102, 3, 46, "Input"], Cell[68822, 2238, 313, 9, 44, "SmallText"], Cell[69138, 2249, 407, 8, 106, "Input"], Cell[69548, 2259, 90, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[69663, 2265, 135, 3, 30, "Input"], Cell[69801, 2270, 36, 1, 70, "Output"] }, Open ]], Cell[69852, 2274, 127, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[70004, 2281, 140, 3, 70, "Input"], Cell[70147, 2286, 69, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[70253, 2292, 182, 4, 50, "Input"], Cell[70438, 2298, 89, 1, 70, "Output"] }, Open ]], Cell[70542, 2302, 46, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[70613, 2306, 46, 1, 30, "Input"], Cell[70662, 2309, 40, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[70751, 2316, 72, 0, 31, "Subsection"], Cell[70826, 2318, 141, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[70992, 2325, 271, 7, 50, "Input"], Cell[71266, 2334, 42, 1, 70, "Output"] }, Open ]], Cell[71323, 2338, 185, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[71533, 2346, 160, 4, 30, "Input"], Cell[71696, 2352, 36, 1, 70, "Output"] }, Open ]], Cell[71747, 2356, 524, 9, 130, "Input"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[72320, 2371, 88, 1, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[72433, 2376, 52, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[72510, 2380, 76, 1, 30, "Input"], Cell[72589, 2383, 84, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[72722, 2390, 91, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[72838, 2395, 571, 10, 70, "Input"], Cell[73412, 2407, 101, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[73550, 2414, 149, 2, 30, "Input"], Cell[73702, 2418, 78, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[73817, 2424, 40, 1, 30, "Input"], Cell[73860, 2427, 101, 2, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[74022, 2436, 116, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[74163, 2443, 45, 0, 47, "Subsection"], Cell[74211, 2445, 141, 3, 30, "Input"], Cell[CellGroupData[{ Cell[74377, 2452, 1094, 25, 50, "Input"], Cell[75474, 2479, 1015, 24, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[76538, 2509, 65, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[76628, 2513, 217, 4, 50, "Input"], Cell[76848, 2519, 186, 3, 70, "Output"] }, Open ]], Cell[77049, 2525, 79, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[77153, 2529, 365, 9, 30, "Input"], Cell[77521, 2540, 320, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[77890, 2554, 40, 0, 31, "Subsection"], Cell[77933, 2556, 142, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[78100, 2563, 227, 3, 50, "Input"], Cell[78330, 2568, 288, 6, 70, "Output"] }, Open ]], Cell[78633, 2577, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[78766, 2584, 289, 4, 70, "Input"], Cell[79058, 2590, 709, 16, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[79804, 2611, 246, 4, 70, "Input"], Cell[80053, 2617, 461, 8, 70, "Output"] }, Open ]], Cell[80529, 2628, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[80656, 2634, 330, 5, 70, "Input"], Cell[80989, 2641, 691, 16, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[81717, 2662, 244, 4, 70, "Input"], Cell[81964, 2668, 381, 7, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82382, 2680, 169, 3, 30, "Input"], Cell[82554, 2685, 115, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[82706, 2692, 76, 1, 30, "Input"], Cell[82785, 2695, 482, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[83304, 2708, 75, 1, 30, "Input"], Cell[83382, 2711, 422, 7, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[83853, 2724, 64, 0, 31, "Subsection"], Cell[83920, 2726, 225, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[84170, 2735, 190, 4, 50, "Input"], Cell[84363, 2741, 109, 