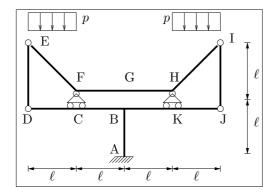
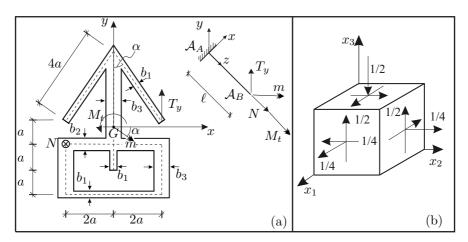

Scienza delle Costruzioni (Prof. Angelo Luongo) - Statica (Ing. Daniele Zulli) - 02/02/2016


SDC 9CFU DA MECCANICA DEI SOLIDI: Es. 1, 2, 3A; DURATA: 4 H

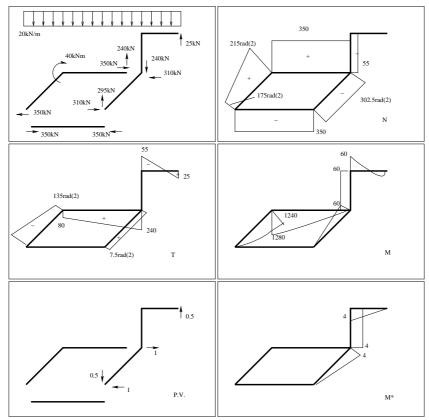
SDC 9CFU <u>DA STATICA</u>: Es. 3A, 3B; DURATA: 3 H STATICA & SDC I 6CFU: Es. 1, 2; DURATA: 3 H SDC II 6CFU: Es. 3A; DURATA: 2 H

Esercizio 1: Scrivere e diagrammare le leggi di variazione delle caratteristiche di sollecitazione per la struttura in figura, nel caso in cui siano $\ell=4$ m, p=20 $\frac{\text{kN}}{\text{m}}$, F=40 kN, M=40 kNm. {Calcolare lo spostamento orizzontale della sezione in D, essendo EI=64000 kNm², $EA \rightarrow +\infty$ }¹.



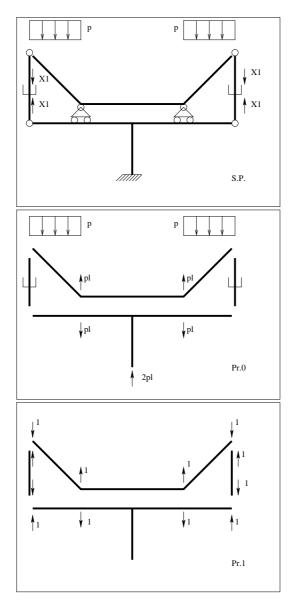
Esercizio 2: Diagrammare le caratteristiche di sollecitazione per la struttura in figura nel caso in cui sia $\ell=4$ m, $p=20~{\rm \frac{kN}{m}},~EI=6.4\times10^4~{\rm kNm^2},~EA_{\rm ED}=EA_{\rm IJ}=3.0\times10^4~{\rm kN},~{\rm altrove}~EA\to+\infty.$

Esercizio 3A: Verificare, nella sezione di incastro, un solido di DSV di lunghezza $\ell=3$ m, avente la sezione rappresentata in figura (a), soggetto in \mathcal{A}_B ad una forza di taglio $T_y=50$ kN, una coppia flettente m=50 kNm, una coppia torcente $M_t=50$ kNm e ad una forza normale N=100 kN. Siano a=50 mm, $b_1=10$ mm, $b_2=15$ mm, $b_3=20$ mm, $\alpha=30^\circ$ e $\sigma_{amm}=160$ $\frac{\rm N}{\rm mm^2}$. Diagrammare l'andamento delle tensioni normali e delle tensioni tangenziali e calcolare, utilizzando il criterio di resistenza di Von Mises, la σ_{id} nel punto più sollecitato. {Costruire il cerchio di Mohr nel punto più sollecitato e determinare le tensioni principali}².


Esercizio 3B: Assegnato lo stato di tensione in figura (b) determinare: 1) il tensore della tensione \mathbf{T} ; 2) le tensioni e le direzioni principali; 3) le componenti del vettore tensione \mathbf{t}_n agente sul piano π di normale $\mathbf{n} = \{0, 1, 0\}^T$; 4) la componente di \mathbf{t}_n normale al piano e la componente tangenziale risultante in modulo e verso; 5) calcolare gli invarianti J_1, J_2 e J_3 .

 $^{^{1}\}mathrm{Domanda}$ riservata agli studenti di Statica e SdC I 6cfu

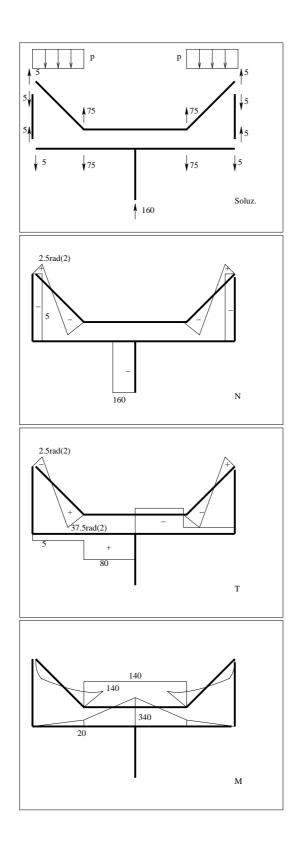
²Domanda riservata agli studenti di SdC 9cfu <u>da Statica</u> & SdC II 6cfu


Esercizio 1:

	N	T	M	M^*
AB	$175\sqrt{2} + 10x$	$-175\sqrt{2} + 10x$	$175\sqrt{2}x - 5x^2$	0
BD	350	80 + 20x	$1240 - 80x - 10x^2$	0
AC	-350	0	0	0
CD	$-302.5\sqrt{2}$	$7.5\sqrt{2}$	$-7.5\sqrt{2}x$	$x\sqrt{2}/4$
GE	0	25 - 80x	$-25x + 10x^2$	-x/2
ED	-55	0	60	-2

$$1u_{\rm D} = \frac{1}{EI} \int_{\mathcal{D}} \mathbf{M} \mathbf{M}^* dx = -0.012 \text{ m}$$

Esercizio 2: La struttura è simmetrica per geometria e carichi, essa è una volta iperstatica considerando come incognita iperstatica lo sforzo nelle bielle ED e IJ.


	M_0	M_1	N_1
EF	$-px^{2}/4$	$-x\sqrt{2}/2$	tr
FG	$-p\ell^2/2$	$-\ell$	tr
DC	0	x	tr
CB	$-p\ell x$	ℓ	tr
ED	0	0	1
AB	0	0	tr

$$\eta_{11} = \frac{\ell}{EA} + \frac{7 + \sqrt{2}}{3} \frac{\ell^3}{EI} = \frac{37 + 5\sqrt{2}}{15000}$$

$$\eta_{10} = \frac{p\ell^4}{EI} \frac{1}{4\sqrt{2}} = \frac{1}{50\sqrt{2}}$$

$$\bar{\eta}_1 = 0$$

$$\chi_1 = -4.8 \text{kN}$$

Esercizio 3: Manca.