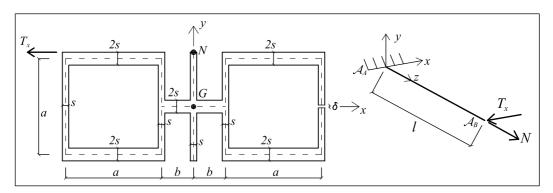
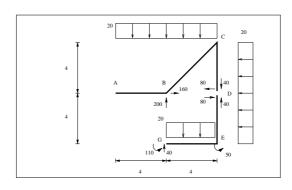
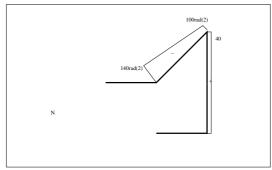

Scienza delle Costruzioni - Ingegneria Civile

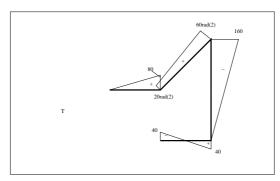
Prof. Angelo Luongo - 09/02/2009 SDC 9CFU: Es. 1, 2, 3; DURATA: 4 H SDC I 6CFU: Es. 1, 2; DURATA: 3 H SDC II 6CFU: Es. 3; DURATA: 2 H

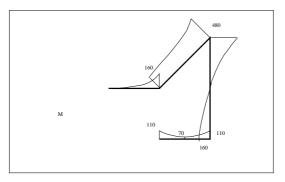

Esercizio 1: Scrivere e diagrammare le leggi di variazione delle caratteristiche di sollecitazione per la struttura in figura, nel caso in cui siano $\ell=4$ m, p=20 $\frac{\rm KN}{\rm m}$, M=50 KNm. {Calcolare la rotazione della sezione in E, essendo EI=64000 KNm² $\}^1$.

Esercizio 2: Diagrammare le caratteristiche di sollecitazione per la struttura in figura nel caso in cui sia $\ell=4$ m, p=20 $\frac{\rm KN}{\rm m}$, F=40 KN, $EI=6.4\times10^4$ KNm², $EA\to+\infty$, $\Delta T_{\rm CG}=20^{\rm o}{\rm C},~\alpha=10^{-5}$ C⁻¹, $\delta=5$ cm.

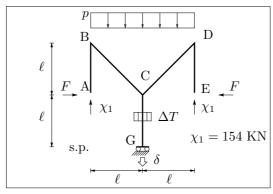

Esercizio 3: Si verifichi, nella sezione di incastro, un solido di DSV avente la sezione rappresentata in figura, soggetto in \mathcal{A}_B ad una forza di taglio $T_x=200$ KN e ad una forza normale N=80 KN. Si diagrammi l'andamento delle tensioni normali e delle tensioni tangenziali per la sezione in figura. Sia a=30 cm, b=10 cm, s=2 cm, l=1 m, $\delta \ll s$, $\sigma_{amm}=250$ N/mm², $E=2.5\times10^8$ KN/m², $\nu=0.2$. Si calcoli la σ_{id} , nel punto più sollecitato, utilizzando il criterio di resistenza di Von Mises. {Si costruisca il cerchio di Mohr nel punto più sollecitato e si calcolino le tensioni principali, la tensione su un piano di normale $\mathbf{n}=\{\sqrt{3}/3,\sqrt{3}/2,1/2\}^{\mathrm{T}}$ e la dilatazione volumetrica specifica}².