2, 70, "Output"] }, Open ]], Cell[84487, 2746, 112, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[84624, 2753, 311, 7, 90, "Input"], Cell[84938, 2762, 117, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[85092, 2769, 257, 4, 50, "Input"], Cell[85352, 2775, 149, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[85538, 2782, 127, 2, 31, "Input"], Cell[85668, 2786, 164, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[85869, 2793, 60, 1, 30, "Input"], Cell[85932, 2796, 76, 1, 70, "Output"] }, Open ]], Cell[86023, 2800, 108, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[86156, 2807, 61, 1, 30, "Input"], Cell[86220, 2810, 440, 8, 70, "Output"] }, Open ]], Cell[86675, 2821, 102, 2, 28, "SmallText"], Cell[CellGroupData[{ Cell[86802, 2827, 59, 1, 30, "Input"], Cell[86864, 2830, 360, 7, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[87285, 2844, 78, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[87388, 2849, 64, 1, 47, "Subsection", Evaluatable->False], Cell[87455, 2852, 151, 3, 28, "SmallText"], Cell[CellGroupData[{ Cell[87631, 2859, 422, 8, 90, "Input"], Cell[88056, 2869, 156, 2, 70, "Output"] }, Open ]], Cell[88227, 2874, 191, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[88443, 2882, 82, 1, 30, "Input"], Cell[88528, 2885, 248, 5, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[88825, 2896, 78, 1, 31, "Subsection", Evaluatable->False], Cell[88906, 2899, 108, 2, 30, "Input"], Cell[CellGroupData[{ Cell[89039, 2905, 93, 1, 30, "Input"], Cell[89135, 2908, 397, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[89569, 2923, 93, 1, 30, "Input"], Cell[89665, 2926, 288, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[89990, 2941, 107, 2, 30, "Input"], Cell[90100, 2945, 35, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90172, 2951, 108, 2, 30, "Input"], Cell[90283, 2955, 36, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90356, 2961, 39, 1, 30, "Input"], Cell[90398, 2964, 76, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[90523, 2971, 55, 0, 31, "Subsection"], Cell[90581, 2973, 246, 4, 50, "Input"], Cell[90830, 2979, 244, 4, 70, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[91111, 2988, 80, 1, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[91216, 2993, 169, 3, 30, "Input"], Cell[91388, 2998, 122, 2, 70, "Output"] }, Open ]], Cell[91525, 3003, 42, 1, 30, "Input"], Cell[91570, 3006, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[91681, 3011, 88, 1, 30, "Input"], Cell[91772, 3014, 122, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[91931, 3021, 221, 4, 30, "Input"], Cell[92155, 3027, 210, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[92402, 3036, 128, 2, 30, "Input"], Cell[92533, 3040, 864, 24, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[93458, 3071, 123, 3, 66, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[93606, 3078, 140, 5, 47, "Subsection"], Cell[93749, 3085, 110, 2, 30, "Input"], Cell[93862, 3089, 78, 1, 30, "Input"], Cell[93943, 3092, 76, 1, 30, "Input"], Cell[94022, 3095, 59, 1, 30, "Input"], Cell[94084, 3098, 471, 8, 139, "Input"], Cell[94558, 3108, 65, 1, 30, "Input"], Cell[94626, 3111, 85, 1, 30, "Input"], Cell[94714, 3114, 150, 3, 70, "Input"], Cell[94867, 3119, 193, 4, 44, "SmallText"], Cell[CellGroupData[{ Cell[95085, 3127, 304, 5, 130, "Input"], Cell[95392, 3134, 38, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[95479, 3141, 64, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[95568, 3145, 91, 1, 30, "Input"], Cell[95662, 3148, 101, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[95800, 3155, 89, 1, 30, "Input"], Cell[95892, 3158, 210, 4, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[96151, 3168, 36, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[96212, 3172, 38, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[96275, 3176, 297, 6, 130, "Input"], Cell[96575, 3184, 326, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[96950, 3200, 40, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[97015, 3204, 292, 6, 130, "Input"], Cell[97310, 3212, 404, 11, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[97763, 3229, 32, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[97820, 3233, 292, 6, 130, "Input"], Cell[98115, 3241, 441, 12, 49, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[98617, 3260, 33, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[98675, 3264, 44, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[98744, 3268, 289, 6, 130, "Input"], Cell[99036, 3276, 326, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[99411, 3292, 48, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[99484, 3296, 289, 6, 130, "Input"], Cell[99776, 3304, 422, 11, 51, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[100247, 3321, 34, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[100306, 3325, 295, 6, 130, "Input"], Cell[100604, 3333, 422, 11, 49, "Output"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[101087, 3351, 118, 3, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[101230, 3358, 58, 1, 30, "Input"], Cell[101291, 3361, 411, 12, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[101739, 3378, 62, 0, 43, "Subsubsection"], Cell[101804, 3380, 59, 0, 28, "SmallText"], Cell[CellGroupData[{ Cell[101888, 3384, 302, 5, 150, "Input"], Cell[102193, 3391, 506, 12, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[102748, 3409, 64, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[102837, 3413, 302, 5, 150, "Input"], Cell[103142, 3420, 414, 11, 47, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[103605, 3437, 52, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[103682, 3441, 453, 8, 189, "Input"], Cell[104138, 3451, 337, 10, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[104524, 3467, 54, 0, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[104603, 3471, 623, 11, 191, "Input"], Cell[105229, 3484, 330, 10, 43, "Output"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[105632, 3502, 131, 6, 39, "Section", Evaluatable->False], Cell[105766, 3510, 118, 3, 33, "Text"], Cell[105887, 3515, 217, 5, 46, "Input"], Cell[106107, 3522, 225, 4, 71, "Text"], Cell[CellGroupData[{ Cell[106357, 3530, 132, 3, 50, "Input"], Cell[106492, 3535, 36, 1, 29, "Output"] }, Open ]], Cell[106543, 3539, 123, 3, 33, "Text"], Cell[106669, 3544, 102, 3, 46, "Input"], Cell[CellGroupData[{ Cell[106796, 3551, 142, 3, 70, "Input"], Cell[106941, 3556, 36, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107014, 3562, 69, 1, 30, "Input"], Cell[107086, 3565, 173, 3, 29, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[107308, 3574, 107, 3, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[107440, 3581, 33, 0, 47, "Subsection"], Cell[107476, 3583, 215, 4, 50, "Input"], Cell[107694, 3589, 214, 4, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[107945, 3598, 66, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[108036, 3603, 67, 1, 30, "Input"], Cell[108106, 3606, 43, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108186, 3612, 68, 1, 30, "Input"], Cell[108257, 3615, 96, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108390, 3622, 81, 1, 30, "Input"], Cell[108474, 3625, 238, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[108749, 3635, 84, 1, 30, "Input"], Cell[108836, 3638, 249, 5, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109122, 3648, 73, 1, 30, "Input"], Cell[109198, 3651, 195, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109430, 3659, 76, 1, 30, "Input"], Cell[109509, 