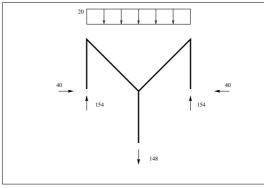


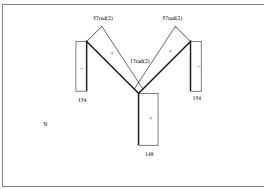

 $^{^{1}\}mathrm{Domanda}$ riservata agli studenti SdC I 6cfu

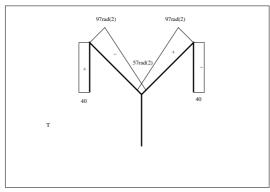

²Domanda riservata agli studenti SdC II 6cfu

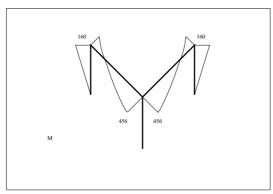
Esercizio 1:

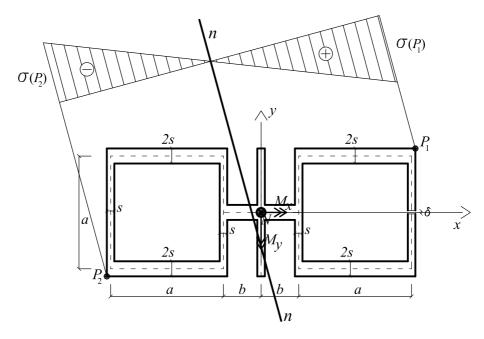




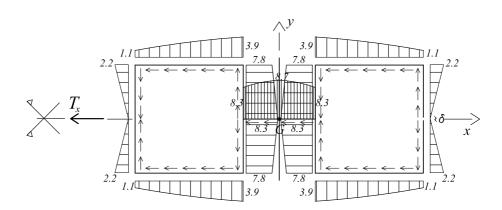


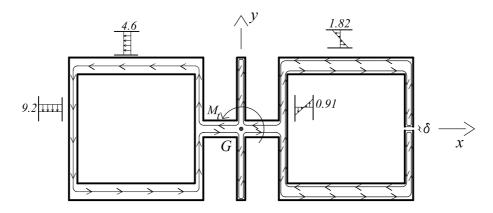



Esercizio 2:



Esercizio 3:

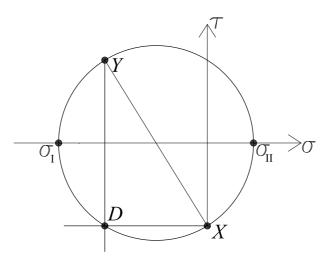

$$\begin{split} A &= 85200 \text{ mm}^2 \\ y_G &= 0 \\ I_x &= 1342.3 \cdot 10^6 \text{ mm}^4 \\ I_y &= 5425.24 \cdot 10^6 \text{ mm}^4 \\ N &= 80 \cdot 10^3 \text{ N} \\ T_y &= 0 \\ T_x &= -200 \cdot 10^3 \text{ N} \\ M_x &= 13600 \cdot 10^3 \text{ N} \cdot \text{mm} \\ M_y &= -200000 \cdot 10^3 \text{ N} \cdot \text{mm} \\ M_t &= 34000 \cdot 10^3 \text{ N} \cdot \text{mm} \end{split}$$


PRESSO-FLESSIONE

$$\sigma(P_1) = 17.77 \frac{N}{mm^2}$$

 $\sigma(P_2) = -15.89 \frac{N}{mm^2}$

TAGLIO



VERIFICHE DI RESISTENZA, RAPPRESENTAZIONE DI MOHR, TENSIONI PRINCIPALI

Il punto piú sollecitato é P_2 . $\sigma_{id}(P_2)=25.35~\frac{\rm N}{\rm mm^2}<\sigma_{amm},~{\rm SEZIONE~VERIFICATA}$

$$\begin{split} X &:= (0; -11.4), \, Y := (-15.9; 11.4) \\ \sigma_{\rm I} &= -21.9 \, \frac{\rm N}{\rm mm^2} \\ \sigma_{\rm II} &= 5.95 \, \frac{\rm N}{\rm mm^2} \\ \sigma_{nn} &= 2.61 \, \frac{\rm N}{\rm mm^2} \\ \Delta &= -3.82 \cdot 10^{-5} \end{split}$$