3662, 119, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109665, 3669, 73, 1, 30, "Input"], Cell[109741, 3672, 76, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109854, 3678, 76, 1, 30, "Input"], Cell[109933, 3681, 85, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[110067, 3688, 75, 1, 31, "Subsection", Evaluatable->False], Cell[110145, 3691, 384, 16, 28, "SmallText"], Cell[110532, 3709, 261, 12, 28, "SmallText"], Cell[110796, 3723, 1652, 33, 152, "Input"], Cell[112451, 3758, 1634, 32, 152, "Input"], Cell[114088, 3792, 393, 16, 50, "Text"], Cell[114484, 3810, 64, 1, 30, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[114585, 3816, 92, 1, 31, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[114702, 3821, 132, 3, 19, "Input", CellOpen->False], Cell[114837, 3826, 9458, 372, 77, 4676, 310, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[124344, 4204, 94, 3, 47, "Subsection", Evaluatable->False], Cell[CellGroupData[{ Cell[124463, 4211, 155, 4, 19, "Input", CellOpen->False], Cell[124621, 4217, 11131, 415, 81, 5116, 338, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[135813, 4639, 165, 6, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[136003, 4649, 56, 0, 47, "Subsection"], Cell[136062, 4651, 136, 3, 28, "SmallText"], Cell[136201, 4656, 222, 5, 30, "Input"], Cell[136426, 4663, 446, 7, 84, "Input"], Cell[136875, 4672, 38, 0, 28, "SmallText"], Cell[136916, 4674, 328, 7, 50, "Input"], Cell[137247, 4683, 42, 0, 28, "SmallText"], Cell[137292, 4685, 229, 5, 63, "Input"], Cell[CellGroupData[{ Cell[137546, 4694, 86, 1, 30, "Input"], Cell[137635, 4697, 308, 8, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[137980, 4710, 88, 1, 30, "Input"], Cell[138071, 4713, 308, 8, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[138428, 4727, 42, 0, 31, "Subsection"], Cell[138473, 4729, 232, 4, 28, "SmallText"], Cell[CellGroupData[{ Cell[138730, 4737, 263, 5, 90, "Input"], Cell[138996, 4744, 45, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[139078, 4750, 263, 5, 90, "Input"], Cell[139344, 4757, 44, 1, 70, "Output"] }, Open ]], Cell[139403, 4761, 86, 1, 30, "Input"], Cell[139492, 4764, 128, 2, 76, "Input"], Cell[139623, 4768, 112, 2, 30, "Input"], Cell[139738, 4772, 129, 3, 30, "Input"], Cell[139870, 4777, 67, 1, 42, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[139974, 4783, 132, 5, 31, "Subsection"], Cell[140109, 4790, 181, 5, 44, "SmallText"], Cell[CellGroupData[{ Cell[140315, 4799, 86, 1, 32, "Input"], Cell[140404, 4802, 64, 1, 29, "Output"] }, Open ]], Cell[140483, 4806, 180, 6, 41, "Input"], Cell[CellGroupData[{ Cell[140688, 4816, 62, 1, 30, "Input"], Cell[140753, 4819, 122, 2, 29, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[140924, 4827, 28, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[140977, 4831, 221, 3, 70, "Input"], Cell[141201, 4836, 9607, 265, 133, 2250, 170, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]], Cell[CellGroupData[{ Cell[150845, 5106, 219, 3, 70, "Input"], Cell[151067, 5111, 6696, 204, 133, 1878, 140, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[157824, 5322, 159, 6, 59, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[158008, 5332, 34, 0, 47, "Subsection"], Cell[158045, 5334, 136, 3, 28, "SmallText"], Cell[158184, 5339, 191, 4, 30, "Input"], Cell[158378, 5345, 36, 0, 28, "SmallText"], Cell[158417, 5347, 349, 8, 50, "Input"], Cell[158769, 5357, 46, 0, 28, "SmallText"], Cell[158818, 5359, 925, 20, 210, "Input"], Cell[159746, 5381, 122, 3, 30, "Input"], Cell[159871, 5386, 109, 2, 50, "Input"], Cell[159983, 5390, 109, 2, 50, "Input"], Cell[160095, 5394, 270, 5, 70, "Input"], Cell[160368, 5401, 191, 4, 30, "Input"], Cell[160562, 5407, 349, 8, 50, "Input"], Cell[160914, 5417, 925, 20, 210, "Input"], Cell[161842, 5439, 122, 3, 30, "Input"], Cell[161967, 5444, 109, 2, 50, "Input"], Cell[162079, 5448, 109, 2, 50, "Input"], Cell[162191, 5452, 270, 5, 70, "Input"], Cell[162464, 5459, 191, 4, 30, "Input"], Cell[162658, 5465, 349, 8, 50, "Input"], Cell[163010, 5475, 122, 3, 30, "Input"], Cell[163135, 5480, 109, 2, 50, "Input"], Cell[163247, 5484, 263, 5, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[163547, 5494, 128, 5, 31, "Subsection"], Cell[163678, 5501, 48, 1, 30, "Input"], Cell[163729, 5504, 48, 1, 30, "Input"], Cell[163780, 5507, 47, 1, 30, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[163864, 5513, 51, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[163940, 5517, 167, 2, 50, "Input"], Cell[164110, 5521, 4545, 165, 133, 1894, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[168704, 5692, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[168771, 5696, 167, 2, 50, "Input"], Cell[168941, 5700, 7670, 289, 133, 3455, 232, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[176660, 5995, 43, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[176728, 5999, 167, 2, 50, "Input"], Cell[176898, 6003, 5697, 180, 133, 1887, 128, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[182656, 6190, 104, 1, 59, "Section"], Cell[CellGroupData[{ Cell[182785, 6195, 44, 1, 30, "Input"], Cell[182832, 6198, 91, 1, 70, "Output"] }, Open ]], Cell[182938, 6202, 137, 3, 30, "Input"], Cell[183078, 6207, 231, 4, 70, "Input"], Cell[183312, 6213, 237, 4, 70, "Input"], Cell[183552, 6219, 114, 2, 44, "SmallText"], Cell[CellGroupData[{ Cell[183691, 6225, 328, 5, 72, "Input"], Cell[184022, 6232, 43, 1, 70, "Output"] }, Open ]], Cell[184080, 6236, 255, 4, 50, "Input"], Cell[184338, 6242, 257, 4, 50, "Input"], Cell[184598, 6248, 281, 5, 50, "Input"], Cell[184882, 6255, 254, 4, 50, "Input"], Cell[185139, 6261, 254, 4, 50, "Input"], Cell[185396, 6267, 254, 4, 50, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[185687, 6276, 301, 10, 39, "Section"], Cell[CellGroupData[{ Cell[186013, 6290, 42, 0, 47, "Subsection"], Cell[CellGroupData[{ Cell[186080, 6294, 44, 1, 30, "Input"], Cell[186127, 6297, 91, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[186255, 6303, 69, 1, 30, "Input"], Cell[186327, 6306, 70, 1, 70, "Output"] }, Open ]], Cell[186412, 6310, 137, 3, 28, "SmallText"], Cell[186552, 6315, 515, 10, 110, "Input"], Cell[CellGroupData[{ Cell[187092, 6329, 58, 1, 30, "Input"], Cell[187153, 6332, 411, 12, 70, "Output"] }, Open ]], Cell[187579, 6347, 226, 5, 44, "SmallText"], Cell[187808, 6354, 144, 3, 50, "Input"], Cell[187955, 6359, 191, 4, 28, "SmallText"], Cell[188149, 6365, 191, 5, 70, "Input"], Cell[188343, 6372, 347, 6, 70, "Input"], Cell[188693, 6380, 219, 4, 50, "Input"], Cell[188915, 6386, 548, 10, 110, "Input"], Cell[189466, 6398, 197, 3, 50, "Input"], Cell[189666, 6403, 381, 7, 70, "Input"], Cell[190050, 6412, 281, 4, 70, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[190368, 6421, 259, 9, 31, "Subsection"], Cell[190630, 6432, 122, 3, 28, "SmallText"], Cell[190755, 6437, 193, 4, 31, "Input"], Cell[190951, 6443, 193, 4, 31, "Input"], Cell[191147, 6449, 193, 4, 31, "Input"], Cell[CellGroupData[{ Cell[191365, 6457, 801, 15, 130, "Input"], Cell[192169, 6474, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[192264, 6481, 275, 9, 31, "Subsection"], Cell[192542, 6492, 175, 4, 30, "Input"], Cell[192720, 6498, 175, 4, 30, "Input"], Cell[192898, 6504, 175, 4, 30, "Input"], Cell[193076, 6510, 89, 1, 30, "Input"], Cell[193168, 6513, 89, 1, 30, "Input"], Cell[193260, 6516, 89, 1, 30, "Input"], Cell[CellGroupData[{ Cell[193374, 6521, 759, 14, 130, "Input"], Cell[194136, 6537, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[194233, 6544, 260, 9, 31, "Subsection"], Cell[194496, 6555, 122, 3, 28, "SmallText"], Cell[194621, 6560, 214, 4, 31, "Input"], Cell[194838, 6566, 212, 4, 31, "Input"], Cell[CellGroupData[{ Cell[195075, 6574, 446, 7, 110, "Input"], Cell[195524, 6583, 48, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[195609, 6589, 450, 7, 110, "Input"], Cell[196062, 6598, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[196158, 6605, 268, 9, 31, "Subsection"], Cell[196429, 6616, 122, 3, 28, "SmallText"], Cell[196554, 6621, 224, 4, 31, "Input"], Cell[196781, 6627, 229, 4, 31, "Input"], Cell[CellGroupData[{ Cell[197035, 6635, 449, 7, 110, "Input"], Cell[197487, 6644, 49, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[197573, 6650, 446, 7, 110, "Input"], Cell[198022, 6659, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[198119, 6666, 262, 9, 31, "Subsection"], Cell[198384, 6677, 203, 4, 30, "Input"], Cell[198590, 6683, 216, 4, 30, "Input"], Cell[198809, 6689, 230, 4, 30, "Input"], Cell[199042, 6695, 201, 4, 30, "Input"], Cell[199246, 6701, 214, 4, 30, "Input"], Cell[CellGroupData[{ Cell[199485, 6709, 469, 7, 110, "Input"], Cell[199957, 6718, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[200038, 6724, 465, 7, 90, "Input"], Cell[200506, 6733, 44, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[200587, 6739, 471, 7, 110, "Input"], Cell[201061, 6748, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[201155, 6755, 272, 9, 31, "Subsection"], Cell[201430, 6766, 203, 4, 30, "Input"], Cell[201636, 6772, 203, 4, 30, "Input"], Cell[201842, 6778, 203, 4, 30, "Input"], Cell[CellGroupData[{ Cell[202070, 6786, 751, 14, 130, "Input"], Cell[202824, 6802, 46, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[202919, 6809, 293, 9, 31, "Subsection"], Cell[203215, 6820, 108, 3, 28, "SmallText"], Cell[203326, 6825, 206, 3, 50, "Input"], Cell[203535, 6830, 194, 4, 30, "Input"], Cell[203732, 6836, 204, 4, 30, "Input"], Cell[203939, 6842, 92, 1, 30, "Input"], Cell[204034, 6845, 92, 1, 30, "Input"], Cell[204129, 6848, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[204263, 6854, 780, 14, 130, "Input"], Cell[205046, 6870, 48, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[205143, 6877, 274, 9, 31, "Subsection"], Cell[205420, 6888, 102, 2, 28, "SmallText"], Cell[205525, 6892, 202, 3, 50, "Input"], Cell[205730, 6897, 190, 4, 30, "Input"], Cell[205923, 6903, 202, 4, 30, "Input"], Cell[206128, 6909, 92, 1, 30, "Input"], Cell[206223, 6912, 92, 1, 30, "Input"], Cell[206318, 6915, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[206452, 6921, 776, 14, 130, "Input"], Cell[207231, 6937, 47, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[207327, 6944, 266, 9, 31, "Subsection"], Cell[207596, 6955, 203, 4, 30, "Input"], Cell[207802, 6961, 203, 4, 30, "Input"], Cell[208008, 6967, 227, 4, 30, "Input"], Cell[208238, 6973, 92, 1, 30, "Input"], Cell[208333, 6976, 92, 1, 30, "Input"], Cell[208428, 6979, 109, 2, 30, "Input"], Cell[CellGroupData[{ Cell[208562, 6985, 795, 15, 150, "Input"], Cell[209360, 7002, 45, 1, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[209454, 7009, 280, 9, 31, "Subsection"], Cell[209737, 7020, 51, 1, 30, "Input"], Cell[209791, 7023, 275, 5, 91, "Input"], Cell[210069, 7030, 280, 5, 91, "Input"], Cell[210352, 7037, 207, 4, 90, "Input"], Cell[210562, 7043, 212, 4, 90, "Input"], Cell[210777, 7049, 91, 1, 30, "Input"], Cell[210871, 7052, 84, 1, 30, "Input"], Cell[210958, 7055, 1424, 28, 330, "Input"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[212431, 7089, 65, 1, 39, "Section", Evaluatable->False], Cell[CellGroupData[{ Cell[212521, 7094, 346, 8, 19, "Input", CellOpen->False], Cell[212870, 7104, 9765, 158, 70, "Output"] }, Open ]] }, Closed]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)